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Abstract

In this paper we develop a new mathematical approach to the pattern formation prob-
lem in biology. First this problem was posed mathematically by A. M. Turing, however
some principal questions left open (for example whether there exists an ”universal” math-
ematical model that allows one to obtain any spatio-temporal patterns).

We consider here the pattern formation ability of some class of genetic circuits. First,
we show that the genetic circuits are capable to generate arbitrary spatio-temporal pat-
terns. Second, we give upper and lower bounds on the number of genes in a circuit
generating given pattern. A connection between complexity of gene interaction and pat-
tern complexity is found. We investigate stochastic stability of patterning algorithms.
Results are consistent with experimental data.

1 Introduction. Turing approach

This paper deals with special circuits of the neural type playing a key role in contemporary biol-

ogy, and our results can be applied to the pattern formation problem in biology. Mathematical

approaches to this problem started with the seminal paper of A. M. Turing [1]. Turing studied

how chemical patterns could emerge from spatially uniform states. His model is a system of

two special partial differential equations, so-called two component reaction-diffusion system. In

a more general multicomponent case, these systems have the form:

∂ui
∂t

= di∆ui + fi(u1, u2, ..., um), x ∈ Ω, t ≥ 0, (1.1)

where unknown functions ui(x, t) can be interpreted as a reagent concentration, the term di∆ui

describes the reagent diffusion and fi are smooth (usually polynomial or rational in ui) functions

describing a nonlinear chemical interaction between the reagents. We suppose that Ω is a

bounded domain and set some boundary and initial conditions. Turing introduced as well some
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key notions such as activator and inhibitor. He assumed that state cells are discrete and they

can be modified by special chemical reagents.

Now the existence of such reagents is well known [3],[4]. Moreover, it is proved experimen-

tally that, in multicellular organisms, the state of a cell can depend on gene expression inside

this cell and on some signals from environment (electrical, chemical or pressure, [4]).

The Turing approach was developed by numerous works (see [5] for a review). Patterns

obtained numerically are often similar to patterns actually observed in biology [5]. However,

the equations for these models have been selected to be mathematically tractable and a priori

they do not take into account experimental genetic information. Moreover, there is no direct

evidence for a Turing’s patterning any developing organism ([3], p.347).

Mathematically, the two main questions were open. First, whether actually model (1.1) is

capable to produce any patterns, or not. Second, whether there exist algorithms that allow us

to choose parameters (functions fi and di) such that solution of (1.1) will approximate a given

pattern.

More precisely, the first problem can be formulated as follows:

Universal pattern generation problem for Turing model (1.1).

Let T0 > 0 and T0 < T . Given a function z(x, t), x ∈ Ω, t ∈ [0, T ] and a positive number ε,

to find a number m, functions fi(u1, ..., um) and coefficients di (where i = 1, ...,m) such that

the solution of problem (1.1) with initial conditions uj = 0 satisfies

sup
x,t
|z(x, t)− um(x, t)| < ε, x ∈ Ω, t ∈ [T0, T ]. (1.2)

Below we consider a time discrete version of (1.1). (Notice that if we shall try to resolve

(1.1) numerically, this version inevitably arises from (1.1) ).

Using genetic circuits (a special subclass of systems (1.1)) we show that the universal pattern

generation problem can be resolved. Moreover, it can be done by an algorithm, i.e., the pattern

problem can be resolved constructively.

2 Genetic circuits

Genetic circuit models were proposed ( [7], [8], [9], [11]-[13] among many others, see [10] for a

review) to take into account theoretical ideas and experimental information on gene interaction.
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Model [9] uses Boolean algebra (so-called Boolean switch network). Circuit studied by [11]-[13]

is a generalization of the famous Hopfield model of attractor neural network [2]. On other hand,

this circuit is a particular case of the Turing model, where fi have a special form.

Genetic circuit approach, developed in [11]-[13], is based on two main biological ideas. The

first one is to choose the gene concentrations as state variables for the description of gene

regulation. The second one is to use networks similar to neural networks to describe activation

or depression of one gene by another. Mathematically such model can be described as a system

of partial differential equations of a special form [11, 12], namely

dui
dt

= Riσ(
m∑
j=1

Kijuj +
m1∑
j=1

Mijθj(x)− ηi)− λiui + di∆ui, (2.1)

where m is the number of genes included in the circuit, ui(x, t) the concentration of the i-

th gene, λi the gene decay rates and di the gene diffusion coefficient, the parameters ηi are

activation thresholds and σ is so-called sigmoidal function (see below).

The real number Kij measures the influence of the j-th gene on the i-th one. The assump-

tion that gene interactions can be expressed by a single real number per pair of genes is a

simplification excluding complicated interactions between three, four and more genes. Clearly

such interactions can exist, however then the problem becomes mathematically much more

complicated.

In (2.1), θi are fixed functions. They give the densities of so-called ” maternal genes”

that engine pattern growth. The number of these genes is m1. (For example, for Drosophila

Melanogaster the key maternal gene is bicoid. The complete number of the maternal genes is

about 50, see [3]). Also they can describe concentrations of the substrates involved in patterning.

Indeed, we need some food to grow. The matrix Mij describes an interaction between the genes

ui and the maternal genes.

One considers (2.1) in some open domain Ω with a regular boundary ∂Ω. If di > 0 then, in

addition to (1.1), one sets the standard zero Neumann conditions [33] for ui on ∂Ω:

∂ui
∂n

(x) = 0, x ∈ ∂Ω,

where n = n(x) is the unit vector orthogonal to the boundary ∂Ω at the point x and directed

inward Ω.
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If di = 0 there are no boundary conditions. The initial data equal zero

ui(x, 0) ≡ 0, x ∈ Ω. (2.2)

The function σ satisfies the following supposition:

Assumption 2.1. Suppose σ is a strictly monotone increasing function satisfying

lim
z→−∞

σ(z) = 0, lim
z→∞

σ(z) = 1 (2.3)

and a differential equation

σ′ = P (σ), (2.4)

where P is a polynomial.

The well known example can be given by σ(z) = 1+tanh(z)
2

(here P = σ(1 − σ)/2). It is

easy to see that the polynomial P satisfies the following properties: P (0) = 0, P (1) = 0 and

P (z) is positive for any z ∈ (0, 1). We also observe that σ is a real analytic function satisfying

estimates

σ(z) = O(exp(−c1|z|)), z → −∞

σ(z)− 1 = O(exp(−c2z)), z → +∞, (2.5)

where ci are positive constants.

An example of σ playing an important role for biology is given by so-called Michaelis-

Menten function. This function σ equals x/(K + x) for positive x and equals 0 for x ≤ 0,

where K is a positive constant. This function satisfies (2.3) and (2.5). Relation (2.4) holds for

σ ∈ (0, 1) but σ′(0) is not defined. Nonetheless, under some additional conditions, some results

hold in this case as well (see Section 6).

Model (2.1) takes into account only three fundamental processes: a) the decay (degradation)

of gene products (the term −λiui); b) exchange of gene products between cells (the term with

∆) and c) gene regulation and synthesis. Notice that (2.1) is a particular case of (1.1) with

nonlinearities of a special form.

Another possible model is a dynamical system with discrete time, for example, defined by

the following iterative process

ut+1
i (x) = riσ(

m∑
j=1

Kiju
t
j(x) +

m1∑
j=1

Mijθj(x)− ηi)− λiuti(x) + di∆u
t
i(x), (2.6)
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u0
i (x) ≡ 0 (2.7)

where t = 0, 1, 2, ..., T , T is an integer and x ∈ Ω. Numerical procedures solving (2.1) lead to

models similar to (2.6). A simplified variant of system (2.6) was investigated, for example, in

[14].

An important advantage of (2.6) with respect to (2.1) is that, if di = 0, the Khovanskii [15]

results can be applied to this model. In fact, we shall see below that (2.6) defines a Pfaffian

chain if the functions θi are Pffafian.

Of course models (2.1) and (2.6) are rough simplifications. Actually many other processes

can be taken into account. In fact, the number of involved genes is of order of many thousands,

even a reasonable approximation of this process is not known [3]. There is no single universal

strategy of patterning ([3], p. 10). Nonetheless it is clear that this rough approximation (2.6)

has a connection with actual biology. There are no doubts that threshold mechanisms are

important and complicated circuits of interacting proteins and genes actually exist [17],[18].

To investigate (2.1) and (2.6), the most of the previous works used numerical simulations.

For example, the paper [13] analyzes complicated patterns occurring under a random choice of

the matrix K.

In this paper we focus our attention on model (2.6). We show that model (2.6) is math-

ematically tractable. First, we show, in a purely analytical way and without any numerical

calculations, that any time sequence of any space patterns can be approximated by genetic cir-

cuit (2.6). Second, we examine a connection between ”the complexity of a genetic circuit” and

the ”pattern complexity”. Naturally, both complexities should be defined in a reasonable way.

Third, we are going to investigate stability of morphogenesis process with respect to random

perturbations.

Let us formulate now the pattern generation problem for system (2.6).

Let us fix some function σ satisfying Assumption 2.1. On the contrary, we consider

N,Kij,Mij, λi, di, ri and θi as ”control” parameters. We denote the set of these parameters

by P . The morphogenesis problem for (2.6) can be described as follows. Given a spatio-

temporal pattern and a number ε > 0, the problem is to adjust parameters P of (2.6) such that

network (2.6) would approximate the given target pattern. The target pattern is defined by a

time sequence of functions zt(x) where x ∈ Ω ⊂ Rn, t ∈ [0, T ] with the values z from [0, 1].

Pattern generation problem for gene circuits
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Let T0 > 0 and T0 < T , where T0, T are integers. Given functions zt(x) ∈ [0, 1], x ∈ Ω, t =

0, 1, ..., T and a positive ε, to find parameters P such that the functions generated by relations

(2.6), (2.7) satisfy

sup
x,t
|zt(x)− utm(x)| < ε, x ∈ Ω, t = T0, ..., T. (2.8)

Remark. We cannot satisfy (2.8) for t = 0 since initial functions u0
j are equal zero.

Let us give a biological interpretation of this formulation. Among the genes ui, we select

a special gene, say um. The cell states depend on the expression of this gene. Other genes

u1, u2, ..., um−1 are ”hidden genes”. They are involved in a cell biochemical machinery, but

they do not act directly on the cell states. Such an approach is in a good accordance with

experimental facts (see [3, 4]). It reminds classical approaches of neural network theory [20,

22, 25], where, similarly, we distinguish ”input”, ”output” neurons and ”hidden” ones.

3 Main results and organization of paper

Let us formulate now main mathematical results, ideas of proofs and give their biological

interpretation (see also [40]).

Results

A Under some conditions on θi(x) and T0, problem (2.8) always has a solution. Any

sequences of the patterns zt(x) can be approximated, within an arbitrarily small error, by gene

circuits (2.6). Notice that our conditions are necessary and sufficient (see Section 4 for details).

B Parameters of a circuit that approximates a given sequence zt(x), can be found by an

algorithm.

C Given a final pattern zT (x), one can estimate the minimal number of genes in a network

that generates this pattern. We give definitions of ”complexity” of the circuits and pattern

”complexity”. We show, by the Khovanski theory [15], that there exists a connection between

these complexities: it is impossible to obtain a ”complex” pattern by a ”simple” circuit.

We introduce and apply the different measures of the pattern complexity. Basic biological

concepts on gene expression [3, 4], lead, in a natural way, to the definition of pattern complexity

as the number of connectivity components of some sets D defined by the pattern zT (x). These

sets can be defined in different ways. We consider here two cases. In the first case we define D
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as a level set,

Dc,t = {x : zt(x) = c}.

In the second case

Dc1,c2,t = {x : c1 ≤ zt(x) ≤ c2}.

Here 0 ≤ c ≤ 1, 0 ≤ c1 < c2 ≤ 1. These definitions admit a biological interpretation [4, 13]. The

sets Dc,t and Dc1,c2,t are boundaries of a domain, where the gene um (that defines ”structure”

of ”organism”) is expressed.

In the first case, in order to connect the pattern complexity and the circuit parameter, we

use estimates following from the fundamental results of Khovanskii [15]. These estimates are

independent of the diameter of the domain Ω ⊂ Rn and of the maximum of the absolute values

of the entries |Kij|. In this case the pattern complexity can be estimated via (rθ+mT+n), where

parameter rθ is a complexity of inputs θ(x, t), the number mT characterizes the complexity of

gene interactions.

In the second case we obtain essentially stronger estimates, in a quite elementary inductive

way. However, in opposite to the previous ones, these estimates depend on the diameter of the

domain Ω and on the maximum of the absolute values of the entries |Kij|.
It is not sufficient to have a patterning algorithm; actually, algorithms have to be stable

under random errors and perturbations. In particular, they must be stable under random noise

and sharp changes of ecological conditions. Indeed, ecological catastrophes can eliminate a

food, mutations can change properties of some genes. Mathematically this means that actually

the functions θi(x) depend randomly on time t.

We consider the question on the stochastic stability of genetic circuits (2.6). We define

stochastic stability of system (2.6) on time interval [0, T ] as the probability that the gene

densities uti(x) stay inside some fixed bounded domain for all t from [0, T ]. Notice that such a

definition follows standard ideas of the theory of random perturbations of dynamical systems

[27]. This probability can be called the survival probability.

Simple estimates allow to conclude that

D the more is the valency of a node the stabler is the circuit with respect to perturbations

in this node. (The valency of the node is the number of links connecting this node with other

ones; in our case the valency of i-th gene is the number of non-zero entries Kij).
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M. Gromov and A. Carbone formulated the following important problem: ”Homeostasis

of an individual cell cannot be stable for a long time as it would be destroyed by random

fluctuations within and without cell. There is no adequate mathematical formalism to express

the intuitively clear idea of replicative stability of dynamical systems” ([26], p.40).

Recall that homeostasis here means supporting of life functions of the cell. Namely, it is well

known that biological moleculas amd chemical mechanisms in the cell are fragile [4]. Thus, in

order to support their functioning, main parameters of the cell medium (temperature, pressure,

pH, reagent concentrations) must be within some (sometimes narrow) intervals independtly of

external medium oscillations [4].

This problem can be formulated within the framework of model (2.6). We use here a classical

measure of stability from the theory of dynamic systems under random perturbations [27]. We

prove that the survival probability of each circuit of a fixed structure tends to zero as T →∞.

Therefore, ”homeostasis” generated by a fixed circuit will be broken as time tends to infinity.

E To answer Gromov-Carbone’s question by means of model (2.6), we show that although a

fixed isolated circuit is always stochastically unstable, a chain of circuits can be stable. In this

chain, each circuit is obtained from the previous one by some algorithm modifying the circuit

parameter (replication algorithm). Roughly speaking, to survive, it is necessary to evolve.

However, the replication algorithm leading to ”eternal” evolution cannot be arbitrary. We

show that, for example, the mean valency must increase during evolution.

Outline of the proofs

The key point of the proof of A is Lemma 4.2. This Lemma can be interpreted as a

Superposition principle. Namely, if circuits C1, C2, ..., Ck generate chains of functions zti(x),

where t ∈ [0, T ] and i = 1, 2, ..., k then, for any continuous function F (u1, u2, ..., uk), we can

find a new circuit that generate the superposition F (zt1, z
t
2, ..., z

t
k). We show how the matrix K

of the new circuit can be obtained from the matrices of given circuits. To this end, we use a

special decomposition of the matrix K.

Notice that the proof is constructive and gives us an algorithm. This algorithm exploits a

modular structure of the circuits. The key tool is the well studied multilayered approximations

[22]-[25]. It gives an explicit upper estimate of gene number m via the target pattern. Suppose

that for any t = 0, 1, ..., T the functions zt(x) are Lipshitzian. Then the number m of the genes

participating in a circuit generating a sequence zt(x), t = 1, ...T , can be estimated through
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maxt Lip(z
t). Here Lip(z) is the Liphitz constant of z(x).

In one-dimensional case (dimΩ = 1), to approximate any zt(x) by (2.6), it is sufficient to

have only one strictly monotone function θi(x) (m1 = 1).

To demonstrate results C we show that, under our assumptions on σ, this function is

Pffafian. Under the assumption that θi are Pffafian, it is easy to prove, by an induction, that

circuit (2.6) gives rise to a Pfaffian chain of functions. The Khovanskii estimates allow now to

connect topological properties of final pattern zT (x) with some circuit parameter and to obtain

the result C.

The proof of D and E is quite straightforward.

Comments and interpretations

Result A can be considered as a generalization of previous results on multilayered neural

networks and the Hopfield circuits. It is well known that any pattern z(x) can be approximated,

within arbitrary precision, by a multilayered neural network with sufficiently large number of

neurons [22]-[25]. On other hand, it was shown that the Hopfield model produces, within

arbitrary precision, any time trajectories [20] and even any structurally stable attractors [21].

To obtain a complex time trajectory or a complex attractor we must take a sufficient number

of neurons.

Result A generalizes, for system (2.6), simultaneously the both previous results . This

shows that any time sequences of any patterns z(x) can be approximated. Of course, such a

result is quite evident if we consider a sufficiently large circuit with parameters θi(x) and if we

can adjust these θi(x). However, in our case the functions θi(x) are subject to some conditions

and are fixed as well as the whole structure of our dynamical systems (2.6).

It is interesting to note that the main idea in proving A and B is connected with con-

temporary ideas of molecular and developmental biology [3, 4, 16, 19]. It is well known now

that the genes are organized in blocks and their interaction has a modular structure [3, 4].

Mathematically this means that the matrix K is decomposed in some blocks (see Section 4).

Let us observe that conclusion D is in a good accordance with experimental results of [18].

This work investigated protein networks in 43 microorganisms. It was shown that the most

connected proteins in the cell are the most important for its survival.

Conclusion E also is confirmed by experimental data (see [17]). It is known that, for

biological networks, the averaged valency increased during evolution process.
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Organization of the paper

We state the results A and B in Section 4. In Sections 5-7 we state results C. In Section

5 we introduce different measures of complexities. Section 6 studies the Khovanskii estimates

of network complexity via pattern complexity. Section 7 is focused on simpler non-uniform

estimates. Section 8 considers stability under random perturbations and Section 9 concerns

with Gromov-Carbone’s problem.

4 Pattern generation and patterning algorithm

We simplify model (2.6) removing the terms describing the gene diffusion and degradation (i.e.,

we put λi = di = 0). We set Mij = δij, where δij is the Kronecker symbol, and m1 = m. We

also suppose ri = 1. Let us denote m0 the number of non-trivial functions θi, i.e., such that

θi(x) 6= const on Ω.

As a result, we obtain the following iterative model

ut+1
i (x) = σ(

m∑
j=1

Kiju
t
j(x) + θi(x)− ηi), (4.1)

where

u0
i (x) = 0, t = 0, 1, 2, ..., T, x ∈ Ω. (4.2)

We show that the universal pattern generation problem can be resolved even for this simplified

model. Notice that this system is a particular case of circuits considered in [29]-[32].

For (4.1), the pattern generation problem can be formulated as above (see (2.8)), but now

the parameters P are the integer number m, the matrix K and the numbers ηi, i = 1, ...,m.

Recall that θj(x) are fixed.

Our main result is

Theorem 4.1. Suppose T0 > 2 and that there exist continuous functions φl(θ), l = 1, ..., d

defined on Rm such that xl = φl(θ1(x), ..., θm(x)) for each x ∈ Ω ⊂ Rd. Then the pattern

generation problem for (4.1) has a solution.

Remark 1. The assumption of the theorem implies that m0 ≥ d ( at least d functions θi

are non-trivial). In the one-dimensional case d = 1 this assumption holds if at least one function

θi is strictly monotone. Moreover, under the condition of Theorem 4.1, any function f(x1, ..., xd)
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can be represented as a function of θ = (θ1, ..., θm). Indeed, f(x1, ..., xd) = f(φ1(θ), ..., φd(θ)) =

f̃(θ).

Remark 2. We also observe that the assumption on θi is necessary to approximate

any sequences zt(x) by (4.1). In fact, chain (4.1) can generate only such sequences zt, where

each zt(x) depend on x through θ(x) = (θ1(x), ..., θm(x)). This means that for each zt must

exist a function Gt(θ) such that zt(x) = Gt(θ). If our assumption does not hold, the trivial

target sequence zt = xk cannot be approximated by (4.1). Consequently, we conclude that the

assumption of the theorem is sufficient and necessary in order to resolve by (4.1) the pattern

generation problem for any outputs zt.

A brief proof of Theorem 4.1 can be obtained by the following lemma.

Superposition Lemma 4.2. Consider a family consisting of p circuits (4.1) generating

functions uti,s, where t = 0, ..., T1, s = 1, ..., p and i = 1, 2, ...,ms (here the index s marks the

functions generated by s-th circuit, ms is the number of the genes involved in s-th circuit).

Denote by ut the vector with the components ut1,1, u
t
2,1, ..., u

t
m1,1

, ut1,2, ..., u
t
m2,2

, ..., ut1,p, ...u
t
mp,p.

Suppose that zt(x) = F (ut(x)), where F is a continuous function of N variables defined

on N -dimensional cube QN = [0, 1]N and N =
∑p
s=1ms is the complete number of functions

involved in the circuits. (This means that the target pattern can be expressed through the patterns

generated by our family). Then for any ε > 0, there exists a circuit (4.1) satisfying (2.8) with

T0 = 2 and T = T1 + 2.

The main idea of the proof is based on the well known fact: the gene networks have modular

structure and are organized in blocks [19]. We use as well the following well known approxima-

tion result (see [22, 25, 24, 21]): for κ > 0 there exist such M and coefficients Akjs, bk, ηk such

that

|σ−1(F (u))−
M∑
k=1

bkσ(
p∑
s=1

ms∑
j=1

Akjsuj,s − ηk)| < κ, u ∈ QN . (4.3)

Let us construct now a large circuit including given networks and additional variables vk, w,

where k = 1, ...,M . The time evolution is defined by

vt+1
k = σ(

p∑
s=1

ms∑
j=1

Akjsu
t
j,s − ηk), wt+1 = σ(

M∑
k=1

bkv
t
k). (4.4)

This means that wt+2 is determined through ut. We renumerate all set of the functions uj,s, vk, w

in such a way that um′ = w, where m′ is the complete number of these functions, i.e., w defines
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”the output pattern”. Now relations (4.3) and (4.4) yield (2.8) if κ = κ(ε) is sufficiently small

and M is large enough.

Theorem 4.1 follows from Lemma 4.2. To show it, we construct the circuit defined by the

following relations. We can suppose without any loss of generality that all θi are not constants

in Ω. Furthermore, we set µi = 1. To apply Lemma 4.2, we define a family of networks

consisting of a single circuit, where the number of the genes m = m0 + 1. We define this circuit

by the relations ut+1
m rew = σ(utm − ηm), ut+1

i = σ(θi), where i = 1, ...,m0. We observe now

that utm is a strictly monotone increasing sequence of constants, i.e., utm = qt, where qt are

independent of x. For i ≤ m0 and t ≥ 1 we have uti = σ(θi(x)) = ρi(x). Then Lemma 4.2

entails that any sequence of the functions zt of the form zt(x) = F (ρ1(x), ρ2(x), ..., ρm0(x), qt)

can be approximated by a circuit (4.1). Since the sequence qt is strictly monotone in t, this

means that any sequences of the functions of the form Gt(ρ1, ...., ρm0) can be approximated

as well. Now we use that σ(z) is strictly monotone in z. This entails that circuits (4.1) can

approximate any sequences of functions G̃t(θ1, ..., θm0) and thus, according to remark 1 (see

above), any sequences f(x1, ..., xd). This completes the proof.

This proof gives moreover an algorithm to resolve the universal pattern generation problem.

Namely, the key step of the proof (approximation (4.3)) can be performedL by a constructive

procedure (see [21]). With little modifications of the proof, a simple explicit estimate of the

gene number M can be obtained under some supplementary assumptions on F from Lemma

4.2 and on zt from Theorem 4.1. Namely, we suppose that the functions F (u) and zt(x) are

Lipshitzian, with the Lipshitz constants Lip(F ) and Lip(zt).

Then the function F can be approximated as follows. First, for any κ > 0 we can approxi-

mate F by a sum of characteristic functions

|F (u)−
M1∑
k=1

fkχπk(u)| < κ, (4.5)

where πk are the N -dimensional boxes πk = {ai < ui < bi} and uk are components of the vector

u. The number M1 can be evaluated by

M1 < const(κ−1N1/2Lip(F ))N . (4.6)

Each χπk can be approximated by the sigmoidal functions:

|χπk − σ(α(
N∑

k=1F

σ(α(bk − uk)) + σ(α(uk − ak)))− α(2N − 1/2))| < κ1, (4.7)
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where α(κ1) is a positive number large enough. Relations (4.4) can be modified in the following

way. We introduce a network consisting of the old genes uk and new ones vk, ṽk and w. We set

vt+1
k = σ(α(utk − ak)), ṽt+1

k = σ(α(bk − utk)),

wt+1 = σ(α(
N∑
k=1

vtk + ṽtk)− α(2N − 1/2)). (4.4a)

In contrast to (4.4), Lemma 4.2 holds now with T0 = 3 since wt+3 can be expressed through ut.

The network generating zt can be constructed as above in the proof of Theorem 4.1 under

condition that T0 > 3.

Inequalities (4.6),(4.7) and arguments from the proof of Theorem 4.1 give the following

upper estimate of the number m of the genes in the chain generating a given sequence zt:

m < const( max
t∈[0,T ]

ε−1Lip(zt))m0 . (4.8)

Let us find conditions on the matrix K guaranteeing that the pattern sequences uti(x)

converge as t→∞. Iterations (4.1) can be considered as a dynamical system with the discrete

time. Such convergence property holds for so-called monotone systems preserving some (partial)

order in an appropriate Banach phase space [35, 36, 37].

For mappings acting in Rn we can introduce such a partial order u < v by

u < v if uj < vj for each j. (4.9)

Let u→ F (u) be a smooth map. This map F conserves order (4.9) if

∂Fi
∂uj

> 0, i 6= j. (4.10)

In the case of dynamics (4.1) this condition holds for matrices K such that

Kij > 0, (i 6= j). (4.11)

The theory of monotone dynamical systems have been pioneered by the seminal work of M.

Hirsch [35], afterwards developed P. Polácik et al. (for example, [36], for a review see [37]).

If (4.11) is satisfied, the functions uti(x) converge to functions Ui(x) (”final pattern”). This

final pattern is the solution of the system

Ui(x) = σ(
m∑
j=1

KijUj(x) + µiθi(x)− ηi). (4.8)
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The properties of this pattern can be investigated in some cases (see below).

To conclude this section, let us notice that the universal pattern generation problem for

Turing model (1.1) (formulated above, see Section 1) can be studied by means of an analogous

approach (see work [41]).

5 Complexity of a pattern and complexity of a network

In this section we consider the following problem. Suppose we observe some sequence of patterns

zt(x), x ∈ Ω, t ∈ [0, T ]. We would like to estimate the number of the genes required to create

this sequence.

To resolve this problem we can use different characteristics of pattern complexity. In this

paper we employ the following three quantities: C1(zt(·), c), C2(zt(·), c1, c2) , E(zt(·)). They

are functions of the discrete time t.

The quantity C1 is the number of the connected components of the set

Dc,t = {x : zt(x) = c}. (5.1)

To define C2, let us consider a set Dc1,c2,t depending on two parameters c1, c2 and t. Namely,

let us define

Dc1,c2,t = {x : c1 ≤ zt(x) ≤ c2}. (5.2)

Then C2 is the number of the connected components of this set.

Both complexity measures are discrete, whereas E is a continuous quantity defined by

E(t) =
∫

Ω
|∇zt|2dx. (5.3)

Let us discuss now the biological sense of C1, C2 and E and relations between them.

Organisms consist of cells and these cells can be in different states. Following the ideas

stated in Introduction (see as well [3, 4, 13] , we assume that different cell states appear as a

result of expression of different genes. We consider here the case of one gene. Let um be such

a gene.

Then we can study structures consisting of two kinds of cells: modified and the usual ones.

If um is expressed at x then we have here a modified cell at x, otherwise the cell remains in a

usual state.
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Following the threshold approach (see Introduction) we suppose that the gene um is ex-

pressed if um > c and it is not expressed in the opposite case (um ≤ c). In this case we obtain,

as a natural measure of complexity, the quantity C1.

The measure C2 admits a similar interpretation. Here we assume that um is expressed

if um > c2 and it is not expressed if um < c1. In the case c1 < um < c2 we deal with an

intermediate (transient) state.

Thus both measures C1 and C2 relate to the number of transitions between the cells of

different types.

Notice that using Sard’ theorem, we can choose c, c1, c2 in definitions (5.1) and (5.2) such

that at least locally the boundaries of the connected components will be smooth submanifolds

of Ω of the codimension 1. In particular, if Ω is an interval, these components will be isolated

points.

Example. For a periodical in x function zt(x) (”layered structure”) C1=C2= number of

layers (for appropriate c, c1, c2).

The third measure, the quantity E, can be interpreted as a mean value of ”oscillations” of

z.

The results for C1 and C2 are quite different. To estimate m through C1 we use so-called

Pfaffian chains [15], under some additional assumptions on σ. It allows us to obtain rough

estimates of C1 by Khovanski’s results. Estimates of C2 and E can be derived in a simpler way

and appear to be essentially better.

Up to now, nobody knows whether the Khovanskii bounds can be improved. The key

difference between estimates of C1 on the one hand, and C2, E on the other is that the estimates

of C2 and E depend, in particular, on the diameter diam(Ω) of domain Ω whereas the ones of

C1 are independent of this diameter.

6 An estimate of m via C1

Let us introduce the key notion of a Pfaffian chain [15], [28].

Definition. A Pfaffian chain of the length r and degree d ≥ 1 is a sequence of real analytic

functions f1(x), f2(x), ...fT (x) in Rn with the following property: every fj, 1 ≤ j ≤ T satisfies
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a Pfaffian equation
∂fj
∂xk

= gkj(x, f1(x), ..., fj(x)), (6.1)

where gkj are polynomials of degrees ≤ d. Then T is called the length and d the degree of the

Pfaffian chain.

Pffafian functions are well studied. They enjoy the following properties: the sum and the

product of two Pfaffian functions f1 and f2 of lengths ri and degrees di are again Pffafian

functions of length r1 +r2 and degree d1 +d2 for both the sum and the product. Superpositions

of Pfaffian functions also are Pfaffian (see [28] for details).

Consider some elementary examples. The exponent exp(ax), x ∈ R is a Pfaffian function

of length 1 and degree 2. More generally, any real analytic function f(z), z ∈ R satisfying an

equation
df

dz
= P (z, f) (6.2)

is a Pfaffian of degree degP . We observe thus that many classical sigmoidal functions are

Pfaffian. For example, f = (1 + exp(z))−1 satisfies (6.2) with P = f 2 − f . Superposition

σ(exp(ax)) also is a Pfaffian, etc.

Let us show first that under Assumption 2.1 chain (4.1) can be considered as a Pfaffian

chain. Let us introduce complexity of chain (4.1) as the tuple of integers

Comp = { m, T, rθ, dθ, degP}, (6.3)

where rθ is the sum of the lengths of Pfaffian chains for θi, dθ is the maximum of the degrees of

Pfaffian chains determining θi, degP is the degree of the polynomial from (6.2) that defines σ.

Using induction, let us consider now the functions u1
i . By differentiating, one has

∂u1
i

∂xl
= σ′(µiθi − ηi)µi

∂θi(x)

∂xl
.

Consequently by assumption 2.1 one obtains

∂u1
i

∂xl
= P (µiθi − ηi)µiPi,l(x, vi1, vi2, ..., θi), (6.4)

where Pj,l are appropriate polynomials, vjk are functions of chains determining θj. Thus, u1
i and

θj form a chain of the degree dθ+degP and the length rθ+m. Repeating these calculations, we

conclude that uti, u
t−1
i , ...θi form a chain of the degree dθ + tdegP and the length rt = rθ + tm.
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Now the complexity of the pattern uTm(x) can be estimated applying known results ([15],

see also [28], Proposition A4).

Theorem 6.1. The number C1 of the connected components of the pattern uTm(x) generated

by (4.1) can be bounded from above by

C1 < 2(rθ+Tm)2(dθ + TdegP )O(rθ+Tm+n). (6.5)

Thus given C1 we can bound from below R = rθ + Tm roughly as (log2C1)1/2, provided

that log(degP ), log(dθ), n
1/2 are less than rθ + Tm. The quantity R can be interpreted as a

”complexity” of gene circuit (4.1).

This estimate does not look optimal but in general case up to now there exist no methods

that could improve it.

However, if we consider rational σ, for example, the Michaelis-Menten case, then this esti-

mate can be improved.

Recall that matrices Kij, which actually meet in biological applications, are ”sparse”, i.e.,

each gene interacts only with few other genes. To describe this situation, we introduce the

following characteristics: the valency V of the circuit. For each i we define Vi as the number of

entries Kij such that Kij 6= 0. Then V is the maximum of Vi over i.

We first consider uTm as a function of variables θ1, θ2, ..., θs. (We suppose after permuting

subscripts that uTm actually depends only on s functions θi among θ1, θ2, ..., θm, i.e., µ1 = µ2 =

... = µs = 1, µs+1 = ... = µm = 0).

Finally, for Michaelis -Menten circuits we consider the following set as a complexity of the

circuit

CompM = { m, s, T, rθ, dθ}. (6.6)

We shall show now that, under suitable suppositions, the final pattern uTm is a rational

function in θ1, θ2, ..., θs and calculate the degrees of the numerator and the denominator of this

function. It allows us to evaluate C1 through CompM .

Assumption 6.2. Suppose that the chain uti consists of strictly positive functions.

(This assumptions is natural from biological point of view and means that the concentrations

uti(x) stay positive for any x).

Again we apply an inductive procedure. Let us consider u1
i (θ). We see that

u1
i =

µiθi − ηi
1 + µiθi − ηi

= R1
i /Q

1
i ,
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where R1 and Q1 are polynomials in θk of degree 1. At the second step, we have

u2
i =

∑
jKijR

1
j/Q

1
j + µiθi − ηi

1 +
∑
jKijR1

j/Q
1
j + µiθi − ηi

. (6.7)

By elementary transformations we find from (6.7) that

u2
i = R2

i /Q
2
i ,

where degR2
i , degQ

2
i ≤ V + 1.

Repeating this procedure for the final pattern we find

uTi = RT
i /Q

T
i , degRT

i , degQ
T
i ≤ (V + 1)T−1. (6.8)

Applying the Khovanski’s bound [15] to the polynomials RT
m we conclude with the following

proposition:

Proposition 6.1. Under Assumption 6.2, the complexity C1 of the pattern uTm(x) of the

Michaelis-Menten circuit does not exceed

2r
2
θ(V T + dθ)

rθ+n. (6.9)

7 Estimates of E and C2

The estimates of the previous section were independent of maxi,j |Kij| and the diameter diamΩ.

Throughout this section we assume that the domain Ω is open and topologically trivial (con-

tractable). In this section the bounds on E and C2 are stronger than the ones on C1 from the

previous section, but hold under the conditions that

max
i,j
|Kij| ≤ K∗, diam Ω = δ > 0. (7.1)

Other parameters involved in our estimates are V (the circuit valency defined above) and

ρ = supi,k|
∂θi
∂xk
|. (7.2)

Let us denote

supσ′(z) = Cσ. (7.3)
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Now we can estimate ∇uti inductively. Indeed, denote supi,x |∇uti| = µt. Then

µt+1 ≤ Cσ(V K∗µ
t + ρ), t = 0, 1, ..., (7.4)

where µ0 = 0. Therefore,

µt ≤ ρCσ
(CσV K∗)

t − 1

CσV K∗ − 1
(7.5)

if a = CσV K∗ 6= 1 and

µt ≤ tρCσ, (7.6)

if a = 1. We can suppose without any loss of generality that a 6= 1.

It is obvious that

E(utm) < cδn(ρCσ
(CσV K∗)

t − 1

CσV K∗ − 1
)2, n = dimΩ. (7.7)

Now we proceed to an estimate of C2 and begin with the one-dimensional case. The in-

equality C2 > k where k is an integer, entails that there are two points x1, x2 such that

|x1 − x2| < δ/k, utm(x1) = c1, utm(x2) = c2. (7.8)

Thus there is a point ξ such that

|du
t
m

dx
(ξ)| > (c2 − c1)C2

δ
. (7.9)

But by (7.5) we obtain then

Proposition 7.1. If Ω is an interval, the following estimate of the pattern complexity via

the circuit complexity holds:

C2(utm, c1, c2) < diamΩ(c2 − c1)−1ρCσ
(CσV K∗)

t − 1

CσV K∗ − 1
. (7.10)

It gives us the required estimate. Let us notice that an analogue of this estimate also holds

for continuous model (2.1). Its deduction is similar, and we leave it to a reader.

Let us turn now to the case n = dimΩ > 1.

Theorem 7.2. If Ω is a topologically trivial domain with a smooth boundary, for generic

c1 and c2 we have

C2(uTm, c1, c2) < const mesΩ (ρCσ
(CσV K∗)

T − 1

CσV K∗ − 1
)n. (7.11)
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We start with an elementary assertion: if each connected component contains a ball of a

radius r, then the number of connected components

C2 < const mesΩ r−n, (7.12)

where the factor const depends on n.

Now, to prove Theorem, we are going to estimate r.

First we, using Sard’s Theorem, choose c1, c2 such that they are regular values of a smooth

function uTm.

Consider a connected component Dk of the set defined by (4.2). Then the boundary ∂Dk is a

union of two disjoint smooth manifolds Bi of the codimension 1, Bi = {x : uTm(x) = ci}, i = 1, 2,

herein we employ the theorem on a regular value, see [34]. Since the boundaries are compact,

there are two points x1 ∈ B1, x
2 ∈ B2 such that

dist(x1, x2) = inf
x∈B1, y∈B2

dist(x, y). (7.13)

Let us set 2r = dist(x1, x2) and show that the open ball B which have the interval [x1, x2] with

the endpoints x1, x2 as a diameter is contained in Dk.

Indeed, we have just two possibilities: either B lies completely in Dk or completely outside

of Dk. Otherwise, B would contain some points of the boundary ∂Dk, for example, a point z

where uTm(z) = c1. But then dist(z, x2) < r that gives us the contradiction with (7.13).

Let us check now that the second possibility (B is outside of Dk) also leads to a contradiction.

Let us denote byW the unique connected component of B1 which contains the point x1 ∈ W .

Since W is a smooth submanifold of the codimension 1, due to the Alexander’s duality [38]

the complement Ω \ W consists of two connected components U0, U1 (taking into account

the topological triviality of Ω). Then Dk lies completely in one of U0, U1, let Dk ⊂ U0 for

definiteness. The interval (x1, x2] (with deleted endpoint x1) does not intersect W (due to

(6.13)), therefore this interval is contained completely either in U0 or in U1. On the other hand,

the point x2 ∈ Dk ⊂ U0, hence the whole interval (x1, x2] ⊂ U0.

For a small enough ball Bx1(e) centered at x1 the complement Bx1(e)\W has two connected

components (again we make use of that W being a smooth submanifold of the codimension 1

and a connected component of the boundary of Dk). One of these two components coincides
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with Bx1(e)∩Dk and another one with Bx1(e)\Dk. This partition is the same as the partition of

Bx1(e)\W into two connected components Bx1(e)∩U0 and Bx1(e)∩U1. Because we have Dk ⊂ U0

we conclude that Bx1(e) ∩Dk = Bx1(e) ∩ U0. Therefore, a suitable beginning (x1, x3] ⊂ (x1, x2]

of the interval (x1, x2] is contained in Bx1(e) ∩ Dk (see the previous paragraph). Taking into

account that the open interval (x1, x2) does not intersect the boundary of Dk thanks to (7.13),

this implies finally that (x1, x2) ⊂ Dk which is a contradiction with that B is outside of Dk.

To conclude the proof, it is sufficient now to estimate r. Using the Lagrange theorem, we

obtain

c2 − c1 = 2r|(n · ∇um)|,

where n is a unit vector directed along the diameter [x1, x2]. This relation entails

r−n ≤ C sup |∇um|n.

Applying estimates (7.5) and (7.12), we obtain (7.11).

Notice that the complexities C1 and C2 are stable under small perturbations.

Lemma 7.3. For generic c and ci the complexities C1, C2 of the pattern utm(x) are con-

served under small smooth perturbations: the complexities of the pattern utm coincide with the

corresponding complexities of utm + z̃(x) if |z̃C1 | < ε and ε is small enough.

Proof. Consider the case C2. The connected components are disjoint. Since they are

compact, the distances dk between these components are positive. If c1, c2 are regular values of

um, their boundaries are smooth submanifolds of the codimension 1. If ε is sufficiently small,

the perturbation of these level submanifolds are small, due to the regularity of the values ci.

Thus, since inf dk > 0, the perturbed connected components rest disjoint.

An interesting particular case is given by the Michaelis-Menten dynamics. Suppose all the

entries Kij are positive. Then the patterns converge (see Section 4). Final patterns ui(x) satisfy

ui(1 +
m∑
j=1

Kijuj + µiθi − ηi) =
m∑
j=1

Kijuj + µiθi − ηi. (7.14)

From Khovanski’s bounds we get for the solutions of (7.14) the bounds on their complexities

C1, C2 < 2r
2
θ(m+ dθ)

rθ+n.
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8 Stochastic Stability

The important meaning has the problem of stability of networks under random perturbations of

different parameters. This problem attracts a great attention of biologists (see [17]-[18], [19]).

We prove here some estimates on stability of (4.1) under noise leading to important biological

consequences. Moreover, we develop an approach to the replicator stability answering the

question of M. Gromov and A. Carbone, formulated in the Introduction.

Consider a perturbed problem (4.1):

ut+1
i (x) = σ(

m∑
j=1

Kiju
t
j(x) + hi(x)− ξi(t)), (8.1)

where hi = µiθi − ηi. Here ξi(t) are some random processes with the discrete time. We assume

that they are independent for different i. The random quantities ξi(t) can be distributed, for

example, according to gaussian laws N (ei, κi) with average ei and deviations κi > 0. Different

choices of the values ξi may correspond to different ”ecological conditions”. We introduce two

functions

Prob(ξi(t) ≥ a, for some t ∈ [T1, T2]) = Φi(a, T1, T2) (8.2)

and

Prob(ξi(t) < a, for all t ∈ [T1, T2]) = Ψi(a, T1, T2). (8.3)

It is clear that 1−Φi = Ψi. The following assumption plays an important role in what follows.

Suppose

Ψi(a, T1, T2) > 0, (T2 > T1), Ψi(a, T1, T2)→ 0 as T2 →∞ (8.4)

for fixed T1. This means roughly speaking that ξk can take any large values with non-zero

probabilities. This assumption holds for the gaussian probability distribution. It is clear that

Φi(a, T1, T2) are increasing functions of T2 for any fixed a while Ψi(a, T1, T2) are decreasing.

Suppose that an ”organism” (a gene circuit (8.1)) ”survives” (supports homeostasis) if the

concentrations ui stay at some closed domain Π in the u -phase space.

Notice that Assumption 2.1 entails

uti(x) ∈ (0, 1). (8.5)

It is natural thus to suppose that Π is contained inside the cube [0, 1]m.
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As a measure of the stochastic stability of the circuit homeostasis, we consider the proba-

bility

P (P ,Π,Ω, T1, T2) = Prob{uti(x) ∈ Π for each x ∈ Ω, and t ∈ [T1, T2]}. (8.6)

This probability depends on the circuit parameters P , the homeostasis domain Π and Ω. We

shall name it the survival probability on the time interval [T1, T2] and denote by P (T1, T2)

omitting the dependence on the parameters P , Π and Ω. Such measure of the stability is

standard in the theory of dynamical systems [27]. However, one can introduce other important

measures of stability, for example, with respect to random eliminations of some genes (proteins)

or vanishing of some entries of the matrix K. This kind of stability is under great attention

in recent works connected with the random graph theory (see the review [39] and references in

it). We shall not consider this kind of stability here.

We estimate the stability via the following parameters: the valency, the maximum |K∗| of

absolute values of the entries Kij, the maximum b of |θi(x)| and some parameter Nkey that

we introduce below. It is important to take into account the valency since it is well known

that biological circuits are not completely connected: for each fixed node i we have a valency

Vi < m: only Vi of the entries Kij are non-zero.

To introduce Nkey, let us observe that

inf
u∈Π

ui = Wi ≥ 0, u = (u1, ....um). (8.7)

Denote Ui = σ−1(Wi). Some Wi and Ui could be positive. The corresponding indices i1, ..., is ∈
[m] we name key indices and the corresponding genes we name the key ones. In fact, if Wi > 0,

this means that the organism cannot survive if the concentration of i -th gene is small enough

at some points. The number s of the key genes is denoted by Nkey. We denote I the set of key

indices corresponding to the key genes.

Consider (8.1). Let us take some key index i ∈ I. We have the following simple inequality

m∑
j=1

Kiju
t
j(x) + θi − ξi ≤ Si = ViK∗ + b− ξi. (8.8)

Thus, if

ξi(t) > ViK∗ + b− Ui, (8.9)

23



the concentration ut+1
i (x) is less than the critical value Wi. Moreover, if at least one uti(x) is

less than Wi at some point x, the state ut(x) is outside of this domain Π. Hence, we have

Prob{ut(x) ∈ Π, t ∈ [T1 + 1, T2], x ∈ Ω} <
∏
i∈I

Ψi(ViK∗ + b− Ui, T1, T2 − 1). (8.10)

Therefore, we have proved

Proposition 8.1. The survival probability satisfies

P (T1, T2) <
∏
i∈I

Ψi(ViK∗ + b− Ui, T1 − 1, T2 − 1) = P+(T1, T2). (8.11)

This estimate yields interesting biological consequences. Notice that the function P+ is a

monotone increasing function of the valency. It is decreasing as the number Nkey of the key

genes increases. Moreover, the sharper is the sigmoidal function σ, the larger is P+.

The most interesting conclusion is the following. The more is the valency of a node the

stabler is the circuit with respect to perturbations in this node. It is in an accordance with

experimental results of the work [18]. They show that the most connected proteins in the cell

are the most important for its survival.

Moreover, we notice that all circuits are unstable, more precisely, they are stochastically

unstable as the time T goes to infinity. In fact, assumption (8.4) and estimate (8.11) imply

that

P (0, T )→ 0 as T →∞. (8.12)

Then there arises a natural question: how to stabilize the circuits. We shall consider it in the

next section.

9 Replicator Stability

We show in this section that a periodic renovation (replication) of the circuit parameters P
can transform stochastically unstable systems to the stable ones. We can consider these trans-

formations as an algorithm of ”evolution”. The key question is about algorithm properties

providing the stability.

We consider circuits (4.1) under the assumptions of the previous section. We also suppose

that ξi(t) are identical independent random processes, which, in a certain sense, are homoge-

neous in time. More precisely, let us assume

Φi(a, T1, T2) = Φi(a, 0, T2 − T1). (9.1)
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Consider possible schemes of renovation. They can be described as follows.

Each Tr time steps we change the circuit parameters P following some rule. For example,

each TL time steps we can add to the network a new link, and each Tn steps, we include a new

node (gene). Here Tn and TL are some positive integers. We can also use more sophisticated

schemes. For example, one can add new nodes with many links. In the case of graphs, different

schemes of graph evolution were studied by numerous works, see the review [39].

Let us calculate the survival probability. Let Pn = P (Pn, [nTr, nTr +Tr]) be the probability

to survive within the time interval [nTr, (n+ 1)Tr]. Here Pn are the circuit parameters in this

time interval.

The probability to survive on the interval (0,∞) is then the infinite product

P (0,∞) = P1P2P3... =
∏
n∈N

Pn.

Consequently, the quantity P (0,∞) is non-zero if the series logP1 + logP2 + ... + logPn + ...

converges. We have obtained thus the following assertion.

Proposition 9.1. The survival probability P (0, T ) remains positive as T →∞ if and only

if the series

logP (P0, [0, Tr]) + logP (P1, [Tr, 2Tr]) + ...+ logP (Pn, [nTr, (n+ 1)Tr]) + (9.2)

converges. If this series disverges to −∞, the survival probability tends to zero as time tends

to infinity.

Propositions 8.1 and 9.1 yield an elementary consequence that gives us a sufficient condition

for stochastic stability in infinite time. Notice that it is more precisely to say about stochastic

stability of the pair (circuit, replication algorithm) rather than about stochastic stability of the

circuits.

Proposition 9.2. The survival probability P (0, T ) tends to zero as T →∞ if the series∑
i∈I

log(Ψ(V 0
i K∗ + b− Ui, 0, Tr)) +

∑
i∈I

log Ψ(V 1
i K∗ + b− Ui, Tr, 2Tr)) + ...

+
∑
i∈I

log Ψ(V n
i K∗ + b− Ui, nTr, (n+ 1)Tr)) + ... (9.3)

disverges. Here V n
i are the valencies at the n-th renovation step.

To prove it, let us notice that, due to Proposition 8.1, − logP (T1, T2) > −∑
i∈I log Ψ(ViK∗+

b− Ui, T1 − 1, T2 − 1).
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Although these results look quite elementary, nonetheless they allow to analyze the different

evolution algorithms and lead to interesting biological consequences. Consider some examples.

Example 1.

Let us suppose that all the genes are key ones. Suppose that their stability is a priori

bounded:

inf
i
Ui > Ū > 0. (9.4)

Biologically, this means that the gene stability is a priori bounded during evolution. Let us

suppose that the renovation algorithm is, in a certain sense, simple. This means that the

renovation procedure either adds to the circuit a node (gene), with a link, or only a link

connecting some existing nodes.

Then such evolution is always unstable. To prove it, let us consider series (9.3). First we

notice that if the gene number m is bounded as T →∞ then the valency is bounded by m and

it is unstable due to (8.4) and (8.10). Thus, we can assume that m → ∞ as T → ∞. Then

series (9.3) contains infinitely many of the terms that are negative and less than

µn = log Ψ(K∗ + b− Ū , nTr − 1, (n+ 1)Tr − 1), (9.5)

since the valency of new genes is V = 1. Due to the time homogeneity hypothesis (9.1) we

observe that µn = µ is independent of n. Also µ is non zero, according to assumptions (8.4).

Thus series (9.3) disverges. We obtain analogous negative results even if each new gene enters

for the circuit with many links but under the condition that the valency of this new gene stays

a priori bounded.

Example 2.

Let us suppose that only a part of all the genes are key ones. Suppose that (9.3) holds.

Assume that the renovation procedure adds to the circuit a node (gene), with a link, and this

gene is not the key gene. (Therefore, the number of the key genes conserves).

Then such evolution can be stable or unstable depending on the properties of the processes

ξk. To see it, let us consider series (9.3). For large n we can use the asymptotics

log Ψ(V n
i K∗ + b− Ui, nTr, (n+ 1)Tr)) = log(1− Φ(V n

i K∗ + b− Ui, nTr, (n+ 1)Tr)) ≈

≈ Φ(V n
i K∗ + b− Ui, nTr, (n+ 1)Tr). (9.4)
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Let us consider the case of gaussian random processes, with a constant deviation κi(t) = κ and

the zero means. Then, for example, if V n
i grows as O(log n) as n→∞, this series converges.

Finally, we can perform a stable evolution (i.e. to have limPT > 0 as T → ∞) only if

the renovation algorithm is complicated itself. Namely, the key protein enters for the circuit

together with many links, and the number of new links increases unboundedly.
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