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Abstract

We consider the viability problem for random dynamical systems, in
particular, for circuits. A system is viable only if the system state stays
in a prescribed domain Π of a phase space. We assume that the circuit
structure is coded by a code evolving in time. We introduce the notion of
stable evolution of the code and the system: evolution is stable if there is
a δ > 0 such that the probability PT to be in Π within time interval [0, T ]
satisfies PT > δ as T →∞.

We show that for certain large classes of systems, the stable evolution
has the following fundamental property: the Kolmogorov complexity of
the code cannot be bounded by a constant as time t → ∞. For circuit
models, we describe examples of stable evolution of complicated boolean
networks for a difficult case when the domain Π is unknown.

We dedicate this paper to Professor Grisha Mints.
We admire the breadth of his interests.

1 Introduction

One of the main characteristics of biological systems is that these systems sup-
port their own life functions. In particular, a biological system tries to keep the
values of the main characteristics of each cell – such as temperature, pressure,
pH (acidity measure), concentrations of different reagents – within a certain
domain of values that makes the biological processes possible. These domains
of values are called viability domains, and the process of supporting the life
functions – by keeping the values inside viability domains – is called homeosta-
sis. The concept of homeostatis was first developed by the French physiologist
Claude Bernard; it is now one of the main concepts of biology; see, e.g., [5].

The homeostasis process is notoriously difficult to describe in precise math-
ematical terms. At first glance, homeostasis is similar to the well-known and
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well-studied notion of stability: in both cases, once a system deviates from the
desirable domain, it is pushed back. However, a more detailed analysis shows
that these notions are actually different:

• the usual mathematical descriptions of stability mean that a system will
indefinitely remain in the desired state, for time t→∞, while

• a biological cell (and the whole living being) eventually dies.

This difference has been emphasized in a recent paper by M. Gromov and A. Car-
bone: “Homeostasis of an individual cell cannot be stable for a long time as it
would be destroyed by random fluctuations within and off cell’ ([13], p. 40).

One might argue that while individuals die, their children survive and thus,
species remain. However, it turns out that the biological species are unstable
too. This conclusion was confirmed, e.g., by L. Van Valen based on his analysis
of empirical data; see, e.g., [23, 30]. Moreover, he concluded that the species
extinction rate is approximately constant for all the species, so this species
change is not just a problem for unfit species.

The species extinction does not necessarily mean complete extinction, it usu-
ally means that a species evolves and a new mutated better-fit species replaces
the original one. From this viewpoint, the evolution is “stable” – in the sense
that it keep life on Earth effectively functioning. However, as M. Gromov and A.
Carbone mention, it is very difficult to describe this “stability” in precise terms:
“There is no adequate mathematical formalism to express the intuitively clear
idea of replicative stability of dynamical systems” ([13], p. 40). The problem of
describing this idea in precise terms is called the viability problem.

Specifically, we need to formalize two ideas:

• First, that biological systems are unstable (in particular, under random
perturbations).

• Second, that these systems can be stabilized by replication (evolution).

In this paper, we show that an important progress in solving both aspects
of the viability problem can be achieved if we use the notion of Kolmogorov
complexity. In our formalizations, we will use the basic concepts and ideas
proposed by M. Gromov and A. Carbone [13], L. Van Valen [30], and L. Valiant
[31, 32].

2 Systems under consideration

Let us describe the models that we will use to describe biological systems. Let
n denote the number of quantities that characterize the current state of a given
system. This means that the state of the system can be described by a tuple
u = (u1, . . . , un) consisting of the values of all these characteristics. The set H
of all possible states of a system is therefore equal to H = IRn.
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The state of a biological system evolves with time. In practice, even when we
have measuring instruments that “continuously” monitor the state of a biological
system, we can only perform a finite number measurements in each time interval.
So, in effect, we only know the values of the corresponding characteristics at
certain moments of time. Thus, to get a good description of the observed data,
it makes sense to consider discrete-time models.

Usually, there is a certain frequency with which we perform measurements,
so we get values measured at moments T0, T1 = T0 + ∆T , T2 = T0 + 2∆T , . . . ,
Tt = T0 + t ·∆T , . . . . It is therefore convenient to call the integer index t of the
moment Tt the t-th moment of time, and talk about the state u(t), t = 0, 1, . . .,
at the t-th moment of time.

The state u(t) of a system at a given moment of time affects the state of
the system u(t+ 1) at the next moment of time. The next state of the system
is determined not only by its previous state: biological systems operate in an
environment in which unpredictable (“random”) fluctuations occur all the time.
Let m be the number of parameters that describe such fluctuations; then, the
current state of these fluctuations can be described by an m-dimensional vector
ξ(t) = (ξ1(t), . . . , ξm(t)).

Once we know the current state of the system u(t) and the current state
ξ(t) of all the external parameters that affect this system, we should be able
to determine the next state u(t+ 1). In other words, we consider the following
dynamics:

ui(t+ 1) = fi(u(t), ξ(t)), t = 0, 1, . . . (1)

with initial conditions ui(0) = ϕi.
To specify evolution, we must therefore describe the transition functions fi

and the random process ξ(t). We will do this in the following two subsections.

2.1 Transition functions

The transition functions fi describe physical processes and thus ultimately come
from physics. Most equations of fundamental physics – equations of quantum
mechanics, electrodynamics, gravity, etc. – are partial differential equations with
polynomial right-hand sides. Other physical phenomena are described by par-
tial differential equations that use fundamental fields – i.e., solutions to the
fundamental physics equations – as solutions. The resulting dependencies can
be again used in the right-hand sides of other physics equations, etc. The re-
sulting functions are known as Pfaffian functions; these functions are formally
defined as follows (see [15]):

Definition 1.

• By a Pfaffian chain, we mean a sequence of real analytic functions

f1(x), f2(x), . . . , fr(x)
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defined on IRn which, for every j = 1, . . . , r, satisfy a system of partial
differential equations

∂fj

∂xk
= gkj(x, f1(x), . . . , fj(x)), j = 1, . . . , n,

with polynomials gkj.

• For each Pfaffian chain, the integer r is called its length, and the largest
of the degrees of polynomials gkj is called its degree.

• A function f(x) is called Pfaffian if it appears in a Pfaffian chain.

It is known that Pffafian functions satisfy many important properties; in
particular:

• the sum and the product of two Pfaffian functions f1 and f2 of lengths ri
and degrees di are again Pffafian functions, of length r1 + r2 and degree
d1 + d2;

• superpositions of Pfaffian functions are also Pfaffian.

Results from the theory of Pfaffian functions and the powerful computational
tools that are based on these results are described in [10, 12, 15].

So, in this paper, we consider dynamical systems (1) with Pfaffian functions
fi. The class of such systems will be denoted by Kh:

Class Kh. This class consists of the systems (1) for which fi are Pfaffian
functions.

We will also consider several subclasses of this class, subclasses which are
known to be useful in applications. Two of these subclasses are related to the
fact that when the fluctuations are small and/or the deviation of the state from
a nominal state is small, we can expand the dependence fi into Taylor series
and keep only the first few terms (or even only the first term) in this expansion
– because higher-order terms can be safely ignored. In this case, we end up with
a polynomial (or even linear) dependence.

Usually, the deviation of the state of a biological system from its nominal
state can be reasonably large, so terms which are quadratic in this dependence
cannot be ignored; however, random fluctuations can be small. When the ran-
dom fluctuations are so small that we can only keep terms which are linear in
ξ, we get the following class which is well studied in control theory:

Class Kl. This class consists of the systems (1) in which the transition func-

tions fi have the form fi(u, ξ) = g0i(u) +
m∑

k=1

ξkgki(u), with polynomial gki.
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When the fluctuations are larger and their squares can no longer be ignored,
we get a more general class of systems:

Class Kp. This class consists of the systems (1) in which the transition func-
tions fi are polynomial in u and ξ.

Comment. Here, l in Kl stands for linear (meaning linear dependence on ξ),
while p in Kp stands for polynomial.

Another important class comes from the situation when a random fluctuation
simply means selecting one of the finitely many options.

Class Kr. Let us assume that we have a finite family of maps u →
f̃ (k)(u) = (f̃ (k)

1 (u), ..., f̃ (k)
n (u)), u ∈ Rn, where k = 1, . . . ,m′. Assume that

fi = f̃
(k(t))
i (u) + λ · gi(u, ξ), where λ > 0 is a parameter, f̃ (k)

i and gi are Pfaf-
fian, and k(t) is a random index: at each moment t we make a random choice
of k with probabilities pk ≥ 0, p1 + p2 + ...+ pm′ = 1 (these choices at different
moments of time are done independently).

In the particular case when all the maps u → f̃ (k)(u) are contractions and
λ = 0, we obtain so-called iterated function systems; see, e.g., [14].

It is important to mention that the class Kh contains many neural and
genetic circuit models. Genetic circuits were proposed to take into account
theoretical ideas and experimental information on gene interaction; see, e.g.,
[11, 18, 21, 26]; see [25] for a review. In this paper, we consider the following
model

ui(t′ + τ) = σ

 N∑
j=1

Kij(t′)uj(t′) + hi − ξi(t′)

 , ui(0) = xi, (2)

where t′ = 0, τ, 2τ, . . . , d ·τ, i = 1, 2, . . . , N , d and N are positive integers, τ > 0
is a real parameter, and x = (x1, . . . , xN ) is an initial condition. It is usually
assumed that the function σ is a strictly monotone increasing function for which

lim
z→−∞

σ(z) = 0 and lim
z→∞

σ(z) = 1. Such systems have interesting applications

to biology, e.g., to the morphogenesis problem [29].
Circuits (2) can simulate all Turing machines [16]. Also, they can generate

all (up to topological equivalency) kinds of structurally stable semiflows with
discrete time [28].

We want to restrict ourselves to Pfaffian systems. The functions σ used
in practical applications are Pfaffian functions of length 1; moreover, they are
solutions of a differential equation σ′ = P (σ), where P is a polynomial for which
P (0) = 0, P (1) = 0, and P (z) > 0 for all z ∈ (0, 1). Thus, in this paper, we
will consider only such functions σ. Even with this Pfaffian limitation, we can
still get both above-mentioned universality properties: with respect to Turing
machines and with respect to topological behavior.
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2.2 Assumptions on random processes ξ

In this paper, we assume that the fluctuations ξi(t) are:

• Markov processes, i.e., that the probabilities of different values of ξ(t)
depend only on the previous values ξi(t− 1), and

• are strong, in the sense that there is a positive probability to move into a
close vicinity of any state.

Formally, this assumption of strong fluctuations can be described as follows.
For δ > 0 let V (θ, δ) denote the δ-neighborhood of a point θ ∈ Rm.

Assumption 1. Assume that ξi(t) are Markov processes with discrete time,
t = 0, 1, 2, .... Assume that for each θ, δ > 0, all positive integers t > t0, and
each starting point θ0 the probability that the process ξ is in the neighborhood
V (θ, δ) at the moment t is positive:

Prob(ξ(t) ∈ V (θ, δ) | ξ(t0) = θ0) > c(δ) > 0,

where a constant c(δ) is uniform in t, t0.
Mathematically, this assumption is one of the versions of ergodicity of the

Markov process. This assumption holds for many stochastic processes that are
used in modeling biological phenomena.

2.3 Evolution

The system (1) is well suited to describe the dynamics of a single individual.
Individuals belonging to different species s may have different dynamics. So, a
more accurate way to describe the dynamics is to use the equation ui(t+ 1) =
fi(u(t), ξ(t), s), where s describes the species.

In biology, different species and subspecies can be characterized by their
DNA, i.e., by a sequence of symbols. Without losing generality, we can always
encode the 4-values language of DNA codons into a binary code, so we can
assume that s is a finite binary sequence.

In mathematical terms, we consider a discrete (finite or countable) set S
with N(S) ≤ +∞ elements s. We assume that all elements of the set S are
binary strings, i.e., that S ⊆ S∞, where S∞ denotes the set of all possible finite
binary strings.

The fact that the transition functions fi depend not only on u(t) but also
on s can be described by saying that we extend our original phase space H of
all the states u to a larger space H × S.

In addition to dynamics within a species, we also have to take into account
the possibility of mutation, when s changes. We assume that these transitions
follow a Markov chain with transition probabilities ps′s(u) to go from s′ to s; in
line with the biological applications, we take into account that the probability
of different transitions (mutations) may depend on the state u.
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To take into consideration that only states from a certain set Π ⊆ IRn (called
the viability domain) are viable, we use the following standard construction: We
introduce, formally, an absorbing state a such that pas(u) = 0 for each s 6= a.
If u leaves the viability domain Π, then the system automatically reaches this
absorbing state a.

So, our model is defined by:

1. a family of random dynamical systems ui(t + 1) = fi(ui(t), ξ(t), s), i =
1, 2, ..., n, corresponding to different binary strings s ∈ S;

2. a set Π ⊆ Rn;

3. a Markov chain M with the state space S ∪ {a} and the transition ma-
trix W(u) with entries ps′s(u) (the transition probability from s′ to s
depending on u) such that pas(u) = 0 (if s 6= a).

About dependence of f on s ∈ S we assume the following. Consider a class
C of dynamical systems (1) with f depending on parameters r ∈ P, where P is
a set of possible values of the parameters. We assume that the set P is equipped
with a measure ν.

For example, if the functions fi are defined by a sequence of polynomials
(as is the case when fi are Pfaffian functions), then P is the set of all tuples
of coefficients of all these polynomials, and as ν, we can select the standard
Lebesgue measure on this set.

It is reasonable to assume that parameters r are random functions of s. To
describe these random functions, we need to introduce, for every natural number
l, a probability measure on the set of all possible mappings α from binary strings
of lengths ≤ l to the set P. It is reasonable to make the following assumption:

Assumption 2. For every set A ⊆ P of ν-measure 0, for every integer l, and
for every string s of length ≤ l, the probability that the parameters α(s) are in
A is 0:

µl(Bl(s)) = 0, where Bl(s)
def= {α : α(s) ∈ A}.

For systems from the class P, denote by PΠ(v, r, t) the conditional probability
that in the next moment of time the system will still be viable (u(t + 1) ∈ Π)
under the condition that its previous state is u(t) = v ∈ Π and that the previous
value of the parameters was r(t) = r.

Definition 1. We say that a class of system P from the general class Kh is
generically unviable in Π, if there exists a function κ(r) > 0 for which

sup
u∈Π,t=0,1,2,...

PΠ(u, r, t) = 1− κ(r) (3)

for ν-almost all values of the parameter r.
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This means that at every step there is a non-zero probability ≥ κ(r) > 0 of
moving into an unviable state – and since the unviable state is absorbing, we
are guaranteed to eventually move into an unviable state.

For every viable state u0 ∈ Π and for every integer T , by PT (Π, u0) we
denote the conditional probability that u(t) ∈ Π for all t = 1, 2, . . . , T under the
condition that u(0) = u0.

Definition 2. We say that the evolution is stable if there exists a real number
δ > 0 for which PT (Π, u0) > δ for all integers T > 0 and all states u0 ∈ Π.

If such a real number δ does not exist, we say that the evolution is unstable.

3 Main result

For an arbitrary Turing machine F and for every string s, by KF (s) we denote
the Kolmogorov complexity of the string s relative to F , i.e., the shortest length
of the program (= initial configuration) on F for which F generates s [17].

In the following text, by a Kolmogorov complexity of a string s, or simply
complexity (for short), we mean KF (s) for a fixed Turing machine F .

Theorem 1. Let F be an arbitrary Turing machine. Consider a class of gener-
ically unviable systems. Assume that the Markov chain M and the system (1)
generate strings s with a priori bounded Kolmogorov complexities KF (s) relative
to F . Then, for almost all mappings α : s→ r(s) of strings s to the parameters
r, the evolution is unstable and the corresponding system is not viable: PT → 0
as T →∞.

Comment 1. Instead of KF , one could take any function K ′ satisfying the
following property: for any n there exists finitely many strings s with K ′(s) = n.

Comment 2. In this analysis, we only consider the Kolmogorov complexity of
the codes s, and not of the states u themselves. Complexity of the states can
also be studied for systems similar to Kh; see, e.g., [29].

Comment 3. Theorem 1 says that the evolution is unstable for almost all map-
pings α, but it does not tell us whether the stable evolution is possible for some
functions α. The existence of stable evolutions is analyzed in Section 6 for the
case of circuits – i.e., systems of type (2).

4 Viability and unviability

It is difficult to determine when a given class of systems is generically unviable.
Under Assumption 1 on ξ, a natural way for proving unviability is to consider
ξ as a control and to use methods from control theory; see, e.g., [19, 24]. This
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reduction to control leads to complex attainability and controllability problems.
We will describe several results that can be thus obtained.

Theorem 2. Assume that we have a system (1) from the class Kp, with poly-
nomials fi(u, ξ) of positive degree d, and with m ≥ 2. Assume also that the
viability domain Π is bounded, i.e., Π ⊆ BR for a ball BR of some radius R.
Then for ν-almost all polynomials fi, the system (1) is stochastically not viable,
i.e., PT → 0 as T →∞.

Comment. Moreover, for almost all tuples of polynomials fi, there exists a value
κ(f) for which

PΠ(u, f, t) ≤ 1− κ(f) (4)

for all u ∈ Π and t.

We present a proof of this theorem at the end of this section. Before that,
let us consider other types of systems. Systems from the Class Kr can be both
viable and not viable. Indeed, let Π be a bounded set.

Example 1. Suppose that, for some R > 0, for every u, the range of the map
ξ → g(u, ξ) contains the ball BR = {g : |g| < R}. Then one can show that for a
sufficiently large λ > 0, the corresponding system is not viable.

Example 2. Let us consider situations when the functions gi are uniformly
bounded and m′ = 1. Then, by the definition of m′, the corresponding dynam-
ical system u(t + 1) = f̃(u(t)) is deterministic (not random). In particular, we
can consider the case when this system has an attractor consisting of hyperbolic
equilibria points, and that this attractor is contained in the viability domain Π.
Then one can show [4] that if the initial state u(0) is sufficiently close to the
attractor, then, for sufficiently small values λ > 0, the corresponding system
u(t+ 1) = f̃(u(t)) + λg(u(t), ξ(t)) is viable.

Let us prove Theorem 2. We start with the following preliminary lemma.

Lemma 1. Let Π be a compact set. Consider a system of polynomial equations

gi(u) = 0, i = 1, . . . , N, (5)

where gi are polynomials, and the number of equations N is greater than the
number of variables n. Then the probability that this system has a solution
u∗ ∈ Π is equal to 0.

Proof. This lemma easily follows from the resultant theory; see, e.g., [33].

Proof of Theorem 2. Since the set Π is bounded, there exists a real number
R > 0 such that if |u| > R then u /∈ Π. For systems of class Kp, one has
f(u, ξ) =

∑
l:|l|<d

hl(u)ξl, where l = (l1, . . . , lm) is a multi-index, hl(u) are poly-

nomials of u, |l| def= l1 + . . .+ lm, and ξl def= ξl1
1 · . . . · ξlm

m . Consider a finite tuple
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a = (a1, a2, . . . , am), where aj are different positive numbers. Set ξj = aj · z,
and let z → +∞.

Suppose |f(u, ξ)| < C for all ξ(z), where C > 0. Then one can conclude that
hl(u) = 0 for all l for which |l| < d. The equations hl(u) = 0 form ≥ n · (d+ 1)
polynomial equations with n unknowns ui.

Now we apply Lemma 1 and conclude that since, in general, such a system
has no solutions, in general, the values |f(u, ξ)| are not bounded as z → ∞.
Thus, if u(t) ∈ Π, for some ξ we have |u(t+1)| > R and consequently u(t+1) /∈
Π. The theorem is proven.

5 Proof of Theorem 1

First, let us show that a stable evolution is possible only when the code length
is unbounded in time.

Indeed, suppose that the lengths len(s) of all the codes s are a priori bounded
by an integer l. The number of such codes is bounded, and thus, due to As-
sumption 2, for almost all maps α,

min
s:len(s)≤l

κ(r(s)) > κ0 > 0. (6)

Indeed, one can observe that the set of all maps α for which κ(r(s)) = 0 for
some string s of length ≤ l is contained in the finite union of the sets Bl(s) of
measure 0: µl(Bl(s)) = 0. Then, since our process is a Markov one, according
to Assumption 1, the probability PT (Π) for ξ(t) to be in Π at time moments
0, 1, . . . , T is smaller than (1 − κ0)T , and we conclude that the evolution is
unstable. This proves the theorem for the case when all strings have a priori
bounded length.

Let us note now that the lengths l(s) of the strings of the relative Kolmogorov
complexity KF (s) not exceeding K are a priori bounded – since there are only
finitely many such strings: l(s) < NK for some NK . Therefore, all strings of
complexity < K are contained in a finite set BK of binary strings. The theorem
is proven.

Comment. It is worth mentioning that while for every Turing machine F and
for every integer K, there exists an upper bound on the length of all the strings
s with KF (x) ≤ K, this upper bound is not always effectively computable. For
example, for a universal Turing machine F , the impossibility of an algorithm
computing such upper bounds follows from the well-known theorem of Rabin
[22].

6 Stable evolution of circuit population

In this section, we show that for circuits, stable evolution is possible.
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Specifically, we consider an evolution of a family (“population”) of circuits
(2). To simplify our analysis, we consider the boolean case, when the values
ui(t) are always 0s or 1s. In this case, σ is the step function, i.e., σ(z) = 1 for
z > 0 and σ(z) = 0 for z ≤ 0.

We also assume that for every time t, there is a positive integer b(t) called
connection intensity. For every i and j, the value Kij(t) is equal either to b(t)
or to −b(t) or to 0. In other words, the quantity uj(t′) either “excites” the value
ui(t) at the next moment of time t, or inhibits it, or does not affect this value.

We assume that hi =
(
mi +

1
2

)
· b, where mi are integers, and that the

number N , in general, changes with time: N = N(t).
At every moment t, the situation can be described by a directed

graph (V (t), E(t)) whose vertices correspond to components ui: V (t) =
{1, 2, . . . , N(t)}, and where there is an edge (i → j) ∈ E(t) if and only if
Kij(t) 6= 0. Each graph represents a single circuit.

Each step of the evolution of an individual circuit consists of one of the
following changes in the graph and in the corresponding values Kij :

1. the graph (V,E) stays the same;

2. one adds a node to V ;

3. one adds an edge i→ j to E with a new weight Kij ;

4. one change a weight Kij ; when the new value of Kij is 0, this change
deletes an edge i→ j.

Steps 2–4 will be called mutations. We will assume that mutations occur with
a given probability µ > 0.

Based on these individual changes, we can perform the following changes in
the population:

• First, at each time step we can simultaneously change many circuits in
the population, by performing changes 1–4 on different circuits.

• We can also replicate (make copies of) some circuits and delete (“destroy”)
some other circuits.

We consider a population consisting of X(t) random circuits (2) of different
structure and different depths d(t). We will describe now the set Π. In this
description, we will use several ideas from [31]. Suppose that a circuit Circj ,
a member of the population, survives at the moment t if and only if it gives
a correct output y(x) as an answer to a boolean input x: y = f(x, t), where
f(x, t) are given boolean functions depending on t. The output y is the final
state of some node: y(x) = u1(τ · d), where ui(t) are computed by the formulas
(2) starting with u(0) = x. The whole population survives if it contains at least
one circuit.
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We suppose that f are a priori unknown: to survive, circuits should “learn”
correct answers. So, in effect, we are dealing here with the notions from the
learning theory [32] – but in a different context.

Suppose that the correct answers are defined by a special piecewise constant
sequence of boolean functions

f(x, t) = fj(x), N(t) = Nj t ∈ ((j − 1) · Te, j · Te], (7)

where Te is a positive number (the “length” of the j-th evolution stage) and
x = (x1, x2, . . . , xNj

). Here we also assume that each function fj belongs to
certain class C of boolean circuits (2) (naturally, the values N , K, and d can
depend on j). Assume that the parameter τ is small enough; thus, we should
not take into account the time τ · d of the circuit reactions.

The problem can be interpreted as a problem of adaptive behavior of a
large growing population of evolving circuits under the challenge of a “random
environment”. Let us now formulate our assumptions about this environment.

Suppose that at the j-th evolution stage, the values x are chosen randomly
by a probability distribution Pj(x) on the set Ξ of all possible inputs x. We
assume that each circuit obtains the values generated by the same distribution
Pj and that the values corresponding to different circuits are independent.

We say that the circuit (2) is correct if, whenever the noise is turned off
(ξ(t) = 0), this circuit returns a correct answer for every input x. For each pair
of functions f and f ′, we can define the probability of error

Err(f, f ′) def= Prob{f(x) 6= f ′(x)},

where the probability in the right hand side is defined with respect to Pj . We
can then define, for every j, the probability

Errj
def= inf

f 6=fj ,f∈C
Err(fj , f), (8)

and δj
def= Err(fj , 0), where 0 denotes a trivial circuit with output 0.

Here, two drastically different situations are possible:

A Passive environment: in this case, all the distributions Pj are the same,
Pj = P . In this case, the environment does not actively interact with the
circuits.

B Active environment, an environment that tries to create as many diffi-
culties as possible to the circuit population. This may correspond to a
predator-prey-type interaction, when a predator tries to learn the prey’s
behaviour and vice versa. In this case, the probability distributions Pj

can be different. (Here, interesting situations appear when for large j, the
probabilities corresponding to the distributions Pj are not computable in
polynomial time.)
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Our objective is to show that a stable evolution is possible. We will show
that for the above-described population of circuits, a stable evolution is possible
– provided that the circuit growth satisfies some natural conditions. These
conditions are listed below.

R1 We assume that for all time moments t = 1, 2, . . .,

Res(t) =
∑
C

∑
i,j,(i,j)∈EC(t)

|KC
ij (t)| < Poly(t), (9)

where the first sum ranges over all circuits involved in the population, and
Poly(t) is a polynomial.

This assumption means that, within each time interval [0, T ], t = 1, 2, . . . , T ,
the evolution process can only use resources whose total amount is bounded by
a polynomial of T .

R2 There exists a value β > 0 such that the noises ξi(t) corresponding to dif-
ferent i and t are independent identically distributed (i.i.d.) random quantities
for which, for each a > 0, we have

0 < P (|ξi(t)| > a) < exp(−β · a). (10)

R3 The population size is polynomially bounded: X(t) < Poly(t).

Our main assumption about the functions fj can be described as follows. Let
us assume that a conditional relative complexity of the correct outputs increases
slowly in some reasonable sense; for example, we can assume that

fj+1 = g(fj , fj−1, . . . , f1, x), g ∈ C,

d(g) = depth(g) ≤ dmax, Comp(g) < Kmax, (11)

where dmax and Kmax are constant (independent on j), and Comp(g) denotes a
circuit complexity, i.e., the number of elementary steps necessary to construct g.

Let us first formulate a simple lemma showing that sometimes one can sur-
vive without learning.

Lemma 2. (survival without learning) If the series
+∞∑
j=1

δj converges, then for

every value p0 ∈ (0, 1) there exists a circuit population that survives with the
probability ≥ p0, i.e., for which PT > p0 for all T .

Proof. Take X identical circuits with ξi = 0. For every input, each circuit
generates 1. For such individual circuits, the probability PT to survive within

13



the time interval [0, T ] is then equal to PT =
T∏

j=1

(1 − δj)Te . By taking into

account that δj → 0 as j →∞, we conclude that as T →∞, the values PT are
bounded from below by some value κ > 0.

If κ < p0 we increase X until we get κ ≥ p0. The lemma is proven.

Theorem 3. Assume that for some real number ρ ∈ (0, 1), the functions fj

satisfy the conditions (11) and

Errj > ρ (12)

for all j. Then there exist values µ and Te for which there exists an algorithm
describing evolution of circuits that satisfies the conditions R1, R2, and R3,
and for which PT > p0 > 0 for all T > 0.

In other words, for this algorithm, the system remains stochastically stable
for large time intervals.

This theorem can be interpreted as follows: stable evolution is possible even
in severe conditions (when a single error leads to destruction) – if the rate of
change of the environment complexity is bounded.

Proof. In this proof, we will use two lemmas from [6]. Recall that a Bernoulli
process is a discrete-time stochastic process consisting of a sequence of indepen-
dent random variables that take only two values: success and failure. For each
integer M and real number p ∈ (0, 1), we can consider an M -trial Bernoulli
process, in which in each of the M trials, the probability of success is equal to
p. Let us denote the total number of successes in all M trials by Y .

Lemma 3. For k < M · p, we have

Prob{Y < k} ≤ k · (1− p)
M · p− k

· Ck
M · pk · (1− p)M−k. (13)

Lemma 4. For r > M · p, we have

Prob{Y > M · p+ r} ≤
(
M · p · e

r

)r

. (14)

Since for our choice of Kij and hi we have min |Kij · uj + hi| ≥ 0.5b, we can
prove the following useful lemma.

Lemma 5. Let y(x) be a circuit (2) of depth d and complexity KMax, for which
Kij ∈ {b, 0,−b} and ξ = 0. Let ỹ(x) be the same circuit with the noise ξ (which
satisfies the condition R2). Then

sup
x

Prob{y(x) 6= ỹ(x)} < exp(−c · β · b), where c = c(d,KMax) > 0. (15)
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Let us now describe a circuit evolution and a population growth that satisfy
the conditions R1, R2, and R3. We will proceed in three stages. Our estimates
are obtained by induction.

Suppose that at j = m the populations contain correct circuits that give
correct answers with probabilities p′m = 1− exp(−c1 ·m), where c1 > 0.

Stage I. Generation of new circuits by random mutations. Consider the time
interval Im = [m · Te,m · Te + Kmax], where Te > C · dmax for some large
constant C > 1. Denote by x̃ a combined entry (x0, x), where we use
x0 = (fm, fm−1, . . . , f1) as an additional entry component. Using steps 1–4,
we construct all possible circuits of complexity ≤ Kmax and depths ≤ dmax.
Among them correct circuits may occur, i.e., circuits coinciding with g(fm, x).
For t ∈ Im, we set b(t) = b∗, where b∗ is a large constant independent of m.
Such a correct circuit can be obtained with the probability p+

c (b∗) · µK , where
µ > 0 is the mutation probability and p+

c (b∗) is the probability that an incorrect
circuit gives a correct answer.

We have already obtained the estimate p+
c (b∗) > exp(−c2 · b∗). Denote

κ
def= (µ · p+

c (b∗))K . Then one can expect that, after Kmax steps, we will have
at least X+ = 0.5κ ·Xm correct circuits, where Xm is the number of circuits at
the moment m · Te. Indeed, using Lemma 3, one can prove the following result:

Lemma 6. Consider the random number Zm
def= X+(m · Te + Kmax − 1) of

correct circuits X+(t) at the moment t = m · Te + Kmax − 1. If the parameter
β is small enough, then the probability that Zm < 0.5κ ·Xm can be bounded by
the following expression:

Prob{X+(t) < 0.5κ ·Xm} < exp(−c3 ·Xm), (16)

where c3(µ, p+
c ,K) is a positive constant that does not depend on Xm.

Stage II. Removing circuits and increasing b. The following T1 = Te−Kmax−1
time steps we do nothing, no mutations. Many circuits die, as a result of
incorrect answers. On this stage, we increase the parameter b in these circuits
(Step 4) by setting b = b2 = O(m). Denote

• by P ∗1 , the probability that at the moment t = Te(m + 1), the number
X̃+ = X+(m ·Te +Kmax−1) of correct circuits is smaller than the number
X̃− = X−(m · Te +Kmax − 1) of incorrect ones: X̃+ < X̃−, and

• by P ∗0 , the probability that there are correct circuits left, i.e., that X̃+ > 0.

Lemma 7. There exist values T1, c4, and c5 for which the probabilities P ∗i
satisfy the following inequalities for all m:

P ∗0 < exp(−c4 ·m), P ∗1 < exp(−c5 ·m). (17)
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Proof. The probability that a correct circuit survives after T1 trials is larger
than qT1 , where q > 1 − exp(−c · b2). Thus, the probability that all correct
circuits die is (1 − qT1)X+ < exp(−c ·Xm); since Xm = O(m), we get the first
estimate (17).

Denote by Z the number of inputs x̃ among T1 inputs x̃ for which all incor-
rect circuits give an incorrect answer y(x) 6= fm+1(x). We denote such inputs by
xinc. If an incorrect circuit Cinc obtains such an input, Cinc dies with a proba-
bility pd close to 1: pd = 1−exp(−c ·b2). The probability that a circuit obtains,
as an input, some xinc within T1 independent inputs, is p1 = 1−(1−ρ)T1 . Then
by Lemma 4, the probability that the number of surviving incorrect circuits is
larger than 6(1−ρ)T1Xm, does not exceed 0.8O(Xm). The number of the correct
circuits will be close to X+ = c9 ·Xm, with a probability > 1 − exp(−c ·Xm),
where c9 depends on µ and b2 but does not depend on T1. This observation gives
the second estimate (17) for sufficiently large values of T1 large. This completes
the proof of the lemma.

Stage III. Replications. We now come back to the design of the algorithm
required in Theorem 3. Notice that it is not a priori known whether a given
circuit is correct or not. However, one can investigate structures of circuits and
one can find a group of circuits having the same structure. We preserve these
circuits and remove all the others. Then, we replicate all the remaining circuits
to obtain Xm+1 = X(t) = O(m) up to the moment t = (m+ 1)Te. By Lemma
5, it is clear that for new noisy correct circuits, the probability of the incorrect
output admits the upper bound exp(−c ·m)), where c > 0 (we repress the noise
by increasing b(t) on Stage II; at the other stages b(t) is a large constant b∗
independent of m).

We notice that the probability to survive within Im is larger than 1 −
exp(−c1m)), c1 > 0. The resources within Im are O(m|E(m)|) < O(m3). This
completes the proof of Theorem 3.

Theorem 3 has simple intuitive meaning. It describes survival with learning.
To survive, the population should learn something about a boolean black box.
It is a difficult problem, but the population can recognize a black box step by
step, if the box’s complexity increases “slowly” (i.e., according to (11)).

Example. An interesting example is given by the sequence of conjunctions

fj = Di1 ∧Di2 . . . ∧Dik(j), (18)

where eachDi is a disjunction of some literals: Di = x̃i1∨x̃i2 . . .∨x̃iK
, where x̃i is

either xi or ¬xi, i ∈ {1, . . . , N}. The integer K can be interpreted, biologically,
as a redundancy parameter. The dependence of the number k(j) on j can be
increasing, decreasing, or non-monotonic (it depends on g in (11)). Notice that
learning of (18) is hard for large N [31].
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In the case of (18) the evolution stability is connected with the K-SAT
problem, which for a few decades has been a focus of many important research
activities; see, e.g.,, [1, 6, 9, 20]. We can consider our evolution as a “game” of
population against an environment which becomes more and more complicated.

1. If the dimension N of inputs x is fixed, one can survive in a simple way (see
Lemma 2) if Pj = P and P is uniform. However, the survival probability may
be exponentially small in N .

2. Assume now that N = N(t) increases with time. Suppose that each new
clause contains a new literal that is not used in the previous clauses. Then for
passive environment with uniform P it is possible to survive without learning
(Lemma 2). For active environments, Theorem 3 holds if the distributions Pm+1

have the following property: Prob{1− δ0 > fm(x) = 1} > δ0 with δ uniform in
m for x chosen randomly according to Pm+1.

3. It is natural to assume that conjunctions (18) are constructed randomly,
i.e., all indices iK ∈ {1, 2, . . . , N(t)} are chosen randomly (random K-SAT).
For example, at each j we choose a random i, and we add, with probability p,
certain L disjunctions to fm.

In this situation, our problem looks complex, and it is related to the results
on phase transitions in hard combinatorial problems [9, 20]. We consider this
relation in our forthcoming publications. In this paper, we restrict ourselves to
some simple observations.

If K ≤ 2, one can expect that, inevitably, some new clause will be in a
contradiction with previous ones; thus, for the passive case A, we can again use
Lemma 2.

For K > 2 and active case B, it is possible that Pm are not computable in
polynomial time Poly(m). Indeed, to implement the algorithm from Theorem
3, we should have Pj satisfying the condition (12) (or, at least such that Errj >
const · j−n for some n > 0). For large j, it is possible that the number Nj of
solutions of the K-SAT problem corresponding to fj(x) is exponentially small
in j; moreover, if P 6= NP and j is a part of the input, there is no polynomial-
time algorithm to find x such that f(x) = 1 [9, 20]. Nonetheless, even in such a
situation, survival is possible if the population always preserves a trivial circuit.

It would be interesting to compare results from this section and Theorem
1 with the real biological situation. A discussion of the problems of species
extinction and complexity growth can be found, for example, in [23]. A change
of fj can be interpreted as a variation in ecological conditions. It can be shown
that, according to our model, such a change leads to a massive species extinction
with an exponential rate (this fact is in good accordance with biological reality,
see [23], Ch. 23).
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7 Conclusion

There are two fundamental problems of mathematical biology: the morphogen-
esis problem (emergence of complex structures) and the evolution problem:

a why structures became more and more complicated and

b why Darwin’s evolution could generate such structures within “short” time
and with “bounded resources” [7, 23, 31].

Mathematical approaches to the first problem started with the seminal work
of A. Turing [27]. Now, we can explain the emergence of complicated patterns
and describe algorithms to obtain such patterns (for network and circuit mod-
els, see [21, 26, 28, 29]). However, the questions about the stability of such
emergence are still open.

It seems that the second problem is even more mysterious. In our opinion,
the key to this problem can be found in [13, 30]: all biological systems with
fixed parameters are unstable, but evolution can stabilize them; in this case,
according to our Theorem 1, the Kolmogorov complexity grows (on average).
This fact explains why complexity increases in evolution.

Note that complexity here is the complexity of the genetic code; the rela-
tion between this complexity and the complexity of the organism complexity is
not obvious. For some Pffafian models like (2), one can prove that the pattern
complexity can be estimated in terms of the Pfaffian chain complexity. Thus,
“complex” patterns can be obtained only by using sufficiently “complex” pfaf-
fian models [29]. Probably, both pattern complexity and gene complexity are
increasing during the evolution process [23].

Evolution does not necessarily mean “improving”. Ch. Darwin avoided the
words “higher” and “lower”. In fact, following D. Wandschneider ([7], Ch. 10),
let us “compare the chance of survival of, say, infusoria with that of humans:
risk increases with an increase in capability. A glance at inorganic structures
makes this even clearer. The Alps are obviously characterized by considerable
stability”. Theorem 1 explains this paradox: the evolution of unstable structures
has no goals and stability is not necessarily increasing: simply, if evolution stops,
destruction is inevitable.

We think (following [31]) that the problem b can be correctly posed mathe-
matically only by NP-hard ideas: short time means polynomially bounded, and
energetic resources also should be polynomially bounded. Here we show that,
at least in certain cases, such fast evolution is possible (even under severe re-
strictions, but these restrictions should evolve sufficiently slowly in time). One
can hope that recent ideas on phase transitions in hard combinatorial problems
(for example, [9, 20]) can help us understand efficiency of the Darwin evolution
and the Red Queen law (extinction of species when the number of ecological
restrictions become too large) [30].
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