
2) ~7~(~-~ ~-), ~ .= ~B [if-] , then either 

ecision algorithm is given in [3] for ------ We obtain from it and Theorem 4.2 a de- SMC " 

cl ...... Igorithm for ~ . Moreover, from Theorem 4.2 and the coherence theorem for c 

morphisms in $~C categories, we deduce the coherence theorem for canonical morphism~ 
categories. 

THEOREM 4.3. (Coherence). If f, f': A + B are canonical morphisms and the sequence A § 
B is I-balanced, then f = f'. 
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COMPLEXITY OF "WILD" MATRIX PROBLEMS AND OF ISOMORPHISM 

OF ALGEBRAS AND GRAPHS 

D. Yu. Grigor'ev UDC 519.5+5u~.~6 

It is shown that isomorphism of semisimple algebras over an algebraically closed 
field is recognized in polynomial time. The polynomial equivalence of isomorphism 
of graphs and isomorphism of algebras (over an algebraically closed field) with 
zero square of the radical and commutative quotient modulo the radical is proved. 
A series of problems about the complexity of matrix problems and isomorphism of al- 
gebras are posed. 

In the present article, we pose a series of complexity problems of algebraic origin and 
indicate their interrelations with the complexity of recognition of isomorphism of graphs. 
In addition, we elucidate the complexity of recognition of isomorphism for two classes of al- 
gebras (see the proposition and the theorem). 

I. It has been shown by the efforts of many Soviet mathematicians that, in the first 
place, many problems about the classification of modules (over a given algebra) are reduced 
to the so-called matrix problems, and these, in their turn, are classified into three types 
of problems: finite, tame, and wild, such that all the problems of one type are equivalent 
to each other in a definite sense (one of the first articles on this theme was [I]; further~ 
see the series of articles in [2] and the recent articles of L. A. Nazarova, A. V. Roiter, 
Yu. A. Drozd, A. V. Yakovlev, and others). We can take the following problems as the model 

Translated from Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo 
Instituta im. V. A. Steklova AN SSSR, Vol. 105, pp. 10-16, 1981. Original article submitt=~ 
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problems of each type: classification of the matrices up to left and right multiplication by 
nonsingular matrices (finite type), classification of matrices over an algebraically closed 
field up to similarity (tame type), and classification of pairs of matrices up to similarity 
(wild type). 

Let us turn to the algorithmic formulations of the matrix problems. In this connection, 
we consider matrices with rational elements, although we can take the elements from other 
"well-defined" fields. The algorithmic formulation of the model finite problem lies in P, 
since it is sufficient to compute the rank to determine the equivalence of matrices in this 
case, which can be done in polynomial time, using, e.g., [3] or [4]. Let us at once observe 
that the reductions of matrix problems to the above-mentioned models, known to the author, 
for all the three types are, in particular, P-equivalences. The algorithmic formulation of 
the tame problem also lies in P, since coincidence of the Jordan forms of two matrices can be 
verified in polynomial time (see [4], [5], AppendixA] and also [6], in which it has actually 
been sho~ that another tame problem -- a problem about a matrix bundle, is solvable in poly- 
nomial time). 

The above-formulated wild problem about the classification of pairs of matrices is re- 
garded as a standard of difficulty in linear algebra. It is interesting to elucidate whether 
it is complex in the algorithmic sense. The algorithmic formulation of the standard wild 
problem is as follows: to elucidate whether two pairs of matrices (A, B) and (C, D) are equiv- 
alent, i.e., does there exist an invertible matrix X such that AX = XC and BX = XD? The last 
two equations can be considered as a linear system in the coefficients {xij} of the matrix 
X, its solution in the matrix form is found, and then we arrive at the following algorithmic 
problem: Does there exist a nonsingular matrix in the given linear variety of matrices? It is 
clear that this problem lies in NP, since the last problem is equivalent to the problem of 
nonidentity of the determinant of the parametric matrix. Does this problem lie in P? 

2. Side by side with the problem about isomorphism of modules over a given algebra, 
which, as observed above, reduces to a matrix problem, there also arises the problem of iso- 

morphism of associative algebras. 

We assume the algebras to be given by their integral structure tensors. For simplicity, 
we consider finite-dimensional algebras with identity over an algebraically closed field F 
(in order not to be occupied by the problems of representation of elements and of carrying 
out the operations in the field, we set F = ~ in the proofs). In this case, the quotient 
A/R of an algebra A modulo its Jacobson radial R is a direct sum~iFki of the algebras of 
the k i • ki-matrices over F by the Wedderburn theorem (see [7, 8]). If R = 0, then the alge- 

bra A is said to be semisimple. 

Proposition I. Isomorphism of semisimple algebras (over an algebraically closed field) 

is recognized in polynomial time. 

Proof. It is sufficient to find a set {K i} in polynomial time such that the semisimple 

algebra A =~iFki" We carry out the proof by induction on dim F A. 

At first, we find the center C(A) of the algebra A by solving the system of the linear 
equations, each of which means commutation with an element of the basis of A over F. Let 
dim C(A) > I and ~.I ~ a s C(A) for any ~ ~ F. Let us consider a as a linear operator (by 
means of left multiplication) on A and find a root I of the characteristic (integral) poly- 
nomial X~ = det (a -- I-I). The coefficients of the characteristic polynomial are computed in 

polynomial time on the basis of [4, 9]. 

The algebraic number X takes part in the computations as a symbol that satisfies the 
equation • = O. Getting a few steps ahead, let us observe that here, as in other situa- 
tions where algebraic numbers occur in computations, it is convenient to use the following 
device. We temporarily assume X~ to be irreducible (as a preliminary, having gotten rid of the 
multiple factors by means of the derivative). If a certain number %1 -- a root of the poly- 
nomial f -- also occurs in the computations and if the greatest common divisor (Xa, f) is non- 
trivial, then we assume I to be a root of the (temporarily irreducible) polynomial • f) 
and start the procedure afresh. It is obvious that the number of steps of the algorithm here 
remain polynomial, since the degrees of the considered polynomials are lowered. But if deg • 
(~a, f), then, e.g., the set ~g~(~) where 0 ~ i < deg Xa and 0 ~ j < deg f, is a generating 

system of the field ~ ( ~ ) = ~ [ ~ ] / ~ ) ~  (reasoning as above, we temporarily assume 

that this ring is a field) over ~ , and the computations can be carried out in this system. 
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In particular, if it is required to elucidate the problem of equality to zero of the element 
g(%1), where the polynomial g 6 (i) [x], then we find the common divisor (f, g), and if 
deg (f, g) = 0, then g(ll) x 0, but if deg (f, g) = deg f, then g(ll) '= 0, and in the contrary 
case we indicate arbitrarily whether 11 is a root of the polynomial (f, g) or a root of the 
polynomial f/(f, g), we memorize this for the future and, depending on this, we regard g(ll) 
as equal to or not equal to zero, respectively. We act analogously on the appearance of other 
algebraic numbers in computations. 

We return to the element a -- 1.1 and consider the two-sided ideal I = (a -- I.I)A o Let 

us set the two-sided ideal  ={geA:g I=01 Then I @~=A (a direct sum of algebras) and 

I=@LesFK~ and ]=~TFk~ for certain nonempty index sets S and T. We define the decompo- 

sitions of the algebras I and J by the induction hypothesis. The proposition is proved. 

The class of the algebras with the condition R 2 = 0 (the modules over these algebras 
have been studied in connection with matrix problems in Kruglyak's article in [2], pp. 60-68) 
is next to the class of semisimple algebras in difficulty. But even for algebras of this 
class, the isomorphism problem is quite difficult from the complexity point of view, which 
is obvious from the following well-known reduction of isomorphism of graphs to isomorphism 
of algebras of this class (a similar structure is constructed in the theory of incidence al- 
gebras -- see, e.g., [10]). With respect to an oriented graph G on n vertices and with m 
edges, we construct an (n + m)-dimensional algebra A with a basis el,...,en, {eij} , where 
(i, j) is an edge of the graph G, and with the relations eiej = ~ijei, eiek j = ~ikekj, ekje i = 
~ijekj, eijekl = O, where ~ij is the Kronecker symbol. Then el + ... + en is the identity of 
the algebra A, {eij} is a basis of its radical R whose square is equal to zero, and A/R =~F 
is the direct sum of n copies of the field F. Isomorphism of oriented graphs is equivalent to 
isomorphism of the corresponding algebras. The fact that isomorphism of graphs implies iso- 
morphism of algebras is obvious; the converse will follow from the proof of Theorem I. This 
theorem asserts that the problem of isomorphism of graphs is equivalent to the problem of iso- 
morphism of a Certain class of algebras. See, e.g., [11] for other algebraic approaches to 
isomorphism of graphs. 

THEOREM I. Isomorphism of algebras with identity (over an algebraically closed field) 
with the condition R 2 = 0 and commutative quotient A/R modulo the radical R is P-equivalent 
to isomorphism of graphs. 

Remark. Actually, we will construct an epimorphic functor (i.e., a functor that is an 
onto mapping for objects as well as for morphisms) from the category of algebras, having the 
properties stated in Theorem I, where isomorphisms are taken as morphisms, onto the category 
of graphs with natural weights on the edges. Moreover, we will show that this functor can be 
constructed in polynomial time. 

Proof. By the condition, A/R =~F (the direct sum of n copies of the field F); let 
fl,..-,fn be pairwise orthogonal idempotents (see [8]) in A/R and el,...,e n be any of their 
preimages under the epimorphism A + A/R. Let us construct an n-vertex oriented graph G = GA 
with weights on the edges by taking the weight on the edge (i, j) equal to dim F eiRej. Since 
R 2 = 0, it follows that eiRe j does not depend on the choice of the preimages {ei}. 

LEMMA I. Isomorphism of the algebras A and B is equivalent to isomorphism of the corre- 
sponding graphs G A and GB. 

Proof of the Lemma. Let A ~------~-~ be a certain isomorphism of algebras (here and below 
in the proof of Theorem I we assume that the algebras are taken from the class under consider- 

ation). Then ~(~A) = ~B (RA is the radical of the algebra A) and ~)~...~(e~) are the pre- 

images of the pairwise orthogonal idempotents of the quotient under the epimorphism B § B/R B. 

Consequently, ~ A ~ )  =~(C~)~) and ~l~g~A~=~bm~(e~)~ B~(s which shows that the 

graphs G A and G B are isomorphic. 

Before proving the converse, we show that ~ ~ [ ~  , where the direct sum is understood 

as a direct sum of F-linear spaces. Let, on the contrary ~ gg~#C# = 0 for certain 2g#s 

R. Multiplying both of the sides of this equation, on the left by ei0 and on the right by 
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ej0 , for certain i0 and j0 such that I ~< i0, j0 ~< n, we get ei0ri0j0ej0 = 0 (since R 2 = 0), 

i.e., the sum ~ ~g~s is direct. 

Let us decompose the identity: 4=~ / ~ g E + ~  4 , where ~ F  and ~ E ~ (it is easily 
~b~t t  

s een  by s q u a r i n g  b o t h  s i d e s  o f  t he  e q u a t i o n  t h a t  a c t u a l l y  t~ = . . .  = in  = 1).  The r e l a t i o n  

$=~''~'4----L~_ /~L)~6~} h o l d s  f o r  each  ~ E ~  which p r o v e s  the  e q u a l i t y  ~ =  ~). . 

Further, we usea theorem of Wedderburn (see [7]) by which the algebra A has a subalgebra 

~A--A/~ A such that CA O~A = [0~ . Now, let us suppose that the n-vertex graphs GA and G B 
(B) (B) 

are isomorphic and e A),...,e(A)n and e~ ,...e n are pairwise orthogonal idempotents in the 
. (a~ ('A) . ( 3 ) 0  ~ (~) 

algebras C A and CB, respectively, indexed such that 6[~rrgs ~AC~ = ~Ltt~g L ~g} for all I ~< i, 

j ~< n. Let us define a mapping ~b:A § B by setting @(e!A)) = e(B) for I ~< i ~< n and by setting 
(A) ~ (A) ~ i 

, equal to a certain ~ij on e i KAe j (I ~< i, j <~ n), where ~ij is an arbitrary nonsingular 

~,CA)I2 ~(~ %7- o ~C) n.(~) F-linear mapping such that ~L ~ t A ( ~ - ~  ~/" I t3~  (an F-linear isomorphism). Since ~- -~L~ ,~  • 

eiRej, as proved above, ~b is defined properly and is an F-linear isomorphism of additive sub- 
groups of the algebras A and B. 

(A) 
It remains to verify that ~)(g~gz)=~Cg,~)~(a~) for ~b4,ClZE A . Let ~ = ~ _ ~ C ~  +~- x 

CA) ~ (~) ~jA) 

(A) .(A) _ _  (~) 

( ~  ~ e ~  ) + ~ n / ~ L ~ , ( ~ L ~ ) ~  ). On the other hand, 

(3) . . CA) ~A),. (~) . ~) ~A), 

(~) r r - (A) (A) 

which completes the proof of the lemma. 

In order to complete the proof of Theorem I, it should be shown that the graph G A can 
be constructed with respect to A in polynomial time (the converse, i.e., the construction of 
a certain algebra B with respect to a graph G such that GB = G had actually been carried out 
before the formulation of Theorem I). To this end, it is sufficient to fSnd R in polynomial 
time (pairwise orthogonal idempotents in the commutative semisimple algebra A/R can be found 
in polynomial time with the help of the procedure set forth earlier in the proof of Proposi- 

tion I). 

At first, let us construct the commutant Com (A), which is the F-linear hull of the ele- 
ments {~iaj -- aja i} for an arbitrary basis {ai} of the algebra A. It can be verified that 

60~(A)-~b,~#~ ~)'" . ~ .  Therefore,�9 tofindRit is sufficient to find the radical Rl of the 

commutative algebra Al = A/Com (A) Obviously, ~= ~. s �9 ~ - 

As in the proof of Proposition I, we find RI by induction on dim At. Remembering the 

remark about computation with algebraic numbers, we find a A ~  such that det (a~ -- ~1"I) = 0 
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(we find the identity of the algebra in polynomial time from the linear system (~_ Xggg)~= 

aj for I ~ j (n) if al is considered as an F-linear operator on Al (we suppose that al 

~'I for any ~CF ). This means that a certain 8 i = 0 in the decomposition ~-A{.~=~Sgs + 

r, where Z6~4 �9 Let us suppose that (g{-A(j)%#0 . Then we consider the ideals I= {~eA4[ 

~(~{-A4{)~=0} and J={  A :ml=0J (the ideals IandJare constructed in polynomial time, 

starting from obvious linear systems). In this case, ~@ ]=A4 (a nontrivial direct sum of 
algebras), and we use the induction hypothesis. Now, let (~I -- %1"I) 2 = 0. Then we find an 
i for which (a i -- Ai.1) 2 ~ 0, where A i 6 F, such that det (a i -- 1i-I)2 = 0, and act as above 
(if such an i does not exist, then a i -- Ii.I s Rl for each i and {a i -- ~i.I} is a basis of 
Rl; in this case, AI/RI = F). 

Thus, RA and, by the same token, GA are constructed in polynomial time, which completes 
the proof of the theorem. 

In conclusion, we pose a series of problems: What can be said about the complexity of re 
recognition of isomorphism for classes of algebras more general than the ones considered? It 
would also be interesting to study hierarchy of classes of algebras, whose k-th member con- 
sists of algebras for which R k = 0, from the point of view of complexity. Also, it is not 
known whether the radical of each algebra can be found in polynomial time. 
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