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Abstract. We give an O(
√
n logn)-approximation algorithm for the

problem of finding the sparsest spanner of a given directed graph G on n
vertices. A spanner of a graph is a sparse subgraph that approximately
preserves distances in the original graph. More precisely, given a graph
G = (V,E) with nonnegative edge lengths d : E → R≥0 and a stretch
k ≥ 1, a subgraph H = (V,EH) is a k-spanner of G if for every edge
(u, v) ∈ E, the graph H contains a path from u to v of length at most
k · d(u, v). The previous best approximation ratio was Õ(n2/3), due to
Dinitz and Krauthgamer (STOC ’11).
We also present an improved algorithm for the important special case of
directed 3-spanners with unit edge lengths. The approximation ratio of
our algorithm is Õ(n1/3) which almost matches the lower bound shown
by Dinitz and Krauthgamer for the integrality gap of a natural linear
programming relaxation. The best previously known algorithms for this
problem, due to Berman, Raskhodnikova and Ruan (FSTTCS ’10) and
Dinitz and Krauthgamer, had approximation ratio Õ(

√
n).

1 Introduction

A spanner of a graph is a sparse subgraph that approximately preserves pairwise
distances in the original graph. This notion was first used by Awerbuch [2] and
explicitly introduced by Peleg and Schäffer [23].

Definition 1.1 (k-spanner, [2, 23]). Given a graph G = (V,E) with nonnega-
tive edge lengths d : E → R≥0 and a real number k ≥ 1, a subgraph H = (V,EH)
is a k-spanner of G if for all edges (u, v) ∈ E, the graph H contains a path
from u to v of length at most k · d(u, v). The parameter k is called the stretch.

Spanners have numerous applications, such as efficient routing [9, 10, 25, 27, 28],
simulating synchronized protocols in unsynchronized networks [24], parallel, dis-
tributed and streaming algorithms for approximating shortest paths [7, 8, 13, 18],
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algorithms for distance oracles [3, 29], property testing, property reconstruction
and key management in access control hierarchies (see [6, 5, 20], the survey in
[26] and references therein).

We study the computational problem of finding the sparsest spanner of a
given directed graph G and stretch k, that is, a k-spanner of G with the small-
est number of edges. We refer to this problem as Directed k-Spanner and
distinguish between the case of unit edge lengths (i.e., d(e) = 1 for all e ∈ E)
and arbitrary edge lengths. The Undirected k-Spanner problem refers to the
task of finding the sparsest k-spanner of a given undirected graph. The natural
reduction from Undirected k-Spanner to Directed k-Spanner preserves
approximation ratio.

Our main results are an algorithm with approximation ratio O(
√
n log n)

for Directed k-Spanner with arbitrary edge lengths and an algorithm with
approximation ratio O(n1/3 log2 n) for Directed 3-Spanner with unit edge
lengths, where n is the number of nodes in the input graph G. Our approxima-
tion guarantee for Directed 3-Spanner almost matches the integrality gap of
Ω(n1/3−ε) of Dinitz and Krauthgamer [11] for a natural linear programming re-
laxation of the problem. Our result also directly implies the same approximation
ratio for the Undirected 3-Spanner problem with unit edge lengths.

Relation to Previous Work. Directed k-Spanner with unit edge lengths has
been extensively studied. Note that in this case, we can assume that k is a pos-
itive integer. For k = 2, the problem has been completely resolved: Kortsarz
and Peleg [21] and Elkin and Peleg [15] gave O(log n)-approximation, and Ko-
rtsarz [22] proved that the approximation cannot be improved unless P=NP.
Elkin and Peleg [14] gave Õ(n2/3)-approximation for Directed 3-Spanner.
For general k ≥ 3, Bhattacharyya et al. [6] presented Õ(n1−1/k)-approximation;
then, Berman, Raskhodnikova and Ruan [4] improved it to Õ(n1−1/dk/2e), and
recently Dinitz and Krauthgamer [11] gave Õ(n2/3)-approximation, presenting
the first algorithm with approximation ratio independent of k. For the special
cases of k = 3 and k = 4, Berman, Raskhodnikova and Ruan showed an Õ(

√
n)-

approximation. Independently, Dinitz and Krauthgamer also gave an Õ(
√
n)-

approximation for the case k = 3. Thus, our algorithms improve on [4] for all
k ≥ 3, where k 6= 4, and on [11] for all k ≥ 3.

Dinitz and Krauthgamer gave the first approximation algorithm for the prob-
lem for arbitrary edge lengths. For this case, one can no longer assume that k is
an integer. Dinitz and Krauthgamer achieved Õ(n2/3)-approximation for arbi-
trary edge lengths for all k > 1. We improve this approximation to Õ(n1/2) for
all k > 1.

Spanners for undirected graphs behave somewhat differently in terms of their
approximability. For all integer k and for all undirected graphs G with arbitrary
edge lengths, it is known [23, 1] that a k-spanner of G with at most n · dn2/(k+1)e
edges can be constructed in polynomial time. Since a k-spanner of a connected
graph must have at least n − 1 edges, an approximation ratio of O(n2/(k+1))
trivially follows. In particular, for k = 3, this argument yields an approximation
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ratio of O(
√
n). Our result improves the ratio for Undirected 3-Spanner to

Õ(n1/3) in the case of unit-length edges.

Elkin and Peleg [14, 17], improving on [22], showed that it is quasi-NP-hard to
approximate Directed k-Spanner, even when restricted to unit edge lengths,
with ratio better than 2log

1−ε n for k ∈ (3, n1−δ) and all δ, ε ∈ (0, 1). For Undi-
rected k-Spanner with unit-length edges, such a strong hardness result does
not hold since the problem is O(1)-approximable when k = Ω(log n). However,
for constant k ≥ 3, it is still quasi-NP-hard to approximate with a ratio better
than 2log

1−ε n [14, 12]. When the edge lengths are arbitrary, the same inapprox-
imability also holds for k ∈ (1, 3), even for the undirected case [17].

Our Techniques. Our algorithms operate by combining two graphs: the first
obtained from randomized rounding of a fractional solution to a flow-based linear
programming relaxation of the problem and the second obtained by growing
shortest-path trees from randomly selected vertices. The idea of combining a
linear programming approach with sampling to solve Directed k-Spanner
first appeared in [6]. Dinitz and Krauthgamer [11] used the same approach,
but with a novel, flow-based linear program (LP). Our main insight is to use
randomized LP rounding schemes. We also give a new LP relaxation, slightly
simpler than that in [11]. In the case of unit edge lengths, this LP has an extra
advantage: it can be solved quickly without using the ellipsoid algorithm. We
note, however, that our method would yield the same approximation ratios with
the LP of Dinitz and Krauthgamer [11] as well.

Directed Steiner Forest. Consider the Directed Steiner Forest (DSF) prob-
lem, a basic network design problem for directed graphs: given a directed graph
G = (V,E) with edge costs and a collection D ⊆ V × V of vertex pairs, find
a minimum-cost subgraph of G that contains a path from u to v for every pair
(u, v) ∈ D. DSF is an NP-hard problem and is known [12] to be quasi-NP-

hard to approximate with ratio better than 2log
1−ε n for all ε ∈ (0, 1). The best

known approximation ratio for this problem is O(nε · min(n4/5,m2/3)), due to
Feldman, Kortsarz and Nutov [19]. Their algorithm has the same structure as
the algorithms for Directed k-Spanner in [6] and [11]. Specifically, the LP
relaxation that they formulate is closely related to that developed by Dinitz
and Krauthgamer, if we replace edge costs by edge lengths. Our technique for
the spanner problem also applies to the DSF problem, yielding an improved
approximation ratio of Õ(n2/3+ε). We defer details to the full version.

2 An Õ(
√
n)-Approximation for Directed k-Spanner

Our main result is stated in the following theorem.

Theorem 2.1. There is a polynomial time randomized algorithm for Directed
k-Spanner with expected approximation ratio O(

√
n log n).
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We present two algorithms to prove Theorem 2.1: an algorithm for the general
case (whose description is completed in Section 2.2) and a simpler and more
efficient algorithm for the special case when all edges have unit length (whose
description is completed in Section 3).

Let G = (V,E) be a directed graph with edge lengths d : E → R≥0, given
as input to our algorithm, and OPT be the size of its sparsest k-spanner. We
assume that G is weakly connected. Otherwise, our algorithm should be executed
for each weakly connected component separately.

Definition 2.1. For an edge (s, t) ∈ E, let Gs,t = (V s,t, Es,t) be the subgraph
of G induced by the vertices on paths from s to t of length at most k · d(s, t).

Definition 2.2 (Thick and thin edges). Let β be a parameter in [1, n]. If
|V s,t| ≥ n/β, the corresponding edge (s, t) is thick, and otherwise, it is thin.
The set of all thin edges is denoted by E. In Sections 2.1–3, we shall always
assume that β =

√
n.

Our general strategy is to solve the problem separately for thick and thin
edges. We find two sets of edges, E′ and E′′, such that for each edge (s, t) ∈ E,
the required path of length at most k · d(s, t) from s to t is contained in E′

if (s, t) is thick and in E′′ if (s, t) is thin. The expected size of both sets is
O(β log n ·OPT ).

In Section 2.1, we describe how to obtain E′ using random sampling. In
Section 2.2, we describe how to obtain E′′ in the general case, using randomized
rounding of a fractional solution to an LP, thus completing the proof of Theorem
2.1. For graphs with unit edge lengths, the general method is the same, but we
use a different LP (see Section 3).

2.1 Sampling

We say that an edge (s, t) ∈ E is settled if the k-spanner property for this edge is
satisfied, i.e., the selected set of edges contains a path of length at most k ·d(s, t)
from s to t. The following procedure uses random sampling to construct E′.

Algorithm 1 Sample(β)

1: E′ ← ∅, S ← ∅;
2: for i = 1 to β lnn do
3: v ← a uniformly random element of V ;
4: T in

v ← a shortest path in-arborescence rooted at v;
5: T out

v ← a shortest path out-arborescence rooted at v;
6: E′ ← E′ ∪ T in

v ∪ T out
v , S ← S ∪ {v}; //Set S is used only in the analysis.

7: end for
8: Add all unsettled thick edges to E′;
9: return E′.

Lemma 2.1. Algorithm 1, in polynomial time, computes a set E′ that settles
all thick edges and has expected size at most 3β lnn ·OPT .
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Proof. After the execution of the for-loop in Algorithm 1, |E′| ≤ 2(n−1)β lnn ≤
2β lnn · OPT . The last inequality holds because OPT ≥ n − 1 for weakly con-
nected graphs G.

If some vertex v from a set V s,t appears in the set S of vertices selected by
Sample, then T inv and T outv contain shortest paths from s to v and from v to
t, respectively. Thus, both paths are contained in E′. Since v ∈ V s,t, the sum
of lengths of these two paths is at most k · d(s, t). Therefore, if S ∩ V s,t 6= ∅,
then the edge (s, t) is settled. For a thick edge (s, t), the set S ∩ V s,t is empty
with probability at most (1 − 1/β)β lnn ≤ e− lnn = 1/n. Thus, the expected
number of unsettled thick edges added to E′ in Step 8 of Sample is at most
|E|/n ≤ n− 1 ≤ OPT .

Step 8 ensures that E′, returned by the algorithm, settles all thick edges.
Computing shortest path in- and out-arborescences and determining whether
an edge is thick can be done in polynomial time. ut

2.2 Antispanners, LP and the Separation Oracle

In this section, we introduce antispanners, a notion used in the description of
our algorithm for Directed k-Spanner and essential in the analysis of all
algorithms. It is needed in the parts of the algorithms that settle thin edges.
Then, we formulate an LP relaxation of the problem of settling thin edges and
present our approximation algorithm, proving Theorem 2.1.

Antispanners. For a given edge (s, t), we define an antispanner to be a subset
of edges of G, such that if we remove this subset of edges from G, the length of
the shortest path from s to t becomes larger than k · d(s, t).

Definition 2.3 (Antispanners). A set C ⊆ E is an antispanner for an edge
(s, t) ∈ E if G′ = (V,E \ C) contains no path from s to t of length at most
k ·d(s, t). If no proper subset of an antispanner C is an antispanner, we say that
C is minimal.

Thus, the edge set of a k-spanner of G must intersect all antispanners for all
edges of G. In other words, it has to be a hitting set for all minimal antispanners.

We now prove that if a graph (V,E′ ∪ E′′) is not a k-spanner, then we can
efficiently find a thin edge (s, t) ∈ E and a minimal antispanner C that does not
intersect E′′.

Lemma 2.2. There exists a polynomial time algorithm that, given a set of edges
E′′ ⊂ E and a thin edge (s, t) ∈ E, outputs a minimal antispanner C ⊂ Es,t \E′′
if there is no directed path from s to t of length at most k · d(s, t) in E′′.

Proof. The algorithm first checks if there exists a directed path from s to t of
length at most k · d(s, t) in E′′. If there is no such path then Es,t \ E′′ is an
antispanner. (Note that all paths between s and t of lengths at most k · d(s, t)
in G lie in the subgraph Gs,t = (V s,t, Es,t)). The algorithm sets C = Es,t \ E′′
and then sequentially deletes all edges (u, v) ∈ C such that C \ {(u, v)} is an
antispanner. When no more such edges are left, the algorithm returns C. ut
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Minimize
∑
e∈E

xe subject to: (1)∑
e∈C

xe ≥ 1 ∀C ∈ S (2)

xe ≥ 0 ∀e ∈ E (3)

Fig. 1. Linear program for the arbitrary-length case, LP-A

Linear Program. Since E′ from Section 2.1 already settles the thick edges, our
goal is to design a randomized procedure that finds a subset of edges E′′ ⊂ E
that intersects all minimal antispanners for all thin edges. This condition can
be expressed using linear program LP-A (see Fig. 1). This LP has a variable xe
for each edge e ∈ E and a constraint (2) for each minimal antispanner C for
thin edges. Set S is the set of all minimal antispanners for thin edges. In the
integral solution {xinte } corresponding to a k-spanner with edge set E′′ ⊂ E,
xinte = 1 if e ∈ E′′ and xinte = 0 otherwise. All constraints (2) are satisfied for
{xinte } since E′′ intersects every antispanner. The value of the objective function∑
e x

int
e equals the size of E′′. Hence, the LP is a valid relaxation.

For ease of presentation, we assume that we have guessed OPT , the size of the
optimal spanner. (We can try all values in {n− 1, . . . , n2} for OPT and output
the best spanner found in all iterations). We replace the objective function (1)
with ∑

e∈E
xe ≤ OPT. (4)

Separation Oracle. Our LP has polynomially many variables and exponen-
tially many constraints. We solve it using the ellipsoid algorithm with a separa-
tion oracle. Our separation oracle receives a fractional vector {x∗e} (satisfying (3),
(4)) and outputs either a violated constraint (2) for some antispanner C or a
set E′′ of size at most 2OPT ·

√
n lnn such that E′ ∪ E′′ is the edge set of a

k-spanner. Specifically, if {x∗e} is a feasible solution, then the separation oracle
returns a set E′′.

The separation oracle works as follows: it first samples a random set of edges
E′′ picking each e ∈ E with probability min(x∗e

√
n lnn, 1):

Algorithm 2 RandomizedSelection(x∗e)

1: E′′ ← ∅;
2: for each edge e ∈ E do
3: pe ← min(1,

√
n lnn · x∗e);

4: Add e to E′′ with probability pe;
5: end for
6: return E′′.

Then if (V,E′ ∪ E′′) is a spanner and |E′′| ≤ 2OPT ·
√
n lnn, it outputs

E′′. If |E′′| > 2OPT ·
√
n lnn, the separation oracle fails. If (V,E′ ∪E′′) is not a
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spanner, the algorithm finds a thin edge (s, t) such that there is no directed path
of length k · d(s, t) from s to t in (V,E′′), then it finds a minimal antispanner
C ⊂ Es,t \ E′′ using a greedy algorithm (see Lemma 2.2 below for details; note
that Es,t \ E′′ is an antispanner) and if

∑
e∈C xe < 1, outputs this violated

constraint. If
∑
e∈C xe ≥ 1, the separation oracle fails.

We now show that the probability that the separation oracle fails during an
execution of the ellipsoid algorithm is small.

Theorem 2.2. The probability that during an execution of the ellipsoid algo-
rithm the separation oracle fails is exponentially small in n.

Proof. As discussed above, there are two different events, which can cause the
separation oracle to fail:

1. The size of the sampled set E′′ is too large. The expected size of E′′ is at most√
n lnn

∑
e∈E xe ≤ OPT ·

√
n lnn. By the Chernoff bound, Pr(|E′′| > 2OPT ·√

n lnn) ≤ e−c·OPT ·
√
n lnn = e−Ω(n·

√
n lnn). Thus, the probability that the

separation oracle fails because |E′′| > 2OPT ·
√
n lnn is exponentially small.

2. The minimal antispanner found by the oracle doesn’t correspond to a vio-
lated constraint (see discussion below). We prove that the probability that
the separation oracle fails because

∑
e∈C x

∗
e ≥ 1 is exponentially small in

Lemma 2.3.

Lemma 2.3. The probability that there exists an edge (s, t) and a minimal
antispanner C for it such that

∑
e∈C x

∗
e ≥ 1, but C ⊂ Es,t \ E′′ is at most

|E| · e− 1
2

√
n lnn.

Proof. First, we bound the total number of minimal antispanners for thin edges.

Proposition 2.1. If (s, t) is a thin edge, then there are at most (n/β)n/β min-
imal antispanners for (s, t). In particular, if β =

√
n, then there are at most

√
n
√
n

minimal antispanners.

Proof. Fix a thin edge (s, t) and consider an arbitrary minimal antispanner C
for (s, t). Let AC be the outward shortest path tree (arborescence) rooted at s
in the graph (V s,t, Es,t \ C). Denote by fAC (u) the distance from s to u in the
tree AC . If there is no directed path from s to u in AC , we let fAC (u) = ∞.
We show that C = {(u, v) ∈ Es,t : fAC (u) + d(u, v) < fAC (v)}, and, thus AC
uniquely determines C for a given thin edge (s, t). If (u, v) ∈ C, then, since C is
a minimal antispanner, there exists a path from s to t of length at most kd(s, t)
in the graph (V,E \C ∪{(u, v)}), this path must lie in (V s,t, Es,t \C ∪{(u, v)})
and must contain the edge (u, v). Thus, the distance from s to t in the graph
(V s,t, Es,t \ C ∪ {(u, v)}) is at most k · d(s, t) and is strictly less than fAC (t).
Hence, AC is not the shortest path tree in the graph (V s,t, Es,t \ C ∪ {(u, v)}).
Therefore, fAC (u) + d(u, v) < fAC (v). If (u, v) ∈ Es,t satisfies the condition
fAC (u) + d(u, v) < fAC (v), then (u, v) /∈ Es,t \ C, otherwise AC would not be
the shortest path tree, hence (u, v) ∈ C.
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We now count the number of outward trees rooted at s in (V s,t, Es,t \C). For
every vertex u ∈ V s,t we may choose the parent vertex in at most |V s,t| possible
ways (if a vertex is isolated we assume that it is its own parent), thus the total

number of trees is at most |V s,t||V s,t| ≤ (n/β)n/β . ut

Proposition 2.2. For an edge (s, t) ∈ E and a minimal antispanner C for (s, t)
satisfying

∑
e∈C x

∗
e ≥ 1, the probability that E′′ ∩ C = ∅ is at most e−

√
n lnn.

Proof. Suppose there exists (u, v) ∈ C such that x∗e ≥ (
√
n lnn)−1. In this

case, (u, v) ∈ E′′ with probability 1, and we are already done. Otherwise, for
(u, v) ∈ C, the probability that (u, v) ∈ E′′ is exactly

√
n lnn·xe. The probability

that no edges of C are in E′′ is, therefore,

∏
e∈C

(1−
√
n lnn · x∗e) < exp

(
−
∑
e∈C

√
n lnn · x∗e

)
≤ e−

√
n lnn.

The first inequality above follows from the fact that 1− x < exp(−x) for x > 0.
The second one holds because

∑
e∈C x

∗
e ≥ 1. ut

The proof of Lemma 2.3 is completed by using Proposition 2.2 and Propo-
sition 2.1 and taking a union bound over all minimal antispanners for all thin
edges. ut

The proof of Theorem 2.2 is completed by using Lemma 2.3 and taking a
union bound over all iterations of the ellipsoid algorithm, the number of which
is bounded by a polynomial. ut

Proof of Theorem 2.1.

Proof. The thick edges can be settled by running Sample(
√
n), according to

Lemma 2.1. The thin edges can be settled by running the ellipsoid algorithm as
described above. The ellipsoid algorithm terminates in polynomial time. With
exponentially small probability, we allow the separation oracle to fail (as shown
in Theorem 2.2), in which case we output a spanner containing all edges E.
Thus, the expected size of the set E′′ is at most 2OPT ·

√
n lnn+ o(1) and the

resulting approximation ratio of the algorithm is O(
√
n lnn).

3 LP and Rounding for Graphs with Unit-Length Edges

In this section, we describe how to settle the thin edges, and thus prove The-
orem 2.1, for the case of unit-length edges. Our motivation for presenting this
special case is two-fold. First, we show that for the unit-length case, one can
directly formulate a polynomial-sized LP relaxation, and this makes the approx-
imation algorithm more efficient. Second, the LP used here will be convenient in
presenting the improved approximation for 3-spanners in Section 4.

In order to define and analyze the LP, we need to introduce some notation.



Improved Approximation for the Directed Spanner Problem 9

Definition 3.1 (Layered expansion). Given a directed graph G = (V,E), its
layered expansion is a directed graph Ĝ = (V̂ , Ê), satisfying the following:

1. Let V̂ = {vi : v ∈ V and i ∈ Z≥0}, where vi denotes the i-th copy of v. The
set of all the i-th copies of nodes in V is the i-th layer of V̂ .

2. Let L = {(u, u) : u ∈ V } be the set of loops. Define the i-th copy of an edge
e = (u, v) to be ei = (ui, vi+1), and the i-th copy of a loop e = (u, u) to be
ei = (ui, ui+1). Let Ê = {ei : e ∈ E ∪ L and i ∈ Z≥0}.

We use layered expansion Ĝ to describe paths in G. Note that Ĝ contains a path
from u0 to v` if and only if G contains a path from u to v of length at most `.

Recall that E denotes the set of thin edges. For (s, t) ∈ E , we consider the
subgraph of Ĝ consisting of all paths that can be used by a k-spanner:

Definition 3.2 (Edge network). For an edge (s, t) ∈ E and k ≥ 1, the edge
network is a subgraph Ĝs,tk = (V̂ s,tk , Ês,tk ) of Ĝ with a source s̄ = s0 and a sink

t̄ = tk·d(s,t), such that Ĝs,tk contains all nodes and edges on paths from s̄ to t̄.

Now, consider the linear program LP-U defined in Figure 2 below. LP-U has
variables of two types: xe, where e ∈ E, and fs,tei , where (s, t) ∈ E and ei ∈ Ês,tk .
A variable xe represents whether the edge e is included in the k-spanner. A
variable fs,tei represents flow along the edge ei in Ĝs,tk (integer flow in Ĝs,tk with
value 1 is simply a path of length at most k). We denote the sets of incoming
and outgoing edges for a vertex vi ∈ Ĝs,tk by In(vi) and Out(vi), respectively.

Minimize
∑
e∈E

xe subject to:

Flow requirement
∑

e0∈Out(s0)

fs,t
e0 ≥ 1 ∀(s, t) ∈ E

Flow conservation
∑

ei−1∈In(vi)

fs,t
ei−1
−

∑
ei∈Out(vi)

fs,t
ei = 0 ∀(s, t) ∈ E , ∀vi ∈ V̂ s,t

k \ {s̄, t̄}

Capacity constraints xe −
k−1∑
i=0

fs,t
ei ≥ 0 ∀(s, t) ∈ E , ∀e ∈ E

xe ≥ 0 ∀e ∈ E

fs,t
ei ≥ 0 ∀(s, t) ∈ E , ∀ei ∈ Ês,t

k

Fig. 2. Linear program for the unit-length case, LP-U

Note that to write down LP-U, we only need to know V,E, k and the set of
thin edges, E . The first three are inputs to the algorithm, and E can be computed
in polynomial time. LP-U can be written down and solved in polynomial time
because it has O(|E|2 · k) = O(n5) variables and constraints.4 Thus, unlike the

4 More precisely, LP-U has O(|E| × |V s,t|3) = O(n3.5) variables and constraints.
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case of arbitrary lengths, one does not need to invoke the ellipsoid algorithm
here.

Given x∗e, the fractional solution of LP-U, we construct the set E′′ by first
running Algorithm 2 and then adding all unsettled thin edges. Because sets of
fractional solutions x∗e to LP-U and LP-A are equal, one can show that the set
E′ ∪ E′′ forms a k-spanner with high probability and the size of this spanner is
O(OPT ·

√
n log n). We give a direct proof of this fact in the full version.

4 An Õ(n1/3)-Approximation for Directed 3-Spanner
with Unit-Length Edges

In this section, we show an improved approximation for the special case of Di-
rected 3-Spanner with unit length edges. At a high level, our analysis is a
combination of the technique we described for Directed k-Spanner with the
technique of Dinitz and Krauthgamer [11] for Directed 3-Spanner. The al-
gorithm for Directed 3-Spanner in [11] does not use sampling, which makes
their result applicable to the problem on graphs with arbitrary edge cost, where
the total edge cost is minimized rather than the total number of edges in the
spanner. By combining with sampling, we can improve the approximation ratio
for graphs with unit edge costs and lengths.

Theorem 4.1. There is a polynomial time randomized algorithm for Directed
3-Spanner for graphs with unit edge lengths with expected approximation ratio
O(n1/3 log2 n).

Proof. We define thick and thin edges as in Definition 2.2, with β = n1/3, and we
run Sample(n1/3). By Lemma 2.1, this settles all thick edges with edge set E′

that on the average has size at most 3n1/3 lnn·OPT . Then we obtain solution x∗

of the linear program LP-U from Fig. 2 and use randomized rounding to obtain
edge set E′′ that settles all thin edges with high probability. However, we need
to use a different method of rounding that takes advantage of the fact that our
spanners provides paths of length 3. We could have used Algorithm 2 from [11]
with ρ = Θ̃(n1/3), but instead we give a simplified rounding scheme.

Algorithm 3 Randomized3SpannerSelection(x∗e)

1: E′′ ← ∅;
2: for each vertex u ∈ V do
3: Let ru be chosen i.i.d. uniformly from [0, 1];
4: end for
5: for each edge e = (u, v) ∈ E do
6: Add e to E′′ if rurv ≤ x∗u,vαn1/3 lnn; //α is a constant less than 10
7: end for
8: return E′′.

It suffices to prove the following two lemmas. Lemma 4.1 bounds the expected
size of E′′. Lemma 4.2 shows that E′′ settles almost all thin edges
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Lemma 4.1 (analog of Lemma 4.1 in [11]). E[|E′′|] = O(OPTn1/3 ln2 n).

Lemma 4.2 (analog of Lemma 4.2 in [11]). If (s, t) is a thin edge, E′′

contains a path from s to t of length at most 3 with probability at least 1− 1/n.

By this lemma, the expected number of unsettled thin edges is at most
|E|/n ≤ n ≤ OPT , so one can simply add the unsettled edges to the solution.

It remains to prove Lemmas 4.1 and 4.2. In the proof of Lemma 4.1, we use
the following fact whose proof we omit for space considerations:

Lemma 4.3. If q ≤ 1, Pr[rurv ≤ q] = q(1− ln q).

Proof (of Lemma 4.1). Let A = {e ∈ E : x∗eαn
1/3 lnn ≥ 1/n} and B = E \ A.

We use two estimates for OPT : OPT1 =
∑
e x
∗
e and OPT2 = |B|/n. Clearly,

E[|E′′|] = E[|E′′ ∩A|] + E[|E′′ ∩B|];
E[|E′′ ∩A|] ≤ OPT1 × αn1/3 lnn(1 + lnn);
E[|E′′ ∩B|] ≤ OPT2 × (1 + lnn).

Both inequalities follow from Lemma 4.3. ut

We defer the proof of Lemma 4.2 to the full version.
ut

5 Conclusion

We gave approximation algorithms with ratio Õ(
√
n) for Directed k-Spanner

and with ratio Õ(n1/3) for Directed 3-Spanner with unit length edges. It re-
mains an interesting open question whether one improve the approximation ratio
to Õ(n1/3) for arbitrary lengths and larger k, thus matching the integrality gap
shown by Dinitz and Krauthgamer. Our algorithm for Directed k-Spanner ap-
plies to the k-Transitive-Closure Spanner problem [6], which can be refor-
mulated as a special case of Directed k-Spanner. It also straightforwardly ex-
tends to the Client-Server k-Spanner problem and the k-Diameter Span-
ning Subgraph problem [16].
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