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Abstract. Given a directed graph G = (V,E) and an integer k ≥ 1,
a Steiner k-transitive-closure-spanner (Steiner k-TC-spanner) of G is a
directed graph H = (VH , EH) such that (1) V ⊆ VH and (2) for all
vertices v, u ∈ V , the distance from v to u in H is at most k if u is
reachable from v in G, and ∞ otherwise. Motivated by applications to
property reconstruction and access control hierarchies, we concentrate on
Steiner TC-spanners of directed acyclic graphs or, equivalently, partially
ordered sets. We study the relationship between the dimension of a poset
and the size, denoted Sk, of its sparsest Steiner k-TC-spanner.

We present a nearly tight lower bound on S2 for d-dimensional di-
rected hypergrids. Our bound is derived from an explicit dual solution to
a linear programming relaxation of the 2-TC-spanner problem. We also
give an efficient construction of Steiner 2-TC-spanners, of size matching
the lower bound, for all low-dimensional posets. Finally, we present a
nearly tight lower bound on Sk for d-dimensional posets.

1 Introduction

Graph spanners were introduced in the context of distributed computing by
Awerbuch [3] and Peleg and Schäffer [12], and since then have found numerous
applications. Our focus is on transitive-closure spanners, introduced explicitly
in [5], but studied prior to that in many different contexts (see references in [5]).

Given a directed graph G = (V,E) and an integer k ≥ 1, a k-transitive-
closure-spanner (k-TC-spanner) of G is a directed graph H = (V,EH) such
that: (1) EH is a subset of the edges in the transitive closure of G; (2) for all
vertices u, v ∈ V , if dG(u, v) < ∞ then dH(u, v) ≤ k and if dG(u, v) = ∞ then
dH(u, v) =∞, where dG(u, v) denotes the distance from u to v in G. That is, a
k-TC-spanner is a graph with a small diameter that preserves the connectivity of
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the original graph. The edges of the transitive closure of G, added to G to obtain
a TC-spanner, are called shortcuts and the parameter k is called the stretch.

TC-spanners have numerous applications, and there has been a lot of work
on finding sparse TC-spanners for specific graph families. See [13] for a survey.
In some applications of TC-spanners, in particular, to access control hierarchies
[2, 8], the shortcuts can use Steiner vertices, that is, vertices not in the original
graph G. The resulting spanner is called a Steiner TC-spanner.

Definition 1.1 (Steiner TC-spanner). Given a directed graph G = (V,E)
and an integer k ≥ 1, a Steiner k-transitive-closure-spanner (Steiner k-
TC-spanner) of G is a directed graph H = (VH , EH) such that: (1) V ⊆ VH ;
(2) for all vertices u, v ∈ V , if dG(u, v) <∞ then dH(u, v) ≤ k and if dG(u, v) =
∞ then dH(u, v) =∞. Vertices in VH\V are called Steiner vertices.

For some graphs, Steiner TC-spanners can be significantly sparser than ordinary
TC-spanners. For example, consider a complete bipartite graph Kn

2 ,
n
2

with n/2
vertices in each part and all edges directed from the first part to the second.
Every ordinary 2-TC-spanner of this graph has Ω(n2) edges. However, Kn

2 ,
n
2

has
a Steiner 2-TC-spanner with n edges: it is enough to add one Steiner vertex v,
edges to v from all nodes in the left part, and edges from v to all nodes in the
right part. Thus, for Kn

2 ,
n
2

there is a factor of Θ(n) gap between the size of the
sparsest Steiner 2-TC-spanner and the size of an ordinary 2-TC-spanner.

We focus on Steiner TC-spanners of directed acyclic graphs (DAGs) or, equiv-
alently, partially ordered sets (posets). They represent the most interesting case
in applications of TC-spanners. In addition, there is a reduction from construct-
ing TC-spanners of graphs with cycles to constructing TC-spanners of DAGs,
with a small loss in stretch ([13], Lemma 3.2), which also applies to Steiner
TC-spanners.

The goal of this work is to understand the minimum number of edges needed
to form a Steiner k-TC-spanner of a given graph G as a function of n, the number
of nodes in G. More specifically, motivated by applications to access control
hierarchies [2, 8] and property reconstruction [4, 11], described in Section 1.2,
we study the relationship between the dimension of a poset and the size of its
sparsest Steiner TC-spanner. The dimension of a poset G is the smallest d such
that G can be embedded into a d-dimensional directed hypergrid via an order-
preserving embedding. (See Definition 2.1). Atallah et al. [2], followed by De
Santis et al. [8], use Steiner TC-spanners in key management schemes for access
control hierarchies. They argue that many access control hierarchies are low-
dimensional posets that come equipped with an embedding demonstrating low
dimensionality. For this reason, we focus on the setting where the dimension d
is small relative to the number of nodes n.

We also study the size of sparsest (Steiner) 2-TC-spanners of specific posets of
dimension d, namely, d-dimensional directed hypergrids. Our lower bound on this
quantity improves the lower bound of [4] and nearly matches their upper bound.
It implies that our construction of Steiner 2-TC-spanners of d-dimensional posets
is optimal up to a constant factor for any constant number of dimensions. It also
has direct implications for property reconstruction.
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1.1 Our Results

Steiner 2-TC-spanners of Directed d-dimensional Grids. The directed
hypergrid, denoted Hm,d, has vertex set5 [m]d and edge set {(x, y) : ∃ unique
i ∈ [d] such that yi−xi = 1 and if j 6= i, yj = xj}. We observe (in Corollary 2.4)
that for the grid Hm,d, Steiner vertices do not help to create sparser k-TC-
spanners. In [4], it was shown that for m ≥ 3, sparsest (ordinary) 2-TC-spanners

of Hm,d have size at most md logdm and at least Ω
(

md logdm
(2d log logm)d−1

)
. They also

give tight upper and lower bounds for the case of constant m and large d. Our
first result is an improvement on the lower bound for the hypergrid for the case
when m is significantly larger than d, i.e., the setting in the above applications.

Theorem 1.1. All (Steiner) 2-TC-spanners of Hm,d have Ω(m
d(lnm−1)d
(4π)d

) edges.

The proof of Theorem 1.1 constructs a dual solution to a linear programming
relaxation of the 2-TC-spanner problem. We consider a linear program (LP) for
the sparsest 2-TC-spanner of Hm,d. Our program is a special case of a more
general LP for the sparsest directed k-spanner of an arbitrary graph G, used in
[5] to obtain an approximation algorithm for that problem. We show that for our
special case the integrality gap of this LP is small and, in particular, does not
depend on n. Specifically, we find a solution to the dual LP by selecting initial
values that have a combinatorial interpretation: they are expressed in terms of
the volume of d-dimensional boxes contained in Hm,d. For example, the dual
variable corresponding to the constraint that enforces the existence of a length-
2 path from u to v in the 2-TC-spanner is initially assigned a value inversely
proportional to the number of nodes on the paths from u to v. The final sum
of the constraints is bounded by an integral which, in turn, is bounded by an
expression depending only on the dimension d.

We note that the best lower bound known previously [4] was proved by a long
and sophisticated combinatorial argument that carefully balanced the number
of edges that stay within different parts of the hypergrid and the number of
edges that cross from one part to another. The recursion in the combinatorial
argument is an inherent limitation of [4], resulting in suboptimal bounds even
for constant d. In contrast, our linear programming argument can be thought of
as assigning types to edges based on the volume of the boxes they define, and
automatically balancing the number of edges of different types by selecting the
correct coefficients for the constraints corresponding to those edges. It achieves
an optimal bound for any constant number of dimensions.

Steiner TC-spanners of General d-dimensional Posets. We continue the
study of the number of edges in a sparsest Steiner k-TC-spanner of a poset
as a function of its dimension, following [2, 8]. We note that the only poset
of dimension 1 is the directed line Hn,1. TC-spanners of directed lines were
discovered under many different guises. (See references in [5].) It was implicitly

5 For a positive integer m, we denote {1, . . . ,m} by [m].



4 P. Berman et al.

Stretch k Prior bounds on Sk(G)

2d− 1 O(n2) [2]

2d− 2 + t ∀t ≥ 2 O(n(logd−1 n)λt(n)) [2]

2d+O(log∗ n) O(n logd−1 n) [2]

3
O(n logd−1 n log logn)

for fixed d [8]

Stretch k Our bounds on Sk(G)

Ω
(
n
(
logn
cd

)d)
2 O(n logd n)

for a fixed c > 0

≥ 3
Ω(n logd(d−1)/ke n)

for fixed d

Table 1. Steiner k-TC-spanner sizes for d-dimensional posets on n vertices for d ≥ 2

shown in [6, 7] that, for constant k, the size of the sparsest k-TC-spanner of Hn,1
is Θ(n · λk(n)), where λk(n) is the kth-row inverse Ackermann function.

Table 1 compares old and new results for d ≥ 2. Sk(G) denotes the number of
edges in the sparsest Steiner k-TC-spanner of G. The upper bounds hold for all
posets of dimension d. The lower bounds mean that there is an infinite family of
d-dimensional posets with sparsest Steiner k-TC-spanners of the specified size.

Atallah et al. constructed Steiner k-TC-spanners with k proportional to d.
De Santis et al. improved their construction for constant d. They achieved
O(3d−tnt logd−1 n log log n) edges for odd stretch k = 2t + 1, where t ∈ [d].
In particular, setting t = 1 gives k = 3 and O(n logd−1 n log log n) edges.

We present the first construction of Steiner 2-TC-spanners for d-dimensional
posets. In our construction, the spanners have O(n logd n) edges, and the length-
2 paths can be found in O(d) time. This result is stated in Theorem 2.2 (in
Section 2). Our construction, like all previous constructions, takes as part of the
input an explicit embedding of the poset into a d-dimensional grid. (Finding such
an embedding is NP-hard [15]. Also, as mentioned previously, in the application
to access control hierarchies, such an embedding is usually given.) The Steiner
vertices used in our construction are necessary to obtain sparse TC-spanners.
An (easy) example that demonstrates this is deferred to the full version.

Theorem 1.1 implies that there is an absolute constant c > 0 for which our
upper bound for k = 2 is tight within an O((cd)d) factor, showing that no drastic
improvement in the upper bound is possible. To obtain a bound in terms of the
number n of vertices and dimension d, substitute md with n and lnm with
(lnn)/d in the theorem statement. This gives the following corollary.

Corollary 1.2 There is an absolute constant c > 0 for which for all d ≥ 2 and
n larger than some constant to the power d, there exists a d-dimensional poset G

on n vertices such that every Steiner 2-TC-spanner of G has Ω
(
n
(
logn
cd

)d)
edges.

In addition, we prove a lower bound for all constant k > 2 and constant
dimension d, which qualitatively matches known upper bounds. It shows that,
in particular, every Steiner 3-TC-spanner has size Ω(n log n), and even with sig-

nificantly larger constant stretch, every Steiner TC-spanner has size n logΩ(d) n.

Theorem 1.3. For all constant d ≥ 2 and sufficiently large n, there exists a
d-dimensional poset G on n vertices such that for all k ≥ 3, every Steiner k-TC-
spanner of G has Ω(n logd(d−1)/ke n) edges.
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This theorem (see Section 4) captures the dependence on d and greatly improves
upon the previous Ω(n log log n) bound, which follows trivially from known lower
bounds for 3-TC-spanners of a directed line.

The lower bound on the size of a Steiner k-TC-spanner for k ≥ 3 is proved
by the probabilistic method. We note that using the hypergrid as an example
of a poset with large Steiner k-TC-spanners for k > 2 would yield a much
weaker lower bound because Hm,d has a 3-TC-spanner of size O((m log logm)d)
and, more generally, a k-TC-spanner of size O((m · λk(m))d), where λk(m) is
the kth-row inverse Ackermann function [4]. Instead, we construct an n-element
poset embedded in Hn,d as follows: all poset elements differ on coordinates in
dimension 1, and for each element, the remaining d − 1 coordinates are chosen
uniformly at random from [n]. We consider a set of partitions of the underlying
hypergrid into d-dimensional boxes, and carefully count the expected number of
edges in a Steiner k-TC-spanner that cross box boundaries for each partition.
We show that each edge is counted only a small number of times, proving that
the expected number of edges in a Steiner k-TC-spanner is large. We conclude
that some poset attains the expected number of edges.

Organization. We explain applications of Steiner TC-spanners in Section 1.2.
Section 2 gives basic definitions and observations. In particular, our construc-
tion of sparse Steiner 2-TC-spanners for d-dimensional posets (the proof of The-
orem 2.2) is presented there. Our lower bounds constitute the main technical
contribution of this paper. The lower bound for the hypergrid for k = 2 (The-
orem 1.1) is proved in Section 3. The lower bound for k > 2 (Theorem 1.3) is
presented in Section 4.

1.2 Applications

Numerous applications of TC-spanners are surveyed in [13]. We focus on two
of them: property reconstruction, described in [4, 11], and key management for
access control hierarchies, described in [2, 5, 8].

Property Reconstruction. A local filter [14] (see also a slightly modified
definition in [4, 11]) reconstructs an arbitrary function f to ensure that the re-
constructed function g has the desired property, changing f only when necessary.
A local filter is given a function f and a query x and, after looking up the value
of f on a small number of points, it has to output g(x) for some function g,
which has the desired property and does not depend on x. If f has the property,
g must be equal to f .

Our results on TC-spanners are relevant to reconstruction of two properties of
functions: monotonicity, studied in [1, 4, 14] and having a low Lipschitz constant,
studied in [11]. In [4], the authors proved that the existence of a local filter for
monotonicity of functions with low lookup complexity implies the existence of
a sparse 2-TC-spanner of Hm,d. In [11], an analogous connection was drawn
between local reconstruction of functions with low Lipschitz constant and 2-TC-
spanners. Our improvement in the lower bound on the size of 2-TC-spanners of
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Hm,d directly translates into an improvement by the same factor in the lower
bounds on lookup complexity of local nonadaptive filters for these two properties,
showing they are nearly optimal for any constant d.

Key Management for Access Control Hierarchies. Atallah et al. [2] used
sparse Steiner TC-spanners to construct efficient key management schemes for
access control hierarchies. An access hierarchy is a partially ordered set G of
access classes. Each user is entitled to access a certain class and all classes
reachable from the corresponding node in G. In the approach from [2, 8] to
enforcing the access hierarchy, a user from a class u can compute cryptographic
keys necessary to access a class v in time proportional to dG(u, v). To speed this
up, Atallah et al. suggest adding edges and nodes to G to increase connectivity.
To preserve the access hierarchy represented by G, the new graph H must be
a Steiner TC-spanner of G. With this modification, the number of edges in H
corresponds to the space complexity of the scheme, while the running time has
two components: the time to find a path of length at most k from u to v in
H and the time to compute the cryptographic keys. The second component is
proportional to the stretch k of H. In our construction of Steiner 2-TC-spanners,
the time to find length-k paths is O(d). For small d, it is likely to be dominated
by the second component which involves a (time-consuming) evaluation of a
cryptographic hash function.

2 Definitions and Observations

For integers j ≥ i, an interval [i, j] refers to the set {i, i+ 1, . . . , j}. Logarithms
are always base 2, except for ln which is the natural logarithm.

Each DAG G = (V,E) is equivalent to a poset with elements V and partial
order �, where x � y if y is reachable from x in G. Elements x and y are
comparable if x � y or y � x, and incomparable otherwise. We write x ≺ y
if x � y and x 6= y. The hypergrid Hm,d with dimension d and side length
m was defined in the beginning of Section 1.1. Equivalently, it is the poset
on elements [m]d with the dominance order, defined as follows: x � y for two
elements x, y ∈ [m]d iff xi ≤ yi for all i ∈ [d].

A mapping f from a poset G to a poset G′ is called an embedding if it respects
the partial order, that is, f(x) �G′ f(y) iff x �G y for all x, y ∈ G.

Definition 2.1 ([10]). Let G be a poset with n elements. The dimension of G
is the smallest integer d such that G can be embedded into the hypergrid Hn,d.

As shown in [9], for any m > 1, the hypergrid Hm,d has dimension exactly d.

Fact 2.1 Each d-dimensional poset G with n elements can be embedded into
a hypergrid Hn,d, so that for all i ∈ [d], the ith coordinates of images of all
elements are distinct. Moreover, such an embedding can be obtained from an
arbitrary embedding of G into Hn,d in time O(dn log n).
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Sparse Steiner 2-TC-spanners for d-dimensional Posets. We give a sim-
ple construction of sparse Steiner 2-TC-spanners for d-dimensional posets. For
constant d, it matches the lower bound from Section 3 up to a constant factor.
Note that the construction itself works for arbitrary, not necessarily constant, d.

Theorem 2.2. Each d-dimensional poset G on n elements has a Steiner 2-TC-
spanner H of size O(n logd n). Given an embedding of G into the hypergrid Hn,d,

H can be constructed in time O(dn logd n). Moreover, for all x, y ∈ G, where
x ≺ y, one can find a path in H from x to y of length at most 2 in time O(d).

Proof. Consider an n-element poset G embedded into the hypergridHn,d. Trans-
form it, so that for all i ∈ [d], the ith coordinates of images of all elements are
distinct. (See Fact 2.1.) In this proof, assume that the hypergrid coordinates
start with 0, i.e., its vertex set is [0, n− 1]d. Let ` = dlog ne and b(t) be the `-bit
binary representation of t, possibly with leading zeros. Let pi(t) denote the i-bit
prefix of b(t) followed by a single 1 and then `−i−1 zeros. Let lcp(t1, t2) = pi(t1),
where i is the length of the longest common prefix of b(t1) and b(t2).

To construct a Steiner 2-TC-spanner (VH , EH) of G, we insert at most
`d edges into EH per each poset element. Consider a poset element with co-
ordinates x = (x1, . . . , xd) in the embedding. For each d-tuple (i1, . . . , id) ∈
[0, ` − 1]d, let p be a hypergrid vertex whose coordinates have binary represen-
tations (pi1(x1), . . . , pid(xd)). If x ≺ p, we add an edge (x, p) to EH ; otherwise,
if p ≺ x we add an edge (p, x) to EH . Note that only edges between comparable
points are added to EH .

Observe that for d > (2 log n)/(log log n), the theorem is trivial since then
n logd n > n3, and the transitive-closure of G has O(n2) edges and can be com-
puted in O(n3) time. For smaller d, dlog ned = O(logd n) and, consequently,
EH contains O(n logd n) edges and can be constructed in O(dn logd n) time, as
described, if bit operations on coordinates can be performed in O(1) time.

For all pairs of poset elements x = (x1, . . . , xd) and y = (y1, . . . , yd), such
that x ≺ y, there is an intermediate point z with coordinates whose binary rep-
resentations are (lcp(x1, y1), . . . , lcp(xd, yd)). By construction, both edges (x, z)
and (z, y) are in EH . Point z can be found in O(d) time, since lcp(xi, yi) can be
computed in O(1) time, assuming O(1) time bit operations on coordinates. ut

Equivalence of Steiner and non-Steiner TC-spanners for Hypergrids.
Our lower bound on the size of 2-TC-spanners for d-dimensional posets of size n
is obtained by proving a lower bound on the size of the Steiner 2-TC-spanner of
Hm,d where m = n1/d. The following lemma, used in Section 4, implies Corol-
lary 2.4 that shows that sparsest Steiner and non-Steiner 2-TC-spanners of Hm,d
have the same size. The proof of the lemma is deferred to the full version.

Lemma 2.3 Let G be a poset on elements V ⊆ [m]d with the dominance order
and H = (VH , EH) be a Steiner k-TC-spanner of G with minimal VH . Then H
can be embedded into Hm,d.

Corollary 2.4 If Hm,d has a Steiner k-TC-spanner H, it also has a k-TC-
spanner with the same number of nodes and at most the same number of edges.
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3 Lower Bound for 2-TC-spanners of the Hypergrid

In this section, we prove Theorem 1.1 that gives a nearly tight lower bound on
the size of (Steiner) 2-TC-spanners of the hypergrids Hm,d. By Corollary 2.4, we
only have to consider non-Steiner TC-spanners.

Proof (of Theorem 1.1). We start by introducing an LP for the sparsest 2-TC-
spanner of an arbitrary graph. Our lower bound on the size of a 2-TC-spanner
of Hm,d is obtained by finding a feasible solution to the dual program, which,
by definition, gives a lower bound on the objective function of the primal.

An Integer LP for Sparsest 2-TC-spanner. For each graph G = (V,E),
we can find the size of a sparsest 2-TC-spanner by solving the following {0,1}-
LP, a special case of an LP from [5] for directed k-spanners. For all vertices
u, v ∈ V satisfying u � v, we introduce variables xuv ∈ {0, 1}. For u 6= v,
they correspond to potential edges in a 2-TC-spanner H of G. For all vertices
u, v, w ∈ V satisfying u � w � v, we introduce auxiliary variables x′uwv ∈ {0, 1},
corresponding to potential paths of length at most 2 in H. The {0,1}-LP is as
follows:

minimize
∑

u,v : u�v

xuv

subject to xuw − x′uwv ≥ 0, xwv − x′uwv ≥ 0 ∀u, v, w : u � w � v;∑
w : u�w�v

x′uwv ≥ 1 ∀u, v : u � v.

Given a solution to the LP, we can construct a 2-TC-spanner H = (V,EH)
of G of size not exceeding the value of the objective function by including (u, v)
in EH iff the corresponding variable xuv = 1 and u 6= v. In the other direction,
given a 2-TC-spanner H = (V,EH) of G, we can find a feasible solution of
the LP with the value of the objective function not exceeding |EH | + |V |. Let
E′H = EH ∪ L, where L is the set of loops (v, v) for all v ∈ V . Then we set
xuv = 1 iff (u, v) ∈ E′H and x′uwv = 1 iff both (u,w) ∈ E′H and (w, v) ∈ E′H .
Therefore, the size of a sparsest 2-TC-spanner of G and the optimal value of
the objective function of the LP differ by at most |V |. They are asymptotically
equivalent because |V | = O(|EH |) for every weakly connected graph G.

A Fractional Relaxation of the Dual LP. Every feasible solution of the
following fractional relaxation of the dual LP gives a lower bound on the optimal
value of the objective function of the primal:

maximize
∑

u,v : u�v

yuv

subject to
∑

w : v�w

y′uvw +
∑

w : w�u

y′′wuv ≤ 1 ∀u, v : u � v; (1)

yuv − y′uwv − y′′uwv ≤ 0 ∀u, v, w : u � w � v; (2)

yuv ≥ 0, y′uwv ≥ 0, y′′uwv ≥ 0 ∀u, v, w : u � w � v.
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Finding a Feasible Solution for the Dual. When the graph G is a hypergrid
Hn,d, we can find a feasible solution of the dual, which gives a lower bound on
the objective function of the primal. To do that, we perform the following three
steps. First, we choose initial values ŷuv for the variables yuv of the dual program
and, in Lemma 3.1, give a lower bound on the resulting value of the objective
function of the primal program. Second, we choose initial values ŷ′uvw and ŷ′′uvw
for variables y′uvw and y′′uvw so that (2) holds. Finally, in Lemma 3.2, we give an
upper bound on the left-hand side of (1) for all u � v. Our bound is a constant
larger than 1 and independent of n. We obtain a feasible solution to the dual by
dividing the initial values of the variables (and, consequently, the value of the
objective function) by this constant.

Step 1. For a vector x = (x1, . . . , xd) ∈ [0,m − 1]d, let the volume V (x)
denote

∏
i∈[d](xi+1). This corresponds to the number of hypergrid points inside

a d-dimensional box with corners u and v, where v− u = x. We start building a
solution to the dual by setting ŷuv = 1

V (v−u) for all u � v. This gives the value

of the objective function of the dual program, according to the following lemma.

Lemma 3.1
∑

u,v : u�v

ŷuv > md(lnm− 1)d.

Proof. Substituting 1/(V (v − u)) for ŷuv, we get:

∑
u,v : u�v

ŷuv =
∑

u,v : u�v

1

V (v − u)
=
∑
l∈[m]d

∏
i∈[d]

m− li + 1

li
=

∑
l∈[m]

m− l + 1

l

d

> ((m+ 1) ln(m+ 1)−m)d > md(lnm− 1)d. ut

Step 2. The values of ŷ′uvw and ŷ′′uvw are set as follows to satisfy (2) tightly
(without any slack):

ŷ′uvw = ŷuw
V (v−u)

V (v−u) + V (w−v)
, ŷ′′uvw = ŷuw−ŷ′uvw = ŷuw

V (w−v)

V (v−u) + V (w−v)
.

Step 3. The initial values ŷ′uvw and ŷ′′uvw do not necessarily satisfy (1). The
following lemma, whose proof is deferred to the full version, gives an upper bound
on the left-hand side of all constraints in (1).

Lemma 3.2 For all u � v,
∑

w : v�w
ŷ′uvw +

∑
w : w�u

ŷ′′wuv ≤ (4π)d.

Finally, we obtain a feasible solution by dividing initial values ŷuv, ŷ
′
uvw and

ŷ′′uvw by the upper bound (4π)d from Lemma 3.2. Then Lemma 3.1 gives the
desired bound on the value of the objective function:

∑
u,v : u�v

ŷuv
(4π)d

> md

(
lnm− 1

4π

)d
.

This concludes the proof of Theorem 1.1. ut
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4 Lower Bound for k-TC-spanners for k > 2

In this section, we prove Theorem 1.3 that gives a lower bound on the size of
Steiner k-TC-spanners of d-dimensional posets for k > 2 and d ≥ 2.

Proof (of Theorem 1.3). Unlike in the previous section, the poset which attains
the lower bound is constructed probabilistically, not explicitly.

We consider n-element posets G embedded in the hypergrid Hn,d, where the
partial order is given by the dominance order x � y on Hn,d. The elements of
G are points p1, p2, . . . , pn ∈ [n]d, where the first coordinate of each pa is a. (By
Fact 2.1, each d-dimensional poset with n elements can be embedded into Hn,d,
so that the first coordinates of all points are distinct.) Let Gd be a distribution
on such posets G, where the last d − 1 coordinates of each point pa are chosen
uniformly and independently from [n].

Recall that Sk(G) denotes the size of the sparsest Steiner k-TC-spanner of
poset G. The following lemma gives a lower bound on the expected size of a
Steiner k-TC-spanner of a poset drawn from Gd.

Lemma 4.1 E
G←Gd

[Sk(G)] = Ω(n logd
d−1
k e n) for all k ≥ 3 and constant d ≥ 2.

In this extended abstract, we only prove the special case of Lemma 4.1 for 2-
dimensional posets (Lemma 4.2). The general case is deferred to the full version.
Since Lemma 4.1 implies the existence of a poset G, for which every Steiner
k-TC-spanner has Ω(n logd(d−1)/ke n) edges, Theorem 1.3 follows. ut

The Case of d = 2. Next we prove a special case of Lemma 4.1 for 2-
dimensional posets, which illustrates many ideas used in the proof of Lemma 4.1.

Lemma 4.2 E
G←G2

[Sk(G)] = Ω(n log n) for all k ≥ 3 and d = 2.

Proof. We can assume that ` = log n is an integer. To analyze the expected
number of edges in a Steiner TC-spanner H of G, we consider ` partitions of
[n]2 into horizontal strips. We call strips boxes for compatibility with the case of
general d.

Definition 4.1 (Box partition). For each i ∈ [`], define sets of equal size that
partition [n] into 2i intervals: the jth such set, for j ∈ [2i], is Iij = [(j−1)2`−i+

1, j2`−i]. Given i ∈ [`], and j ∈ [2i], the box B(i, j) is [n] × Iij and the box

partition BP(i) is a partition of [n]2 that contains boxes B(i, j) for all j ∈ [2i].

For each odd j, we group boxes B(i, j) and B(i, j + 1) into a box-pair. We
call j the index of the box-pair and refer to B(i, j) and B(i, j + 1) as the bottom
and the top box in the box-pair. Recall that a poset G consists of elements
p1, p2, . . . , pn ∈ [n]2, where the first coordinate of each pa is a. We analyze
the expected number of edges in a Steiner TC-spanner H of G that cross from
bottom to top boxes in all box-pairs. To do that, we identify pairs of poset
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elements (pa, pb), called jumps, that force such edges to appear. By Lemma 2.3,
we can assume that all Steiner vertices of H are embedded into Hn,2. Therefore,
if pa is in the bottom box and pb is in the top box of the same box-pair then H
must contain an edge from the bottom to the top box. To ensure that we count
such an edge just once, we consider only pa and pb for which no other point pc
with c ∈ (a, b) is contained in this box pair. Next we define jumps formally. This
concept is also illustrated in Figure 1.

Definition 4.2 (Jumps). Given a poset G, embedded into Hn,2, and an index
i ∈ [`], a jump generated by the box partition BP(i) is a pair (pa, pb) of elements
of G, such that for some odd j ∈ [2i], the following holds: pa ∈ B(i, j), pb ∈
B(i, j + 1), but pc /∈ B(i, j) ∪ B(i, j + 1) for all c ∈ (a, b). The set of jumps
generated by all partitions BP(i) for i ∈ [`] is denoted by J .

B(2,1)

B(2,2)

B(2,3)

B(2,4)

dimension 1

d
im

en
si

o
n

 2

Fig. 1. Box partition BP(2) and
jumps it generates.

Next we establish that the number of
jumps in a poset G is a lower bound on the
number of edges in a Steiner TC-spanner
of G (Claim 4.3) and bound the expected
number of jumps from below (Claim 4.4).

Claim 4.3 Let G be a poset, embedded into
Hn,2, and H = (VH , EH) be a Steiner k-TC-
spanner of G. Then |EH | ≥ |J |.

To prove the claim, we establish an injec-
tive mapping from J to EH . The proof is
deferred to the full version.

Claim 4.4 When a poset G is drawn from
the distribution G2, the expected size of J is at least n(`− 1)/4.

Proof. We first find the expected number of jumps generated by the partition
BP(i) for a specific i. Let λi(pa) be the index j of the box-pair B(i, j)∪B(i, j+1)
that contains pa. Let ρi(pa) be 0 if pa is in the bottom box of that box pair,
and 1 otherwise. One can think of λi(pa) as the location of pa, and of ρi(pa) as
its relative position within a box-pair. Importantly, when G is drawn from G2,
that is, the second coordinates of points pa for all a ∈ [n] are chosen uniformly
and independently from [n], then random variables ρi(pa) are independent and
uniform over {0, 1} for all a ∈ [n].

We group together points pa that have equal values of λi(pa), and sort points
within groups in increasing order of their first coordinate a. Since there are 2i−1

box-pairs, the number of groups is at most 2i−1. Observe that random variables
ρi(pa) within each group are uniform and independent because random variables
λi(pa) and ρi(pa) are independent for all a ∈ [n]. Now, if we list ρi(pa) in
the sorted order for all points in a particular group, we get a sequence of 0s
and 1s. Two consecutive entries correspond to a jump iff they are 01. The last
position in a group cannot correspond to the beginning of a jump. The number
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of positions that can correspond to the beginning of a jump in all groups is
n minus the number of groups, which gives at least n − 2i−1. For each such
position, the probability that it starts a jump (i.e., the probability of 01) is 1/4.
Thus, the expected number of jumps generated by the partition BP(i) is at least
(n− 2i−1)/4.

Summing over all i ∈ [`], we get the expected number of jumps in all parti-

tions: (n`−
∑`
i=1 2i−1)/4 > n(`− 1)/4 = Ω(n log n). ut

Claims 4.3 and 4.4 imply that, for a poset G drawn from G2, the expected
number of edges in a Steiner TC-spanner of G is Ω(n log n), concluding the
proof of Lemma 4.2. ut
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