Список задач 1. Задачи курса.

COMP2 1. Рассмотрим функцию Maj : $\{0,1\}^n \to \{0,1\}$, которая выдает 1, если не менее половины входных битов равны 1. Докажите, что существует:

- (а) схема
- (б) монотонная схема
- (в) монотонная формула полиномиального размера, вычисляющая функцию Maj.

COMP2 2. Докажите, что для любой симметрической булевой функции (симметрическая функция зависит только от числа единиц во входе) существует вычисляющая ее

- (а) схема
- (б) монотонная схема полиномиального размера.

[COMP2 3.] Докажите, что любая формула в КНФ (ДНФ), которая вычисляет функцию

- (a) $x_1 + x_2 + x_3 + \cdots + x_n \mod 2$;
- (б) $Maj(x_1,...,x_n)$ имеет экспоненциальный размер.

[COMP2 4.] Докажите, что существует формула от \land , \lor , \neg размера $O(n^2)$, которая вычисляет функцию $x_1 + x_2 + x_3 + \cdots + x_n \mod 2$.

COMP2 5. Докажите, что функция Мај не может быть вычислена при помощи схем полиномиального размера константной глубины из гейтов \land, \lor, \lnot .

COMP2 6.] Формальной мерой сложности называется отображение $FC: B_n \to \mathbb{N},$ обладающее следующими свойствами:

- $FC(x_i) = 1$;
- $FC(f) = FC(\neg f);$
- $FC(f \vee g) \leq FC(f) + FC(g)$.
- (a) Докажите, что $FC(f \wedge g) \leq FC(f) + FC(g)$;
- (б) Покажите, что L(f) это формальная мера сложности;
- (в) (лемма Патерсона) Докажите, что для любой формальной меры сложности FC выполняется неравенство: $\mathrm{FC}(f) \leq L(f)$.

СОМР2 7. Для множеств $A, B \subseteq \{0,1\}^n$ обозначим через H(A,B) — множество пар соседей $\{(a,b) \in A \times B \mid \rho(a,b) = 1\}$, где ρ — расстояние Хемминга. Определим $K_{AB} = \frac{|H(A,B)|^2}{|A||B|}$ и $K(f) = \max\{K_{AB} \mid A \subseteq f^{-1}(1), B \subseteq f^{-1}(0)\}$. Докажите, что

- (a) K(f) формальная мера сложности;
- (б) (теорема Храпченко) $L(f) \ge K(f)$;
- (B) $K(f) \le n^2$;
- (r) $L(Maj) = \Omega(n^2)$.

COMP2 8. Покажите, что представление $\bigwedge_{i=1}^{n} x_i$ в виде полинома $\mathbb{F}_q[x_1,\ldots,x_n]$ (q — простое число) требуют степень ровно n.

COMP2 9. Докажите, что у любой формулы размера s существует эквивалентная формула глубины $O(\log(s))$.

[COMP2 10.] Какие значения может принимать глубина дерева решений (decision tree) для функции $f: \{0,1\}^n \to \{0,1\}$, где все аргументы не являются фиктивными (т.е. для каждого номера i найдется вход x, что $f(x) \neq f(x^i)$).

COMP2 11. Пусть $n = k^2$. Рассмотрим функцию $f : \{0,1\}^n \to \{0,1\}$, заданную следующим образом: вход разделен на блоки по k битов, функция равно 1 тогда и только тогда, когда существует блок в котором два последовательных бита равны единице, а остальные биты равны нулю. Оцените s(f), bs(f), C(f), D(f).

СОМР2 12. Рассмотрим функцию $f = \bigvee_{i=1}^n x_i$. Докажите, что R(f) = n

СОМР2 13. Докажите, что PCP(0, log(n)) = P.

 $oxed{ extbf{COMP2 14.}}$ Докажите, что если SAT \in $oxed{ extbf{PCP}(o(\log(n)),1)},$ то $oxed{ extbf{P}}=oxed{ extbf{NP}}.$

СОМР2 15. Докажите, что $C(f) = O(\log(C_L(f)))$.

COMP2 16. Каждая функция $f: X \times Y \to Z$ задает раскраску элементов матрицы M[X,Y] в цвета из множества Z. Прямоугольником называется множество $X' \times Y'$, где $X' \subseteq X$ и $Y' \subseteq Y$. Прямоугольник называется одноцветным если все элементы M[X',Y'] покрашены в один цвет. Пусть $\chi(f)$ — минимальное число непересекающихся одноцветных прямоугольников, которыми можно покрыть все элементы M.

- (a) Докажите, что $C_L(f) \ge \chi(f)$.
- (б) Докажите, что $\chi(f) \ge rk(M)$, если Z некоторое поле.
- (в) Докажите, что коммуникационная сложность функции GT : $\{0,1\}^n \times \{0,1\}^n \to \{0,1\}$, которая равна 1 тогда и только тогда, когда x>y (как натуральные числа в двоичной записи), не менее n.

COMP2 17. Пусть у Алисы и Боба есть множества $X, Y \subseteq \{1, \dots, n\}$. Они хотят посчитать функцию MED(X, Y), которая возвращает медиану мультимножества $X \cup Y$. Докажите, что для этого им достаточно: $O(\log^2(n))$ битов коммуникации.

COMP2 18. Игры Карчмера-Вигдерсона. Дана функция $f: \{0,1\}^n \to \{0,1\}$. Алиса получает $x \in f^{-1}(0)$, а Боб получает $y \in f^{-1}(1)$. Им требуется вычислить какую-нибудь координату i, что $x_i \neq y_i$. Данное отношение мы будем обозначать KW_f .

- (a) Докажите, что $C(KW_f) \leq d(f)$ и $C_L(KW_f) \leq L(f)$, где d(f) минимальная глубина формулы, которая вычисляет f в базисе $\{\land, \lor, \neg\}$, а L(f) соответственно число листьев.
- (б) Докажите, что $C(KW_f) \ge d(f)$ и $C_L(KW_f) \ge L(f)$.

COMP2 19. Будем называть алгоритм $S_{\epsilon,\delta}$ усредняющим булевым сэмплером, если он используя r случайных битов, генерирует q запросов длины n к функции $f:\{0,1\}^n \to \{0,1\}$ и возвращает среднее арифметическое полученных значений так, чтобы результат отличался от \bar{f} больше, чем на ϵ с вероятностью меньше, чем δ .

На основе сэмплера $S_{\epsilon,\delta}$ определим функцию Ext : $\{0,1\}^r \times \{0,1\}^{\log(q)} \to \{0,1\}^n$ так, что $\operatorname{Ext}(x,i)$ равняется i-му запросу сэмплера, если он использует строку x вместо случайных битов.

- (a) Докажите, что Ext является $(r \log(\frac{\epsilon}{\delta}), 2\epsilon)$ экстрактором.
- (б) Какой получится экстрактор, если воспользоваться сэмплером Рамануджана, у которого r=n и $q=O(\frac{1}{\epsilon^2\delta})$?

COMP2 20. Пусть M[X, X] - 0/1-матрица, которая содержит перестановочную матрицу размера |X| (т.е. ее перманент над \mathbb{R} не ноль).

- (a) Докажите, что $\chi(M) \cdot T(M) \geq |X|^2$, где T(M) число единиц в матрице.
- (б) Докажите при помощи этой техники, что $L(MOD_2) = \Omega(n^2)$.

COMP2 21. Пусть S_t — биномиальное распределение с t сбалансированными монетами. Докажите, что для любого $\delta < 1$,

$$\sum_{i=0}^{t+\delta\sqrt{t}} |\Pr[S_t = i] - \Pr[S_{t+\delta\sqrt{t}} = i]| \le 20\delta.$$

COMP2 22. Будем говорить, что коммуникационный протокол является протоколом с k раундами, если в этом протоколе количество "переходов хода" межу Алисой и Бобом равно k. Например, если сначала Алиса посылает что-то и после этого Боб знает ответ, то это однораундовый протокол. Обозначим сложность отношения R для протоколов с не более чем k раундами, как $C^{(k)}(R)$.

(а) Докажите, что для любой функции f верно, что $C^{(k)}(f) = O\left(\log\left(L^{(k)}(f)\right)\right)$, где L(f) — число листьев формулы, которая вычисляет f в базисе $\{\land,\lor,\lnot\}$ и эта формула глубины k (арность операций неограничена).

- (б) Пусть $P\subseteq \{0,1\}^n \times \{0,1\}^n \times [n]$ это такое отношение, что $(x,y,i)\in P$ тогда и только тогда, когда $\sum_{i=1}^n x_i\equiv 0\pmod 2, \sum_{i=1}^n y_i\equiv 1\pmod 2$ и $x_i\neq y_i$. Докажите, что $C^{(k)}(f)=\Omega(n^{1/k}).$
- (в) Пусть G это связный граф степени d, а $c:V(G)\to\{0,1\}^n$. Будем называть цейтинской формулой $\mathrm{TS}_{G,c}$ конъюнкцию уравнений $\sum_{u:(v,u)\in E(G)} x_{(u,v)} = c(v)$ для всех $v\in V$ записанную в КНФ.

Докажите, что $\mathrm{TS}_{G,c}$ тогда и только тогда, когда $\sum_{v \in V(G)} c(v) = 1.$

(г) Пусть G — это граф квадратная решетка на n^2 вершинах, а $c:V\to\{0,1\}$ — это такое отображение, что есть только одна вершина v с c(v)=1.

Докажите, что если Search $_{\mathrm{TS}_{G,c}}$ — это такое отношение что Алисе дают значение переменных на нижнем треугольнике, а Бобу на верхнем и им надо найти клоз противоречия, то коммуникационная сложность этой задачи при ограничении, что раундов не больше чем k не меньше чем $\Omega(n^{1/k})$.

СОМР2 23. Пусть $f_1(x_{11},...,x_{1n_1}),...,f_m(x_{m1},...,x_{mn_m})$ — произвольные булевы формулы, зависящие от непересекающегося множества переменных. Докажите, что выполняется неравенство:

$$L(f_1(x_{11},\ldots,x_{1n_1})\oplus\cdots\oplus f_m(x_{m1},\ldots,x_{mn_m}))\geq \frac{1}{2}\sum_i L(f_i),$$

где L(f) — минимальное количество гейтов в формуле $\{\land,\lor,\lnot\}$, вычисляющей f.

COMP2 24. Покажите, что у случайной булевой функции $f: \{0,1\}^n \to \{0,1\}$ с большой вероятностью средняя сложность функции f не менее $2^{\frac{n}{10}}$ при больших n.

COMP2 25. Докажите, что если существует S(n) псевдослучайный генератор, то существует такая функция $f \in E$, что $H_{wrs}(f|_{\{0,1\}^n}) \ge S(n)$.

COMP2 26. Докажите, что если перманент является полной задачей в классе $\sharp \mathbf{P}$ относительно сведений, сохраняющих число решений, то $\mathbf{NP} = \mathbf{RP}$.

[COMP2 27.] Докажите, что любой (n,k) — источник является выпуклой комбинацией плоских (n,k)-источников.

COMP2 28. Пусть $E_1:\{0,1\}^n\to \Sigma^m$ и $E_2:\Sigma\to\{0,1\}^k$ — это два кода с локальными списочными декодерами. Декодер кода E_1 выдает список размера l_1 и обрабатывает $1-\epsilon_1$ ошибок. Декодер для кода E_2 выдает список размера l_2 и обрабатывает $\frac{1}{2}-\epsilon_2$ ошибок. Докажите, что

у каскадного кода $E_1\cdot E_2$ существует локальный списочный декодер, который обрабатывает $\frac{1}{2}-\epsilon_1\epsilon_2l_2$ ошибок и выдает список размера l_1l_2 .

COMP2 29.

- (а) Покажите, что существует полиномиальный от n алгоритм A, который получает вход, распределенный согласно распределению X с $H_{\infty}(X) \geq n^{100}$ и имеет оракульный доступ к функции $f: \{0,1\}^n \to \{0,1\}$, который удовлетворяет следующим свойствам:
 - если $\mathbb{E}[f(U_n)] \geq \frac{2}{3}$, то $\Pr[A^f(1^n, X_n) = 1] \geq 0.99$
 - если $\mathbb{E}[f(U_n)] \leq \frac{1}{3}$, то $\Pr[A^f(1^n, X_n) = 0] \geq 0.99$.

Такой алгоритм будем называть аппроксиматором функции.

- (б) Покажите, что не существует аппроксиматора без доступа к случайным битам.
- (в) Покажите, что если распределение X находится на расстоянии более $\frac{1}{5}$ от каждого распределения Y с $H(Y) \geq \frac{n}{2}$, то не существует аппроксиматора, вход которого распределен согласно X.

СОМР2 30. Докажите, что если существует такая функция $f \in \mathbf{E}$, что $H_{avg}(f)(n) \ge 2^{\epsilon n}$ при всех n, то $\mathbf{MA} = \mathbf{NP}$.

СОМР2 31. Пусть $G: \{0,1\}^* \to \{0,1\}^*$ — это кандидат в S(l)-псевдослучайные генераторы, которому не удается дерандомизовать какой-то конкретный **BPP** алгоритм A в среднем. Иными словами, если $L \in \mathbf{BPP}$ — это токой язык, что $\Pr[A(x) = L(x)] \geq \frac{2}{3}$, верно для всех достаточно большиз n, то с вероятностью как минимум $\frac{1}{n}$ по выбору $x \leftarrow \{0,1\}^n$, $\Pr[A(x,G(U_{l(n)})) = L(x)] \leq \frac{1}{2}$ (выберем l(n) таким, что $S(l(n)) \geq m(n)$, где m(n) обозначает denotes число случайных бит которое использует A на входах длины n).

Докажите, что существует вероятностный полиномиальный алгоритм D такой, что на входе 1^n он выводит схему D_n такую, что с вероятностью как минимум $\frac{1}{2n}$ (по случайным битам D) $|\mathbb{E}[D_n(G(U_{l(n)}))] - \mathbb{E}[D_n(U_{m(n)})]| \geq 0.1$.