Листок 2. Схемная сложность.

[COMP2 6.] Формальной мерой сложности называется отображение $FC: B_n \to \mathbb{N},$ обладающее следующими свойствами:

- $FC(x_i) = 1$;
- $FC(f) = FC(\neg f)$;
- $FC(f \vee g) \leq FC(f) + FC(g)$.
- (a) Докажите, что $FC(f \wedge g) \leq FC(f) + FC(g)$;
- (б) Покажите, что L(f) это формальная мера сложности;
- (в) (лемма Патерсона) Докажите, что для любой формальной меры сложности FC выполняется неравенство: $FC(f) \leq L(f)$.

СОМР2 7. Для множеств $A, B \subseteq \{0,1\}^n$ обозначим через H(A,B) — множество пар соседей $\{(a,b) \in A \times B \mid \rho(a,b) = 1\}$, где ρ — расстояние Хемминга. Определим $K_{AB} = \frac{|H(A,B)|^2}{|A||B|}$ и $K(f) = \max\{K_{AB} \mid A \subseteq f^{-1}(1), B \subseteq f^{-1}(0)\}$. Докажите, что

- (a) K(f) формальная мера сложности;
- (б) (теорема Храпченко) $L(f) \ge K(f)$;
- (B) $K(f) \leq n^2$;
- (r) $L(Maj) = \Omega(n^2)$.

СОМР2 8. Покажите, что представление $\bigwedge_{i=1}^{n} x_i$ в виде полинома $\mathbb{F}_q[x_1,\ldots,x_n]$ (q — простое число) требуют степень ровно n.

COMP2 1. Рассмотрим функцию Мај : $\{0,1\}^n \to \{0,1\}$, которая выдает 1, если не менее половины входных битов равны 1. Докажите, что существует:

- (б) монотонная схема
- (в) монотонная формула полиномиального размера, вычисляющая функцию Маj.

[COMP2 2.] Докажите, что для любой симметрической булевой функции (симметрическая функция зависит только от числа единиц во входе) существует вычисляющая ее

- (а) схема
- (б) монотонная схема полиномиального размера.

СОМР2 3. Докажите, что любая формула в КНФ (ДНФ), которая вычисляет функцию

(б) $Maj(x_1, ..., x_n)$ имеет экспоненциальный размер.

COMP2 5. Докажите, что функция Мај не может быть вычислена при помощи схем полиномиального размера константной глубины из гейтов \wedge, \vee, \neg .