Листок 6. Экстракторы.

В задачах 15-20 C(f) обозначает минимальную глубину коммуникационного протокола, а $C_L(f)$ минимальное число листьев в дереве протокола.

Определение 1 (n,k)-источник — такое распределение на строках $\{0,1\}^n$, что вероятность любого элемента не превосходит 2^{-k} .

(n,k)-источник называется плоским, если вероятность любого элемента либо 0, либо 2^{-k} .

COMP2 27. Докажите, что любой (n,k) — источник является выпуклой комбинацией плоских (n,k)-источников.

COMP2 28. Пусть $E_1: \{0,1\}^n \to \Sigma^m$ и $E_2: \Sigma \to \{0,1\}^k$ — это два кода с локальными списочными декодерами. Декодер кода E_1 выдает список размера l_1 и обрабатывает $1-\epsilon_1$ ошибок. Декодер для кода E_2 выдает список размера l_2 и обрабатывает $\frac{1}{2}-\epsilon_2$ ошибок. Докажите, что у каскадного кода $E_1\cdot E_2$ существует локальный списочный декодер, который обрабатывает $\frac{1}{2}-\epsilon_1\epsilon_2 l_2$ ошибок и выдает список размера $l_1 l_2$.

COMP2 29.

- (а) Покажите, что существует полиномиальный от n алгоритм A, который получает вход, распределенный согласно распределению X с $H_{\infty}(X) \geq n^{100}$ и имеет оракульный доступ к функции $f: \{0,1\}^n \to \{0,1\}$, который удовлетворяет следующим свойствам:
 - если $\mathbb{E}[f(U_n)] \ge \frac{2}{3}$, то $\Pr[A^f(1^n, X_n) = 1] \ge 0.99$
 - если $\mathbb{E}[f(U_n)] \leq \frac{1}{3}$, то $\Pr[A^f(1^n, X_n) = 0] \geq 0.99$.

Такой алгоритм будем называть аппроксиматором функции.

- (б) Покажите, что не существует аппроксиматора без доступа к случайным битам.
- (в) Покажите, что если распределение X находится на расстоянии более $\frac{1}{5}$ от каждого распределения Y с $H(Y) \geq \frac{n}{2}$, то не существует аппроксиматора, вход которого распределен согласно X.

COMP2 1. Рассмотрим функцию Maj : $\{0,1\}^n \to \{0,1\}$, которая выдает 1, если не менее половины входных битов равны 1. Докажите, что существует:

(в) монотонная формула полиномиального размера, вычисляющая функцию Мај.

СОМР2 12. Рассмотрим функцию $f = \bigvee_{i=1}^n x_i$. Докажите, что R(f) = n

СОМР2 14. Докажите, что если SAT \in **PCP** $(o(\log(n)), 1)$, то **P** = **NP**.

СОМР2 18. Игры Карчмера-Вигдерсона. Дана функция $f: \{0,1\}^n \to \{0,1\}$. Алиса получает $x \in f^{-1}(0)$, а Боб получает $y \in f^{-1}(1)$. Им требуется вычислить какую-нибудь координату i, что $x_i \neq y_i$. Данное отношение мы будем обозначать KW_f .

(a) Докажите, что $C(\mathrm{KW}_f) \leq d(f)$ и $C_L(\mathrm{KW}_f) \leq L(f)$, где d(f) — минимальная глубина формулы, которая вычисляет f в базисе $\{\land,\lor,\lnot\}$, а L(f) — соответственно число листьев.

COMP2 19. Будем называть алгоритм $S_{\epsilon,\delta}$ усредняющим булевым сэмплером, если он используя r случайных битов, генерирует q запросов длины n к функции $f:\{0,1\}^n \to \{0,1\}$ и возвращает среднее арифметическое полученных значений так, чтобы результат отличался от \bar{f} больше, чем на ϵ с вероятностью меньше, чем δ .

На основе сэмплера $S_{\epsilon,\delta}$ определим функцию Ext : $\{0,1\}^r \times \{0,1\}^{\log(q)} \to \{0,1\}^n$ так, что $\operatorname{Ext}(x,i)$ равняется i-му запросу сэмплера, если он использует строку x вместо случайных битов.

- (a) Докажите, что Ext является $(r \log(\frac{\epsilon}{\lambda}), 2\epsilon)$ экстрактором.
- (б) Какой получится экстрактор, если воспользоваться сэмплером Рамануджана, у которого r=n и $q=O(\frac{1}{\epsilon^2\delta})$?

COMP2 20. Пусть M[X, X] - 0/1-матрица, которая содержит перестановочную матрицу размера |X| (т.е. ее перманент над \mathbb{R} не ноль).

(б) Докажите при помощи этой техники, что $L(MOD_2) = \Omega(n^2)$.

СОМР2 21. Пусть S_t — биномиальное распределение с t сбалансированными монетами. Докажите, что для любого $\delta < 1$,

$$\sum_{i=0}^{t+\delta\sqrt{t}} |\Pr[S_t = i] - \Pr[S_{t+\delta\sqrt{t}} = i]| \le 20\delta.$$

COMP2 22. Будем говорить, что коммуникационный протокол является протоколом с k раундами, если в этом протоколе количество "переходов хода" межу Алисой и Бобом равно k. Например, если сначала Алиса посылает что-то и после этого Боб знает ответ, то это однораундовый протокол. Обозначим сложность отношения R для протоколов с не более чем k раундами, как $C^{(k)}(R)$.

(a) Докажите, что для любой функции f верно, что $C^{(k)}(f) = O\left(\log\left(L^{(k)}(f)\right)\right)$, где L(f) — число листьев формулы, которая вы-

числяет f в базисе $\{\land,\lor,\lnot\}$ и эта формула глубины k (арность операций неограничена).

- (б) Пусть $P \subseteq \{0,1\}^n \times \{0,1\}^n \times [n]$ это такое отношение, что $(x,y,i) \in P$ тогда и только тогда, когда $\sum_{i=1}^n x_i \equiv 0 \pmod 2$, $\sum_{i=1}^n y_i \equiv 1 \pmod 2$ и $x_i \neq y_i$. Докажите, что $C^{(k)}(f) = \Omega(n^{1/k})$.
- (г) Пусть G это граф квадратная решетка на n^2 вершинах, а $c:V\to \{0,1\}$ это такое отображение, что есть только одна вершина v с c(v)=1.

Докажите, что если Search_{TS_{G,c}} — это такое отношение что Алисе дают значение переменных на нижнем треугольнике, а Бобу на верхнем и им надо найти клоз противоречия, то коммуникационная сложность этой задачи при ограничении, что раундов не больше чем k не меньше чем $\Omega(n^{1/k})$.

СОМР2 23. Пусть $f_1(x_{11},...,x_{1n_1}),...,f_m(x_{m1},...,x_{mn_m})$ — произвольные булевы формулы, зависящие от непересекающегося множества переменных. Докажите, что выполняется неравенство:

$$L(f_1(x_{11},\ldots,x_{1n_1})\oplus\cdots\oplus f_m(x_{m1},\ldots,x_{mn_m}))\geq \frac{1}{2}\sum_i L(f_i),$$

где L(f) — минимальное количество гейтов в формуле $\{\land,\lor,\lnot\}$, вычисляющей f.

COMP2 25. Докажите, что если существует S(n) псевдослучайный генератор, то существует такая функция $f \in E$, что $H_{wrs}(f|_{\{0,1\}^n}) \ge S(n)$.

СОМР2 26. Докажите, что если перманент является полной задачей в классе $\sharp P$ относительно сведений, сохраняющих число решений, то NP=RP.