Heuristic time hierarchies via hierarchies for sampling distributions

Authors:

Dmitry Itsykson, Alexander Knop, Dmitry Sokolov

Institute:

St. Petersburg Department of V.A. Steklov Institute of Mathematics of the Russian Academy of Sciences

First steps

HARTMANIS AND STEARNS, 1965

For any k > 0 we have that

 $\textbf{P} \not\subseteq \textbf{DTime}(\textit{n}^{\textit{k}}).$

COOK, 1973; ZAK, 1983

For any k > 0 hold:

 $\mathsf{NP} \not\subseteq \mathsf{NTime}(n^k)$

First steps

HARTMANIS AND STEARNS, 1965

For any k > 0 we have that

 $\textbf{P} \not\subseteq \textbf{DTime}(\textit{n}^{\textit{k}}).$

COOK, 1973; ZAK, 1983

For any k > 0 holds

 $NP \subseteq NTime(n^k)$.

Probabilistic algorithms

BOUNDED PROBABILISTIC ALGORITHMS

Language $L \in \mathbf{BPTime}(n^k)$ iff there is randomized $O(n^k)$ -time algorithm A such that

$$\forall x \in \{0,1\}^* \Pr[A(x) = L(x)] > \frac{3}{4}.$$

We also denote **BPP** = \bigcup_k **BPTime**(n^k).

OPEN QUESTION

Is it true that for any k > 0 holds that

$$\mathsf{BPP} \not\subseteq \mathsf{BPTime}(n^k)$$

Probabilistic algorithms

BOUNDED PROBABILISTIC ALGORITHMS

Language $L \in \mathbf{BPTime}(n^k)$ iff there is randomized $O(n^k)$ -time algorithm A such that

$$\forall x \in \{0,1\}^* \Pr[A(x) = L(x)] > \frac{3}{4}.$$

We also denote $\mathbf{BPP} = \bigcup_k \mathbf{BPTime}(n^k)$.

OPEN QUESTION

Is it true that for any k > 0 holds that

$$\mathbf{BPP} \not\subseteq \mathbf{BPTime}(n^k)$$
.

Derandomization

FOLKLORE

If there is pseudorandom generator that maps $\log(n)$ bits to $\operatorname{poly}(n)$ then $\operatorname{\mathbf{BPP}} \not\subseteq \operatorname{\mathbf{BPTime}}(n^k).$

ITSYKSON, KNOP, SOKOLOV, 2015

If there is pseudorandom generator that maps n bits to poly(n) then $\mathbf{BPP} \subseteq \mathbf{BPTime}(n^k)$.

Derandomization

FOLKLORE

If there is pseudorandom generator that maps $\log(n)$ bits to poly(n) then **BPP** $\not\subseteq$ **BPTime** (n^k) .

ITSYKSON, KNOP, SOKOLOV, 2015

If there is pseudorandom generator that maps n bits to poly(n) then **BPP** $\not\subseteq$ **BPTime** (n^k) .

Deterministic algorithms

HEURISTIC DETERMINISTIC ALGORITHM

Language $L \in \text{Heur}_{\delta}\mathbf{DTime}(n^k)$ iff there is $O(n^k)$ -time algorithm A such that

$$\forall n \in \mathbb{N} \Pr_{x \in \{0,1\}^n} [A(x) = L(x)] > 1 - \delta.$$

FOLKLORE

For every k > 0 and $\epsilon > 0$ holds that

$$P \not\subseteq \text{Heur}_{1-\epsilon} \mathbf{DTime}(n^k)$$

Deterministic algorithms

HEURISTIC DETERMINISTIC ALGORITHM

Language $L \in \text{Heur}_{\delta}\mathbf{DTime}(n^k)$ iff there is $O(n^k)$ -time algorithm A such that

$$\forall n \in \mathbb{N} \Pr_{\mathbf{x} \in \{0,1\}^n} [A(\mathbf{x}) = L(\mathbf{x})] > 1 - \delta.$$

FOLKLORE

For every k > 0 and $\epsilon > 0$ holds that

$$P \not\subseteq \text{Heur}_{1-\epsilon} \mathbf{DTime}(n^k).$$

Bounded probabilistic algorithms

HEURISTIC BOUNDED PROBABILISTIC ALGORITHMS

Language $L \in \text{Heur}_{\delta}\mathbf{BPTime}(n^k)$ iff there is randomized $O(n^k)$ -time algorithm A such that

$$\forall n \in \mathbb{N} \Pr_{x \in \{0,1\}^n} [\Pr[A(x) = L(x)] > \frac{3}{4}] > 1 - \delta.$$

We also denote $\operatorname{Heur}_{\delta} \mathbf{BPP} = \bigcup_{k} \operatorname{Heur}_{\delta} \mathbf{BPTime}(n^{k})$

FORTNOW AND SANTHANAM, 2004

For each k > 0 there is $\epsilon > 0$ such that

 $\mathsf{Heur}_{\epsilon}\mathsf{BPP} \not\subseteq \mathsf{Heur}_{\epsilon}\mathsf{BPTime}(n^k)$

Bounded probabilistic algorithms

HEURISTIC BOUNDED PROBABILISTIC ALGORITHMS

Language $L \in \mathsf{Heur}_\delta \mathbf{BPTime}(n^k)$ iff there is randomized $O(n^k)$ -time algorithm A such that

$$\forall n \in \mathbb{N} \Pr_{x \in \{0,1\}^n} [\Pr[A(x) = L(x)] > \frac{3}{4}] > 1 - \delta.$$

We also denote $\operatorname{Heur}_{\delta} \mathbf{BPP} = \bigcup_{k} \operatorname{Heur}_{\delta} \mathbf{BPTime}(n^{k})$

FORTNOW AND SANTHANAM, 2004

For each k > 0 there is $\epsilon > 0$ such that

$$\text{Heur}_{\epsilon} \mathbf{BPP} \not\subseteq \text{Heur}_{\epsilon} \mathbf{BPTime}(n^k).$$

Bounded probabilistic algorithms

HEURISTIC BOUNDED PROBABILISTIC ALGORITHMS

Language $L \in \mathsf{Heur}_\delta \mathbf{BPTime}(n^k)$ iff there is randomized $O(n^k)$ -time algorithm A such that

$$\forall n \in \mathbb{N} \Pr_{x \in \{0,1\}^n} [\Pr[A(x) = L(x)] > \frac{3}{4}] > 1 - \delta.$$

We also denote $\operatorname{Heur}_{\delta} \mathbf{BPP} = \bigcup_{k} \operatorname{Heur}_{\delta} \mathbf{BPTime}(n^{k})$

PERVYSHEV, 2006

For each k > 0 and $\epsilon > 0$ holds that

$$\operatorname{Heur}_{\epsilon} \mathbf{BPP} \not\subseteq \operatorname{Heur}_{\frac{1}{2}-\epsilon} \mathbf{BPTime}(n^k).$$

Nondetermenistic algorithms

HEURISTIC NONDETERMENISTIC ALGORITHMS

Language $L \in \text{Heur}_{\delta}\mathbf{NTime}(n^k)$ iff there is nondetermenistic $O(n^k)$ -time algorithm A such that

$$\forall n \in \mathbb{N} \Pr_{x \in \{0,1\}^n} [A(x) = L(x)] > 1 - \delta.$$

PERVYSHEV, 2006

For each k > 0 and $\epsilon > 0$ holds that

$$\mathsf{NP} \not\subseteq \mathsf{Heur}_{\frac{1}{n}-\epsilon} \mathsf{NTime}(n^k)$$

Nondetermenistic algorithms

HEURISTIC NONDETERMENISTIC ALGORITHMS

Language $L \in \text{Heur}_{\delta}\mathbf{NTime}(n^k)$ iff there is nondetermenistic $O(n^k)$ -time algorithm A such that

$$\forall n \in \mathbb{N} \Pr_{\mathbf{x} \in \{0,1\}^n} [A(\mathbf{x}) = L(\mathbf{x})] > 1 - \delta.$$

PERVYSHEV, 2006

For each k > 0 and $\epsilon > 0$ holds that

$$NP \not\subseteq Heur_{\frac{1}{2}-\epsilon}NTime(n^k).$$

State of art for heuristic hierarchies

FOLKLORE

For any k > 0 and $\epsilon > 0$ holds

$$P \not\subseteq \text{Heur}_{1-\epsilon} \mathbf{DTime}(n^k).$$

PERVYSHEV, 2006

For any k > 0 and $\epsilon > 0$ holds

$$\mathsf{Heur}_\epsilon \mathsf{BPP} \not\subseteq \mathsf{Heur}_{\frac{1}{2}-\epsilon} \mathsf{BPTime}(\mathit{n}^k)$$
 and

$$\mathbf{NP} \not\subseteq \mathsf{Heur}_{\frac{1}{2}-\epsilon} \mathbf{NTime}(n^k).$$

Generalized hierarchy

ITSYKSON, KNOP, SOKOLOV, 2015

For any k>0, $\epsilon>0$ and a>1 holds that

$$\mathsf{Heur}_{\epsilon}\mathsf{FBPP} \not\subseteq \mathsf{Heur}_{1-\frac{1}{a}-\epsilon}\mathsf{FBPTime}(n^k).$$

Moreover there is $F: \{0,1\}^n \to \{0,\ldots,b-1\}$ such that $F \in \mathsf{Heur}_{\epsilon}\mathsf{FBPP}$ and $F \not\in \mathsf{Heur}_{1-\frac{1}{2}-\epsilon}\mathsf{FBPTime}(n^k)$.

Generalized hierarchy

ITSYKSON, KNOP, SOKOLOV, 2015

For any k>0, $\epsilon>0$ and a>1 holds that

$$\operatorname{Heur}_{\epsilon} \operatorname{\mathbf{FBPP}} \not\subseteq \operatorname{Heur}_{1-\frac{1}{2}-\epsilon} \operatorname{\mathbf{FBPTime}}(n^k).$$

Moreover there is $F:\{0,1\}^n \to \{0,\dots,b-1\}$ such that $F \in \mathsf{Heur}_\epsilon\mathbf{FBPP}$ and $F \not\in \mathsf{Heur}_{1-\frac{1}{2}-\epsilon}\mathbf{FBPTime}(n^k)$.

Samplable random variables

SAMPLABLE RANDOM VARIABLES

Ensemble of random variables $\gamma \in \mathbf{DSamp}(n^k)$ iff there is a randomized $O(n^k)$ -time algorithm A such that γ_n and $A(1^n)$ are equally distributed. We also denote $\mathbf{PSamp} = \bigcup_k \mathbf{DSamp}(n^k)$.

WATSON. 2014

For any k>0, $\epsilon>0$ and a>1 there is an ensemble of random variables $\gamma\in \mathbf{PSamp}$ such that for every $\beta\in \mathbf{DSamp}(n^k)$ holds $\Delta(\gamma,\delta)>1-\frac{1}{a}-\epsilon$ and $\mathrm{supp}(\gamma)=\{0,\ldots,a-1\}.$

Samplable random variables

SAMPLABLE RANDOM VARIABLES

Ensemble of random variables $\gamma \in \mathbf{DSamp}(n^k)$ iff there is a randomized $O(n^k)$ -time algorithm A such that γ_n and $A(1^n)$ are equally distributed. We also denote $\mathbf{PSamp} = \bigcup_k \mathbf{DSamp}(n^k)$.

WATSON, 2014

For any k>0, $\epsilon>0$ and a>1 there is an ensemble of random variables $\gamma\in \mathbf{PSamp}$ such that for every $\beta\in \mathbf{DSamp}(n^k)$ holds $\Delta(\gamma,\delta)>1-\frac{1}{a}-\epsilon$ and $\mathrm{supp}(\gamma)=\{0,\ldots,a-1\}.$

- Consider the language $L = \{r \mid 0.r > \Pr[\gamma_n = 1]\}.$
- Note that $L \in \text{Heur}_{\epsilon} \mathbf{BPP}$. Consider the following algorithm:
 - ▶ Sample r_1 , ..., r_m from γ_n ;
 - ► Return 1 if $0.r \ge \frac{1}{m} \sum_{i=0}^{m} r_i$;
 - ▶ Return 0 in other case.
- 3 Note that $L \not\in \operatorname{Heur}_{1-\frac{1}{2}-\epsilon} \operatorname{\mathbf{BPTime}}(n^k)$.

Let us assume the opposite that *L* are decidable by algorithm *D* and consider the following algorithm:

- ▶ sample random $r \in \{0,1\}^n$;
- return 1 if D(r) = 1 else return 0.

- Consider the language $L = \{r \mid 0.r > \Pr[\gamma_n = 1]\}.$
- Note that $L \in \text{Heur}_{\epsilon} \mathbf{BPP}$.

Consider the following algorithm:

- ▶ Sample r_1 , ..., r_m from γ_n ;
- ► Return 1 if $0.r \ge \frac{1}{m} \sum_{i=0}^{m} r_{i}$;
- ▶ Return 0 in other case.
- 3 Note that $L \not\in \text{Heur}_{1-\frac{1}{2}-\epsilon} \textbf{BPTime}(n^k)$.

Let us assume the opposite that *L* are decidable by algorithm *D* and consider the following algorithm:

- ▶ sample random $r \in \{0, 1\}^n$
- return 1 if D(r) = 1 else return 0.

- Consider the language $L = \{r \mid 0.r > \Pr[\gamma_n = 1]\}.$
- Note that $L \in \mathsf{Heur}_{\epsilon}\mathbf{BPP}$. Consider the following algorithm:
 - ▶ Sample r_1 , ..., r_m from γ_n ;
 - ► Return 1 if $0.r \ge \frac{1}{m} \sum_{i=0}^{m} r_{ii}$
 - ▶ Return 0 in other case.
- (3) Note that L ∉ Heur_{1-1/3-c}BPTime(n^κ). Let us assume the opposite that L are decidable by algorithm D and consider the following algorithm:
 - ▶ sample random $r \in \{0, 1\}^n$;
 - return 1 if D(r) = 1 else return 0

- Consider the language $L = \{r \mid 0.r > \Pr[\gamma_n = 1]\}.$
- Note that $L \in \text{Heur}_{\epsilon} \mathbf{BPP}$. Consider the following algorithm:
 - ▶ Sample r_1 , ..., r_m from γ_n ;
 - $\blacktriangleright \text{ Return 1 if } 0.r \ge \frac{1}{m} \sum_{i=0}^{m} r_i;$
 - ▶ Return 0 in other case
- (3) Note that L ∉ Heur_{1-1/a-e}BPTime(n^k). Let us assume the opposite that L are decidable by algorithm D and consider the following algorithm:
 - ▶ sample random $r \in \{0, 1\}^n$
 - return 1 if D(r) = 1 else return 0

- Consider the language $L = \{r \mid 0.r > \Pr[\gamma_n = 1]\}.$
- Note that $L \in \text{Heur}_{\epsilon} \mathbf{BPP}$. Consider the following algorithm:
 - ▶ Sample r_1 , ..., r_m from γ_n ;

 - ▶ Return 0 in other case.
- (3) Note that $L \not\in \operatorname{Heur}_{1-\frac{1}{a}-\epsilon} \operatorname{\mathbf{BPTime}}(n^{\kappa})$. Let us assume the opposite that L are decidable by algorithm D and consider the following algorithm:
 - ▶ sample random $r \in \{0, 1\}^n$
 - return 1 if D(r) = 1 else return 0.

- Consider the language $L = \{r \mid 0.r > \Pr[\gamma_n = 1]\}.$
- Note that $L \in \text{Heur}_{\epsilon} \mathbf{BPP}$. Consider the following algorithm:
 - ▶ Sample r_1 , ..., r_m from γ_n ;
 - ► Return 1 if $0.r \ge \frac{1}{m} \sum_{i=0}^{m} r_i$;
 - ► Return 0 in other case.
- (3) Note that $L \not\in \operatorname{Heur}_{1-\frac{1}{a}-\epsilon} \operatorname{\mathbf{BPTime}}(n^{\kappa})$. Let us assume the opposite that L are decidable by algorithm D and consider the following algorithm:
 - ▶ sample random $r \in \{0, 1\}^n$
 - return 1 if D(r) = 1 else return 0.

- Consider the language $L = \{r \mid 0.r > \Pr[\gamma_n = 1]\}.$
- Note that $L \in \mathsf{Heur}_{\epsilon}\mathsf{BPP}$. Consider the following algorithm:
 - ▶ Sample r_1 , ..., r_m from γ_n ;
 - ▶ Return 1 if $0.r \ge \frac{1}{m} \sum_{i=0}^{m} r_i$;
 - ▶ Return 0 in other case.
- Note that $L \not\in \operatorname{Heur}_{1-\frac{1}{a}-\epsilon} \operatorname{\mathbf{BPTime}}(n^k)$.

Let us assume the opposite that *L* are decidable by algorithm *D* and consider the following algorithm:

- ▶ sample random $r \in \{0, 1\}^n$
- return 1 if D(r) = 1 else return 0.

- Consider the language $L = \{r \mid 0.r > \Pr[\gamma_n = 1]\}.$
- Note that $L \in \text{Heur}_{\epsilon} \mathbf{BPP}$. Consider the following algorithm:
 - ▶ Sample r_1 , ..., r_m from γ_n ;
 - $\blacktriangleright \text{ Return 1 if } 0.r \ge \frac{1}{m} \sum_{i=0}^{m} r_i;$
 - ▶ Return 0 in other case.
- Note that $L \not\in \operatorname{Heur}_{1-\frac{1}{a}-\epsilon} \operatorname{\mathbf{BPTime}}(n^k)$. Let us assume the opposite that L are decidable by algorithm D and consider the following algorithm:
 - ▶ sample random $r \in \{0, 1\}^n$;
 - return 1 if D(r) = 1 else return 0

- Consider the language $L = \{r \mid 0.r > \Pr[\gamma_n = 1]\}.$
- Note that $L \in \text{Heur}_{\epsilon} \mathbf{BPP}$. Consider the following algorithm:
 - ▶ Sample r_1 , ..., r_m from γ_n ;
 - $\blacktriangleright \text{ Return 1 if } 0.r \ge \frac{1}{m} \sum_{i=0}^{m} r_i;$
 - ► Return 0 in other case.
- Note that L ∉ Heur_{1-1/a}-eBPTime(n^k). Let us assume the opposite that L are decidable by algorithm D and consider the following algorithm:
 - ▶ sample random $r \in \{0, 1\}^n$;
 - return 1 if D(r) = 1 else return 0.

Open questions

- ▶ Hierarchy theorem for **BPTime** (n^k) or **RTime** (n^k) ;
- Hierarchy theorem for heuristic version of RTime(n^k);
- Prove hierarchy for heuristic version of **BPTime**(n^k) for bigger confidence parameter.

Open questions

- ► Hierarchy theorem for **BPTime** (n^k) or **RTime** (n^k) ;
- ▶ Hierarchy theorem for heuristic version of **RTime** (n^k) ;
- ▶ Prove hierarchy for heuristic version of **BPTime**(n^{κ}) for bigger confidence parameter.

Open questions

- ► Hierarchy theorem for **BPTime** (n^k) or **RTime** (n^k) ;
- ▶ Hierarchy theorem for heuristic version of **RTime** (n^k) ;
- ▶ Prove hierarchy for heuristic version of **BPTime**(n^k) for bigger confidence parameter.