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First steps

HARTMANIS AND STEARNS, 1965

For any k > 0 we have that

P Z DTime(n").
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First steps

HARTMANIS AND STEARNS, 1965

For any k > 0 we have that

P Z DTime(n").

COOK, 1973; ZAK, 1983

For any k > 0 holds
NP Z NTime(n").
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Probabilistic algorithms

BOUNDED PROBABILISTIC ALGORITHMS

Language L € BPTime(n") iff there is randomized O(n*)-time algorithm A
such that 3
Vx € {0,1}* Pr[A(x) = L(x)] > 7
We also denote BPP = | JBPTime(n").
k
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Probabilistic algorithms

BOUNDED PROBABILISTIC ALGORITHMS

Language L € BPTime(n") iff there is randomized O(n*)-time algorithm A

such that 3
Vx € {0,1}* Pr[A(x) = L(x)] > 7
We also denote BPP = | JBPTime(n").
k

OPEN QUESTION

Is it true that for any k > 0 holds that

BPP ¢ BPTime(n").
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Derandomization

FOLKLORE

If there is pseudorandom generator that maps log(n) bits to poly(n) then
BPP ¢ BPTime(n").
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Derandomization

FOLKLORE

If there is pseudorandom generator that maps log(n) bits to poly(n) then
BPP ¢ BPTime(n").

ITSYKSON, KNOP, SOKOLOV, 2015

If there is pseudorandom generator that maps n bits to poly(n) then
BPP ¢ BPTime(n").
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Deterministic algorithms

HEURISTIC DETERMINISTIC ALGORITHM

Language L € Heur;DTime(n") iff there is O(n*)-time algorithm A such that

P A(x) =L 1-9.
Vn e Nxe{oz}"[ (x) (x)] > 0
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Deterministic algorithms

HEURISTIC DETERMINISTIC ALGORITHM

Language L € Heur;DTime(n") iff there is O(n*)-time algorithm A such that

P A(x) =L 1-9.
Vn e Nxe{oz}"[ (x) (x)] > 0

FOLKLORE

For every k> 0 and € > 0 holds that

P ¢ Heur,_.DTime(n").
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Bounded probabilistic algorithms

HEURISTIC BOUNDED PROBABILISTIC ALGORITHMS

Language L € HeursBPTime(n*) iff there is randomized O(n*)-time algorithm
A such that

3
Vn € NXE{I(D)!rl}"[Pr[A(X) = L(x)] > Z] >1-4.

We also denote Heur;BPP = | HeursBPTime(n")
k
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Bounded probabilistic algorithms

HEURISTIC BOUNDED PROBABILISTIC ALGORITHMS

Language L € HeursBPTime(n*) iff there is randomized O(n*)-time algorithm
A such that 3
Vn € NXE{Porl}"[Pr[A(X) = L(x)] > Z] >1-4.

We also denote Heur;BPP = | HeursBPTime(n")
k

FORTNOW AND SANTHANAM, 2004

For each k > 0 there is € > 0 such that

Heur.BPP ¢ Heur BPTime(n").
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Bounded probabilistic algorithms

HEURISTIC BOUNDED PROBABILISTIC ALGORITHMS

Language L € HeursBPTime(n") iff there is randomized O(n*)-time algorithm
A such that 3
Vn € NXG{Porl}n[Pr[A(x) = L(x)] > 1] >1-34.

We also denote HeursBPP = | J HeursBPTime(n")
K

PERVYSHEV, 2006

For each k> 0 and € > 0 holds that

Heur.BPP ¢ Heur%%BPTime(n").
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Nondetermenistic algorithms

HEURISTIC NONDETERMENISTIC ALGORITHMS

Language L € HeursNTime(n") iff there is nondetermenistic O(n*)-time
algorithm A such that

P A =L 1-6.
neN _Pr AR = L(9) >
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Nondetermenistic algorithms

HEURISTIC NONDETERMENISTIC ALGORITHMS

Language L € HeursNTime(n") iff there is nondetermenistic O(n*)-time
algorithm A such that

P A =L 1-6.
neN _Pr AR = L(9) >

PERVYSHEV, 2006

For each k> 0 and € > 0 holds that

NP ¢ Heur%%NTime(nk).
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State of art for heuristic hierarchies

FOLKLORE

For any k> 0 and € > 0 holds

P ¢ Heur,_.DTime(n").

PERVYSHEV, 2006

For any k> 0 and € > 0 holds

Heur.BPP ¢ Heur%,EBPTime(nk) and

NP ¢ HeuréfsNTime(nk)‘
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Generalized hierarchy

ITSYKSON, KNOP, SOKOLOV, 2015

For any k> 0, € > 0 and a > 1 holds that

Heur . FBPP ¢ Heur, . _FBPTime(n").
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Generalized hierarchy

ITSYKSON, KNOP, SOKOLOV, 2015

For any k> 0, € > 0 and a > 1 holds that
Heur . FBPP ¢ Heur, . _FBPTime(n").

Moreover there is F: {0,1}" — {0,...,b— 1} such that F € Heur.FBPP and
F ¢ Heur, 1 _FBPTime(n").
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Samplable random variables

SAMPLABLE RANDOM VARIABLES

Ensemble of random variables v € DSamp(n*) iff there is a randomized
O(n*)-time algorithm A such that -, and A(1") are equally distributed.
We also denote PSamp = | JDSamp(n").

K
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Samplable random variables

SAMPLABLE RANDOM VARIABLES

Ensemble of random variables v € DSamp(n*) iff there is a randomized
O(n*)-time algorithm A such that -, and A(1") are equally distributed.
We also denote PSamp = | JDSamp(n").

K

WATSON, 2014

For any k> 0, € > 0 and a > 1 there is an ensemble of random variables
v € PSamp such that for every 3 € DSamp(n*) holds A(v,6) >1— 21 —¢
and supp(v) ={0,...,a—1}.
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Proof for a =2

(1) Consider the language L = {r| 0.r > Pr[y, = 1]}.
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Proof for a =2

(1) Consider the language L = {r| 0.r > Pr[y, = 1]}.
@ Note that L € Heur.BPP.
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Proof for a =2

(1) Consider the language L = {r| 0.r > Pr[y, = 1]}.

@ Note that L € Heur.BPP.
Consider the following algorithm:
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Proof for a =2

(1) Consider the language L = {r| 0.r > Pr[y, = 1]}.

@ Note that L € Heur.BPP.
Consider the following algorithm:

» Sample ry, .., ry from ,;
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Proof for a =2

(1) Consider the language L = {r| 0.r > Pr[y, = 1]}.

@ Note that L € Heur.BPP.
Consider the following algorithm:

» Sample ry, .., ry from ,;
m

» Return 1 if 0.r > # Z%)r,-;
=

OUR HEURISTIC-CASE RESULTS | Dmitry Itsykson, Alexander Knop, Dmitry Sokolov



Proof for a =2

(1) Consider the language L = {r| 0.r > Pr[y, = 1]}.

@ Note that L € Heur.BPP.
Consider the following algorithm:

» Sample ry, .., ry from ,;
m

» Return 1 if 0.r > # S
i=0

» Return 0 in other case.
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Proof for a =2

(1) Consider the language L = {r| 0.r > Pr[y, = 1]}.

@ Note that L € Heur.BPP.
Consider the following algorithm:

» Sample ry, .., ry from ,;
m

» Return 1 if 0.r > # S
i=0

» Return 0 in other case.

(3) Note that L ¢ Heur, 1 BPTime(n").

a
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Proof for a =2

(1) Consider the language L = {r| 0.r > Pr[y, = 1]}.
() Note that L € Heur.BPP.
Consider the following algorithm:
» Sample ry, .., ry from ,;

» Return 1 if 0.r > # S
i=0
» Return 0 in other case.

(3) Note that L ¢ Heur, 1 BPTime(n").
Let us assume the opposite that L are decidable by algorithm
D and consider the following algorithm:

» sample random r e {0,1}";
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Proof for a =2

(1) Consider the language L = {r| 0.r > Pr[y, = 1]}.
() Note that L € Heur.BPP.
Consider the following algorithm:
» Sample ry, .., ry from ,;

» Return 1 if 0.r > # S
i=0
» Return 0 in other case.

(3) Note that L ¢ Heur, 1 BPTime(n").
Let us assume the opposite that L are decidable by algorithm
D and consider the following algorithm:

» sample random r e {0,1}";
» return 1 if D(r) = 1 else return 0.
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Open questions

» Hierarchy theorem for BPTime(n*) or RTime(n);
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» Hierarchy theorem for BPTime(n*) or RTime(n);

» Hierarchy theorem for heuristic version of RTime(n*);
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Open questions

)i

(n);

» Prove hierarchy for heuristic version of BPTime(n*) for bigger
confidence parameter.

» Hierarchy theorem for BPTime(n*) or RTime(n*

» Hierarchy theorem for heuristic version of RTime
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