Formula Complexity Minicourse: Superpolynomial Lower Bound for Monotone Formulas

A. S. Kulikov

http://logic.pdmi.ras.ru/~kulikov/
Remind that a **formula over** U_2 (also called DeMorgan formula) is a circuit over $\{\lor, \land, \neg\}$ whose underlying graph is a tree. Such formulas can be defined inductively as follows:

1. every Boolean variable x_i and its negation $\overline{x_i}$ is a formula of size 1 (these formulas also called leaves);
2. if F_1 and F_2 are formulas of size l_1 and l_2, then both $F_1 \lor F_2$ and $F_1 \land F_2$ are formulas of size $l_1 + l_2$.

For a function $f \in B_n$, by $L_{U_2}(f)$ we denote the size of the minimal formula over U_2 computing f.
Remind that a **formula over** U_2 (also called DeMorgan formula) is a circuit over $\{\lor, \land, \neg\}$ whose underlying graph is a tree. Such formulas can be defined inductively as follows:

1. every Boolean variable x_i and its negation $\overline{x_i}$ is a formula of size 1 (these formulas also called leaves);
2. if F_1 and F_2 are formulas of size l_1 and l_2, then both $F_1 \lor F_2$ and $F_1 \land F_2$ are formulas of size $l_1 + l_2$.

For a function $f \in B_n$, by $L_{U_2}(f)$ we denote the size of the minimal formula over U_2 computing f.
Remind that a formula over U_2 (also called DeMorgan formula) is a circuit over \{\lor, \land, \lnot\} whose underlying graph is a tree. Such formulas can be defined inductively as follows:

1. every Boolean variable x_i and its negation $\overline{x_i}$ is a formula of size 1 (these formulas also called leaves);

2. if F_1 and F_2 are formulas of size l_1 and l_2, then both $F_1 \lor F_2$ and $F_1 \land F_2$ are formulas of size $l_1 + l_2$.

For a function $f \in B_n$, by $L_{U_2}(f)$ we denote the size of the minimal formula over U_2 computing f.
Remind that a formula over U_2 (also called DeMorgan formula) is a circuit over $\{\lor, \land, \neg\}$ whose underlying graph is a tree. Such formulas can be defined inductively as follows:

1. every Boolean variable x_i and its negation $\overline{x_i}$ is a formula of size 1 (these formulas also called leaves);
2. if F_1 and F_2 are formulas of size l_1 and l_2, then both $F_1 \lor F_2$ and $F_1 \land F_2$ are formulas of size $l_1 + l_2$.

For a function $f \in B_n$, by $L_{U_2}(f)$ we denote the size of the minimal formula over U_2 computing f.

Remind that a formula over U_2 (also called DeMorgan formula) is a circuit over $\{\lor, \land, \neg\}$ whose underlying graph is a tree. Such formulas can be defined inductively as follows:

1. every Boolean variable x_i and its negation $\overline{x_i}$ is a formula of size 1 (these formulas also called leaves);

2. if F_1 and F_2 are formulas of size l_1 and l_2, then both $F_1 \lor F_2$ and $F_1 \land F_2$ are formulas of size $l_1 + l_2$.

For a function $f \in B_n$, by $L_{U_2}(f)$ we denote the size of the minimal formula over U_2 computing f.
Let A and B be two disjoint subsets of $\{0, 1\}^n$. A Boolean formula F separates A and B if $F(a) = 1$ for all $a \in A$ and $F(b) = 0$ for all $b \in B$.

A monochromatic rectangle is a subset $R' = A' \times B'$ of $A \times B$ such that A' and B' are separated by a variable x_i or its negation $\overline{x_i}$, that is, there must be a coordinate $i \in \{1, \ldots, n\}$ such that $a_i \neq b_i$ for all vectors $a \in A'$ and $b \in B'$.

If we have a stronger condition that $a_i = 1$ and $b_i = 0$ for all $a \in A'$ and $b \in B'$ (i.e., we do not allow negations $\overline{x_i}$), then the rectangle is monotone.
Let A and B be two disjoint subsets of \(\{0, 1\}^n \). A Boolean formula \(F \) separates A and B if \(F(a) = 1 \) for all \(a \in A \) and \(F(b) = 0 \) for all \(b \in B \).

A monochromatic rectangle is a subset \(R' = A' \times B' \) of \(A \times B \) such that \(A' \) and \(B' \) are separated by a variable \(x_i \) or its negation \(\overline{x_i} \), that is, there must be a coordinate \(i \in \{1, \ldots, n\} \) such that \(a_i \neq b_i \) for all vectors \(a \in A' \) and \(b \in B' \).

If we have a stronger condition that \(a_i = 1 \) and \(b_i = 0 \) for all \(a \in A' \) and \(b \in B' \) (i.e., we do not allow negations \(\overline{x_i} \)), then the rectangle is monotone.
Reduction To Set-Covering

- Let A and B be two disjoint subsets of $\{0, 1\}^n$. A Boolean formula F separates A and B if $F(a) = 1$ for all $a \in A$ and $F(b) = 0$ for all $b \in B$.

- A monochromatic rectangle is a subset $R' = A' \times B'$ of $A \times B$ such that A' and B' are separated by a variable x_i or its negation $\overline{x_i}$, that is, there must be a coordinate $i \in \{1, \ldots, n\}$ such that $a_i \neq b_i$ for all vectors $a \in A'$ and $b \in B'$.

- If we have a stronger condition that $a_i = 1$ and $b_i = 0$ for all $a \in A'$ and $b \in B'$ (i.e., we do not allow negations $\overline{x_i}$), then the rectangle is monotone.
Reduction To Set-Covering

- Let A and B be two disjoint subsets of $\{0, 1\}^n$. A Boolean formula F separates A and B if $F(a) = 1$ for all $a \in A$ and $F(b) = 0$ for all $b \in B$.

- A monochromatic rectangle is a subset $R' = A' \times B'$ of $A \times B$ such that A' and B' are separated by a variable x_i or its negation $\overline{x_i}$, that is, there must be a coordinate $i \in \{1, \ldots, n\}$ such that $a_i \neq b_i$ for all vectors $a \in A'$ and $b \in B'$.

- If we have a stronger condition that $a_i = 1$ and $b_i = 0$ for all $a \in A'$ and $b \in B'$ (i.e., we do not allow negations $\overline{x_i}$), then the rectangle is monotone.
Covering by Rectangles

Lemma

If A and B can be separated by a (monotone) DeMorgan formula of size t then the set $A \times B$ can be covered by t mutually disjoint (monotone) rectangles.

Remark

- It was Khrapchenko (1971), who first used (implicitly) this lemma.
- Then it was explicitly stated by Ryckkov (1985).
- Then it was proved by Karchmer and Wigderson and independently by Razborov (1988) by establishing a connection between a formula size and a communication complexity of a certain communication game (and then using a well-known fact that communication complexity can be lowerbounded by a number of monochromatic rectangles needed to cover a matrix).
Covering by Rectangles

Lemma

If A and B can be separated by a (monotone) DeMorgan formula of size t then the set $A \times B$ can be covered by t mutually disjoint (monotone) rectangles.

Remark

- It was Khrapchenko (1971), who first used (implicitly) this lemma.
- Then it was explicitly stated by Ryckkov (1985).
- Then it was proved by Karchmer and Wigderson and independently by Razborov (1988) by establishing a connection between a formula size and a communication complexity of a certain communication game (and then using a well-known fact that communication complexity can be lowerbounded by a number of monochromatic rectangles needed to cover a matrix).
Covering by Rectangles

Lemma

If A and B can be separated by a (monotone) DeMorgan formula of size t then the set $A \times B$ can be covered by t mutually disjoint (monotone) rectangles.

Remark

- It was Khrapchenko (1971), who first used (implicitly) this lemma.
- Then it was explicitly stated by Ryckkov (1985).
- Then it was proved by Karchmer and Wigderson and independently by Razborov (1988) by establishing a connection between a formula size and a communication complexity of a certain communication game (and then using a well-known fact that communication complexity can be lowerbounded by a number of monochromatic rectangles needed to cover a matrix).
Covering by Rectangles

Lemma

If A and B can be separated by a (monotone) DeMorgan formula of size t then the set $A \times B$ can be covered by t mutually disjoint (monotone) rectangles.

Remark

- It was Khrapchenko (1971), who first used (implicitly) this lemma.
- Then it was explicitly stated by Ryckkov (1985).
- Then it was proved by Karchmer and Wigderson and independently by Razborov (1988) by establishing a connection between a formula size and a communication complexity of a certain communication game (and then using a well-known fact that communication complexity can be lowerbounded by a number of monochromatic rectangles needed to cover a matrix).
Covering by Rectangles

Lemma

If A and B can be separated by a (monotone) DeMorgan formula of size t then the set $A \times B$ can be covered by t mutually disjoint (monotone) rectangles.

Remark

- It was Khrapchenko (1971), who first used (implicitly) this lemma.
- Then it was explicitly stated by Ryckkov (1985).
- Then it was proved by Karchmer and Wigderson and independently by Razborov (1988) by establishing a connection between a formula size and a communication complexity of a certain communication game (and then using a well-known fact that communication complexity can be lowerbounded by a number of monochromatic rectangles needed to cover a matrix).
Example: Khrapchenko’s Bound

Theorem (Khrapchenko, 1971)

Let F be a formula separating A and B. Then F has size at least

$$\frac{|N(A, B)|^2}{|A| \cdot |B|},$$

where $N(A, B)$ is the set of all pairs $(a, b) \in A \times B$ such that $d(a, b) = 1$ (in this case we also say that a and b are neighbors).

Remark

- Intuitively, if $N(A, B)$ is large, then every formula separating A and B must be large, since the formula must distinguish many pairs of “very similar” inputs.
- $L_{U_2}(x_1 \oplus \cdots \oplus x_n) = \Omega(n^2)$.
- Khrapchenko’s theorem is not able to provide stronger than $\Omega(n^2)$ bounds.
Example: Khrpachenko’s Bound

Theorem (Khrapchenko, 1971)

Let F be a formula separating A and B. Then F has size at least

$$\frac{|N(A, B)|^2}{|A| \cdot |B|},$$

where $N(A, B)$ is the set of all pairs $(a, b) \in A \times B$ such that $d(a, b) = 1$ (in this case we also say that a and b are neighbors).

Remark

- Intuitively, if $N(A, B)$ is large, then every formula separating A and B must be large, since the formula must distinguish many pairs of “very similar” inputs.
- $L_{U_2}(x_1 \oplus \cdots \oplus x_n) = \Omega(n^2)$.
- Khrapchenko’s theorem is not able to provide stronger than $\Omega(n^2)$ bounds.
Example: Khrpachenko’s Bound

Theorem (Khrapchenko, 1971)

Let F be a formula separating A and B. Then F has size at least

$$\frac{|N(A, B)|^2}{|A| \cdot |B|},$$

where $N(A, B)$ is the set of all pairs $(a, b) \in A \times B$ such that $d(a, b) = 1$ (in this case we also say that a and b are neighbors).

Remark

- Intuitively, if $N(A, B)$ is large, then every formula separating A and B must be large, since the formula must distinguish many pairs of “very similar” inputs.
- $L_{U_2}(x_1 \oplus \cdots \oplus x_n) = \Omega(n^2)$.
- Khrapchenko’s theorem is not able to provide stronger than $\Omega(n^2)$ bounds.
Example: Khrapchenko’s Bound

Theorem (Khrapchenko, 1971)

Let F be a formula separating A and B. Then F has size at least

$$\frac{|N(A, B)|^2}{|A| \cdot |B|},$$

where $N(A, B)$ is the set of all pairs $(a, b) \in A \times B$ such that $d(a, b) = 1$ (in this case we also say that a and b are neighbors).

Remark

- Intuitively, if $N(A, B)$ is large, then every formula separating A and B must be large, since the formula must distinguish many pairs of “very similar” inputs.
- $L_{U_2}(x_1 \oplus \cdots \oplus x_n) = \Omega(n^2)$.
- Khrapchenko’s theorem is not able to provide stronger than $\Omega(n^2)$ bounds.
Example: Khrpachenko’s Bound

Theorem (Khrapchenko, 1971)

Let F be a formula separating A and B. Then F has size at least

$$\frac{|N(A, B)|^2}{|A| \cdot |B|},$$

where $N(A, B)$ is the set of all pairs $(a, b) \in A \times B$ such that $d(a, b) = 1$ (in this case we also say that a and b are neighbors).

Remark

- Intuitively, if $N(A, B)$ is large, then every formula separating A and B must be large, since the formula must distinguish many pairs of “very similar” inputs.
- $L_{U_2}(x_1 \oplus \cdots \oplus x_n) = \Omega(n^2)$.
- Khrapchenko’s theorem is not able to provide stronger than $\Omega(n^2)$ bounds.
Canonical Covering

- Every set \mathcal{R} of rectangles, whose union gives the whole set $A \times B$, is its cover.
- The canonical monotone cover $\mathcal{R}_{\text{mon}}(A, B)$ consists of n rectangles R_1, \ldots, R_n, where

$$R_i = \{a \in A | a_i = 1\} \times \{b \in B | b_i = 0\}.$$

- By a matrix over A, B we mean a matrix M over a field \mathbb{F} whose rows are indexed by elements of the set A and columns by elements of the set B.
- Given a rectangle $R \subseteq A \times B$, we denote by M_R the corresponding submatrix of M.
- By \hat{M}_R we denote the matrix (over A, B) which is obtained from the matrix M by changing all its entries $m_{u,v}$ with $(u, v) \not\in R$, to 0.
Canonical Covering

- Every set \mathcal{R} of rectangles, whose union gives the whole set $A \times B$, is its cover.

- The canonical monotone cover $\mathcal{R}_{\text{mon}}(A, B)$ consists of n rectangles R_1, \ldots, R_n, where

$$R_i = \{ a \in A | a_i = 1 \} \times \{ b \in B | b_i = 0 \}.$$

- By a matrix over A, B we mean a matrix M over a field \mathbb{F} whose rows are indexed by elements of the set A and columns by elements of the set B.

- Given a rectangle $R \subseteq A \times B$, we denote by M_R the corresponding submatrix of M.

- By \hat{M}_R we denote the matrix (over A, B) which is obtained from the matrix M by changing all its entries $m_{u,v}$ with $(u, v) \not\in R$, to 0.
Canonical Covering

- Every set \mathcal{R} of rectangles, whose union gives the whole set $A \times B$, is its cover.
- The canonical monotone cover $\mathcal{R}_{\text{mon}}(A, B)$ consists of n rectangles R_1, \ldots, R_n, where

$$R_i = \{a \in A | a_i = 1\} \times \{b \in B | b_i = 0\}.$$

- By a matrix over A, B we mean a matrix M over a field \mathbb{F} whose rows are indexed by elements of the set A and columns by elements of the set B.
- Given a rectangle $R \subseteq A \times B$, we denote by M_R the corresponding submatrix of M.
- By \hat{M}_R we denote the matrix (over A, B) which is obtained from the matrix M by changing all its entries $m_{u,v}$ with $(u, v) \not\in R$, to 0.
Canonical Covering

- Every set \mathcal{R} of rectangles, whose union gives the whole set $A \times B$, is its cover.

- The canonical monotone cover $\mathcal{R}_{\text{mon}}(A, B)$ consists of n rectangles R_1, \ldots, R_n, where

$$R_i = \{a \in A | a_i = 1\} \times \{b \in B | b_i = 0\}.$$

- By a matrix over A, B we mean a matrix M over a field \mathbb{F} whose rows are indexed by elements of the set A and columns by elements of the set B.

- Given a rectangle $R \subseteq A \times B$, we denote by M_R the corresponding submatrix of M.

- By \hat{M}_R we denote the matrix (over A, B) which is obtained from the matrix M by changing all its entries $m_{u,v}$ with $(u, v) \notin R$, to 0.
Canonical Covering

- Every set \mathcal{R} of rectangles, whose union gives the whole set $A \times B$, is its cover.

- The canonical monotone cover $\mathcal{R}_{\text{mon}}(A, B)$ consists of n rectangles R_1, \ldots, R_n, where

$$R_i = \{ a \in A | a_i = 1 \} \times \{ b \in B | b_i = 0 \}.$$

- By a matrix over A, B we mean a matrix M over a field \mathbb{F} whose rows are indexed by elements of the set A and columns by elements of the set B.

- Given a rectangle $R \subseteq A \times B$, we denote by M_R the corresponding submatrix of M.

- By \hat{M}_R we denote the matrix (over A, B) which is obtained from the matrix M by changing all its entries $m_{u,v}$ with $(u, v) \notin R$, to 0.
Canonical Covering

- Every set \mathcal{R} of rectangles, whose union gives the whole set $A \times B$, is its cover.
- The canonical monotone cover $\mathcal{R}_{\text{mon}}(A, B)$ consists of n rectangles R_1, \ldots, R_n, where

$$R_i = \{ a \in A | a_i = 1 \} \times \{ b \in B | b_i = 0 \}.$$

- By a matrix over A, B we mean a matrix M over a field \mathbb{F} whose rows are indexed by elements of the set A and columns by elements of the set B.
- Given a rectangle $R \subseteq A \times B$, we denote by M_R the corresponding submatrix of M.
- By \hat{M}_R we denote the matrix (over A, B) which is obtained from the matrix M by changing all its entries $m_{u,v}$ with $(u, v) \notin R$, to 0.
Lower Bound for Monotone Formula Size

Theorem (Razborov, 1990)

For any $A, B \subseteq \{0, 1\}^n$ and a monotone Boolean function f such that $f(A) = 1$, $f(B) = 0$ and any non-zero matrix M over A, B (over an arbitrary field \mathbb{F}), we have

$$L_M(f) \geq \frac{\text{rk}(M)}{\max_R \text{rk}(M_r)},$$

where the maximum is over all rectangles $R \in \mathcal{R}_{\text{mon}}(A, B)$.
Proof

- let \(t = L_M(f) \)
- by Rychkov’s lemma we know that there exists a set \(\mathcal{R} \) of \(|\mathcal{R}| \leq t \) mutually disjoint monotone monochromatic rectangles which cover the set \(A \times B \)
- then \(M = \sum_{R \in \mathcal{R}} \hat{M}_R \) and hence

\[
\text{rk}(M) = \text{rk} \left(\sum_{R \in \mathcal{R}} \hat{M}_R \right) \leq \sum_{R \in \mathcal{R}} \text{rk} \left(\hat{M}_R \right)
\]

- on the other hand, for every \(R \in \mathcal{R} \) there is a rectangle \(R' \in \mathcal{R}_{\text{mon}}(A, B) \) such that \(R \subseteq R' \)
- therefore, \(\text{rk}(M_R) = \text{rk} \left(\hat{M}_R \right) \leq \text{rk} \left(\hat{M}_{R'} \right) \), and

\[
\text{rk}(M) \leq |\mathcal{R}| \cdot \max_{R' \in \mathcal{R}_{\text{mon}}} \text{rk} \left(\hat{M}_{R'} \right)
\]
Proof

- let $t = L_M(f)$
 - by Rychkov’s lemma we know that there exists a set \mathcal{R} of $|\mathcal{R}| \leq t$ mutually disjoint monotone monochromatic rectangles which cover the set $A \times B$
 - then $M = \sum_{R \in \mathcal{R}} \hat{M}_R$ and hence
 \[
 \text{rk}(M) = \text{rk} \left(\sum_{R \in \mathcal{R}} \hat{M}_R \right) \leq \sum_{R \in \mathcal{R}} \text{rk} \left(\hat{M}_R \right)
 \]

- on the other hand, for every $R \in \mathcal{R}$ there is a rectangle $R' \in \mathcal{R}_{\text{mon}}(A, B)$ such that $R \subseteq R'$
- therefore, $\text{rk}(M_R) = \text{rk} \left(\hat{M}_R \right) \leq \text{rk} \left(\hat{M}_{R'} \right)$, and
 \[
 \text{rk}(M) \leq |\mathcal{R}| \cdot \max_{R' \in \mathcal{R}_{\text{mon}}} \text{rk} \left(\hat{M}_{R'} \right)
 \]
Proof

- let $t = L_M(f)$
- by Rychkov’s lemma we know that there exists a set \mathcal{R} of $|\mathcal{R}| \leq t$ mutually disjoint monotone monochromatic rectangles which cover the set $A \times B$

then $M = \sum_{R \in \mathcal{R}} \hat{M}_R$ and hence

$$\text{rk}(M) = \text{rk} \left(\sum_{R \in \mathcal{R}} \hat{M}_R \right) \leq \sum_{R \in \mathcal{R}} \text{rk} \left(\hat{M}_R \right)$$

- on the other hand, for every $R \in \mathcal{R}$ there is a rectangle $R' \in \mathcal{R}_{\text{mon}}(A, B)$ such that $R \subseteq R'$

therefore, $\text{rk} \left(M_R \right) = \text{rk} \left(\hat{M}_R \right) \leq \text{rk} \left(\hat{M}_{R'} \right)$, and

$$\text{rk}(M) \leq |\mathcal{R}| \cdot \max_{R' \in \mathcal{R}_{\text{mon}}} \text{rk} \left(\hat{M}_{R'} \right)$$
Proof

- let $t = L_M(f)$
- by Rychkov’s lemma we know that there exists a set \mathcal{R} of $|\mathcal{R}| \leq t$ mutually disjoint monotone monochromatic rectangles which cover the set $A \times B$
- then $M = \sum_{R \in \mathcal{R}} \hat{M}_R$ and hence

$$\text{rk}(M) = \text{rk} \left(\sum_{R \in \mathcal{R}} \hat{M}_R \right) \leq \sum_{R \in \mathcal{R}} \text{rk} \left(\hat{M}_R \right)$$

- on the other hand, for every $R \in \mathcal{R}$ there is a rectangle $R' \in \mathcal{R}_{\text{mon}}(A, B)$ such that $R \subseteq R'$
- therefore, $\text{rk}(M_R) = \text{rk}(\hat{M}_R) \leq \text{rk}(\hat{M}_{R'})$, and

$$\text{rk}(M) \leq |\mathcal{R}| \cdot \max_{R' \in \mathcal{R}_{\text{mon}}} \text{rk}(\hat{M}_{R'})$$
Proof

- let \(t = L_M(f) \)
- by Rychkov’s lemma we know that there exists a set \(\mathcal{R} \) of \(|\mathcal{R}| \leq t \) mutually disjoint monotone monochromatic rectangles which cover the set \(A \times B \)
- then \(M = \sum_{R \in \mathcal{R}} \hat{M}_R \) and hence

\[
\text{rk}(M) = \text{rk} \left(\sum_{R \in \mathcal{R}} \hat{M}_R \right) \leq \sum_{R \in \mathcal{R}} \text{rk} \left(\hat{M}_R \right)
\]

- on the other hand, for every \(R \in \mathcal{R} \) there is a rectangle \(R' \in \mathcal{R}_{\text{mon}}(A, B) \) such that \(R \subseteq R' \)
- therefore, \(\text{rk} \left(M_R \right) = \text{rk} \left(\hat{M}_R \right) \leq \text{rk} \left(\hat{M}_{R'} \right) \), and

\[
\text{rk}(M) \leq |\mathcal{R}| \cdot \max_{R' \in \mathcal{R}_{\text{mon}}} \text{rk} \left(\hat{M}_{R'} \right)
\]
Proof

- let $t = L_M(f)$
- by Rychkov’s lemma we know that there exists a set \mathcal{R} of $|\mathcal{R}| \leq t$ mutually disjoint monotone monochromatic rectangles which cover the set $A \times B$
- then $M = \sum_{R \in \mathcal{R}} \hat{M}_R$ and hence

$$\text{rk}(M) = \text{rk} \left(\sum_{R \in \mathcal{R}} \hat{M}_R \right) \leq \sum_{R \in \mathcal{R}} \text{rk} \left(\hat{M}_R \right)$$

- on the other hand, for every $R \in \mathcal{R}$ there is a rectangle $R' \in \mathcal{R}_{\text{mon}}(A, B)$ such that $R \subseteq R'$
- therefore, $\text{rk}(M_R) = \text{rk} \left(\hat{M}_R \right) \leq \text{rk} \left(\hat{M}_{R'} \right)$, and

$$\text{rk}(M) \leq |\mathcal{R}| \cdot \max_{R' \in \mathcal{R}_{\text{mon}}} \text{rk} \left(\hat{M}_{R'} \right)$$
General (Non-monotone) Case

Remark

- The same lower bound holds for non-monotone case, if we extend the set $R_{mon}(A, B)$ by adding n “dual” rectangles R'_1, \ldots, R'_n, where

$$R_i = \{a \in A | a_i = 0\} \times \{b \in B | b_i = 1\}.$$

- However Razborov has proved that in this case the result is useless: for any Boolean function in n variables the fraction on the rhs does not exceed $O(n)$.
General (Non-monotone) Case

Remark

- The same lower bound holds for non-monotone case, if we extend the set $R_{\text{mon}}(A, B)$ by adding n “dual” rectangles R'_1, \ldots, R'_n, where

 $$R_i = \{ a \in A | a_i = 0 \} \times \{ b \in B | b_i = 1 \}.$$

- However Razborov has proved that in this case the result is useless: for any Boolean function in n variables the fraction on the rhs does not exceed $O(n)$.
General (Non-monotone) Case

Remark

- The same lower bound holds for non-monotone case, if we extend the set $R_{\text{mon}}(A, B)$ by adding n “dual” rectangles R'_1, \ldots, R'_n, where

$$R_i = \{ a \in A | a_i = 0 \} \times \{ b \in B | b_i = 1 \}.$$

- However Razborov has proved that in this case the result is useless: for any Boolean function in n variables the fraction on the rhs does not exceed $O(n)$.

Common Neighbors

Let $G = (V_1, V_2, E)$ with $|V_1| = |V_2| = n$ be a bipartite graph.

Define $f_{G,k} \in B_{2n}$ as follows. The function has $2n$ variables, one for each node of G, and accepts a set of nodes $X \subseteq V_1 \cup V_2$ iff X contains some subset $S \subseteq V_1$ of size at most k, together with the set of its common neighbors

$$\Gamma(S) = \{ j \in V_2 : (i, j) \in E \text{ for all } i \in S \}.$$

That is, $f_{G,k}$ is an Or of all $\sum_{i=0}^{k} \binom{n}{i}$ monomials $\bigwedge_{i \in S \cup \Gamma(S)} x_i$ where $S \subseteq V_1$ and $|S| \leq k$.

By $\hat{\Gamma}(S)$ we will denote the set of all common non-neighbors of S, that is,

$$\hat{\Gamma}(S) = \{ j \in V_2 : (i, j) \in E \text{ for no } i \in S \}.$$
Common Neighbors

Let $G = (V_1, V_2, E)$ with $|V_1| = |V_2| = n$ be a bipartite graph.

Define $f_{G,k} \in B_{2n}$ as follows. The function has $2n$ variables, one for each node of G, and accepts a set of nodes $X \subseteq V_1 \cup V_2$ iff X contains some subset $S \subseteq V_1$ of size at most k, together with the set of its common neighbors

$$\Gamma(S) = \{j \in V_2 : (i,j) \in E \text{ for all } i \in S\}.$$

That is, $f_{G,k}$ is an Or of all $\sum_{i=0}^{k} \binom{n}{i}$ monomials $\bigwedge_{i \in S \cup \Gamma(S)} x_i$ where $S \subseteq V_1$ and $|S| \leq k$.

By $\widehat{\Gamma}(S)$ we will denote the set of all common non-neighbors of S, that is,

$$\widehat{\Gamma}(S) = \{j \in V_2 : (i,j) \in E \text{ for no } i \in S\}.$$
Common Neighbors

Let $G = (V_1, V_2, E)$ with $|V_1| = |V_2| = n$ be a bipartite graph.

Define $f_{G,k} \in B_{2n}$ as follows. The function has $2n$ variables, one for each node of G, and accepts a set of nodes $X \subseteq V_1 \cup V_2$ iff X contains some subset $S \subseteq V_1$ of size at most k, together with the set of its common neighbors

$$
\Gamma(S) = \{ j \in V_2 : (i,j) \in E \text{ for all } i \in S \}.
$$

That is, $f_{G,k}$ is an Or of all $\sum_{i=0}^{k} \binom{n}{i}$ monomials $\bigwedge_{i \in S \cup \Gamma(S)} x_i$ where $S \subseteq V_1$ and $|S| \leq k$.

By $\hat{\Gamma}(S)$ we will denote the set of all common non-neighbors of S, that is,

$$
\hat{\Gamma}(S) = \{ j \in V_2 : (i,j) \in E \text{ for no } i \in S \}.
$$
Common Neighbors

- Let $G = (V_1, V_2, E)$ with $|V_1| = |V_2| = n$ be a bipartite graph.

- Define $f_{G,k} \in B_{2^n}$ as follows. The function has $2n$ variables, one for each node of G, and accepts a set of nodes $X \subseteq V_1 \cup V_2$ iff X contains some subset $S \subseteq V_1$ of size at most k, together with the set of its common neighbors

 $$\Gamma(S) = \{j \in V_2 : (i, j) \in E \text{ for all } i \in S\}.$$

- That is, $f_{G,k}$ is an Or of all $\sum_{i=0}^{k} \binom{n}{i}$ monomials $\bigwedge_{i \in S \cup \Gamma(S)} x_i$ where $S \subseteq V_1$ and $|S| \leq k$.

- By $\hat{\Gamma}(S)$ we will denote the set of all common non-neighbors of S, that is,

 $$\hat{\Gamma}(S) = \{j \in V_2 : (i, j) \in E \text{ for no } i \in S\}.$$

Common Neighbors

- Let $G = (V_1, V_2, E)$ with $|V_1| = |V_2| = n$ be a bipartite graph.
- Define $f_{G,k} \in B_{2n}$ as follows. The function has $2n$ variables, one for each node of G, and accepts a set of nodes $X \subseteq V_1 \cup V_2$ iff X contains some subset $S \subseteq V_1$ of size at most k, together with the set of its common neighbors

$$
\Gamma(S) = \{ j \in V_2 : (i, j) \in E \text{ for all } i \in S \}.
$$

- That is, $f_{G,k}$ is an Or of all $\sum_{i=0}^{k} \binom{n}{i}$ monomials $\land_{i \in S \cup \Gamma(S)} x_i$ where $S \subseteq V_1$ and $|S| \leq k$.
- By $\hat{\Gamma}(S)$ we will denote the set of all common non-neighbors of S, that is,

$$
\hat{\Gamma}(S) = \{ j \in V_2 : (i, j) \in E \text{ for no } i \in S \}.
$$
Isolated Neighbor Condition

A bipartite graph $G = (V_1, V_2, E)$ satisfies the isolated neighbor condition for k if for any two disjoint subsets $S, T \subseteq V_1$ such that $|S| + |T| = k$, there is a node $v \in V_2$ which is a common neighbor of all the nodes in S and is isolated from all the nodes in T, i.e., if $\Gamma(S) \cap \widehat{\Gamma}(T) \neq \emptyset$.

It appears that if G satisfies the isolated point condition, then a straightforward formula for $f_{G,k}$ (an Or of $\sum_{i=0}^{k} \binom{n}{i}$ And’s, each of length at most $2n$) is almost optimal.
Isolated Neighbor Condition

- A bipartite graph $G = (V_1, V_2, E)$ satisfies the isolated neighbor condition for k if for any two disjoint subsets $S, T \subseteq V_1$ such that $|S| + |T| = k$, there is a node $v \in V_2$ which is a common neighbor of all the nodes in S and is isolated from all the nodes in T, i.e., if $\Gamma(S) \cap \hat{\Gamma}(T) \neq \emptyset$.

- It appears that if G satisfies the isolated point condition, then a straightforward formula for $f_{G,k}$ (an Or of $\sum_{i=0}^{k} \binom{n}{i}$ And’s, each of length at most $2n$) is almost optimal.
Isolated Neighbor Condition

- A bipartite graph $G = (V_1, V_2, E)$ satisfies the **isolated neighbor condition for** k if for any two disjoint subsets $S, T \subseteq V_1$ such that $|S| + |T| = k$, there is a node $v \in V_2$ which is a common neighbor of all the nodes in S and is isolated from all the nodes in T, i.e., if $\Gamma(S) \cap \hat{\Gamma}(T) \neq \emptyset$.

- It appears that if G satisfies the isolated point condition, then a straightforward formula for $f_{G,k}$ (an Or of $\sum_{i=0}^{k} \binom{n}{i}$ And’s, each of length at most $2n$) is almost optimal.
Main Lower Bound

Theorem (Gál 1998)

If G satisfies the isolated neighbor condition for $2k$, then the function $f_{G,k}$ does not have a monotone DeMorgan formula of size smaller than $\sum_{i=0}^{k} \binom{n}{i}$.
Proof

consider the following 0/1-matrix \(M \); its rows and columns are labeled by subsets of \(V_1 \) of size at most \(k \); the entries are defined by

\[
M_{S,T} = 1 \text{ iff } S \cap T = \emptyset
\]

it is known that this disjointness matrix has full rank over \(\mathbb{F}_2 \):

\[
\text{rk}_{\mathbb{F}_2} M = \sum_{i=0}^{k} \binom{n}{i}
\]
Proof

consider the following 0/1-matrix M; its rows and columns are labeled by subsets of V_1 of size at most k; the entries are defined by

$$M_{S,T} = 1 \text{ iff } S \cap T = \emptyset$$

it is known that this disjointness matrix has full rank over \mathbb{F}_2:

$$\text{rk}_{\mathbb{F}_2} M = \sum_{i=0}^{k} \binom{n}{i}$$
Proof

- consider the following 0/1-matrix M; its rows and columns are labeled by subsets of V_1 of size at most k; the entries are defined by

$$M_{S,T} = 1 \text{ iff } S \cap T = \emptyset$$

- it is known that this disjointness matrix has full rank over \mathbb{F}_2:

$$\text{rk}_{\mathbb{F}_2} M = \sum_{i=0}^{k} \binom{n}{i}$$
Proof (Cont’d)

- In order to apply Razborov’s theorem, we will now label the rows and columns of this matrix by vectors from special subsets of vectors A and B in $\{0, 1\}^{2n}$ so that:
 - $f_{G, k}(A) = 1$ and $f_{G, k}(B) = 0$
 - For every $R \in R_{\text{mon}}(A, B)$, the submatrix M_R has rank 1

- If a row of M is labeled by a set S, then relabel this row by the incidence vector v_S of $S \cup \Gamma(S)$ ($v_S(i) = 1$ iff $i \in S \cup \Gamma(S)$)

- If a column of M is labeled by a set T, then relabel this row by the incidence vector u_T of $V_1 \cup V_2 \setminus (T \cup \hat{\Gamma}(T))$ ($u_T(i) = 0$ iff $i \in T \cup \hat{\Gamma}(T)$)

- Let A be the set of all vectors v_S and B be the set of all vectors u_T
Proof (Cont’d)

In order to apply Razborov’s theorem, we will now label the rows and columns of this matrix by vectors from special subsets of vectors A and B in $\{0, 1\}^{2n}$ so that:

- $f_{G,k}(A) = 1$ and $f_{G,k}(B) = 0$
- for every $R \in \mathcal{R}_{\text{mon}}(A, B)$, the submatrix M_R has rank 1

If a row of M is labeled by a set S, then relabel this row by the incidence vector v_S of $S \cup \Gamma(S)$ ($v_S(i) = 1$ iff $i \in S \cup \Gamma(S)$)

If a column of M is labeled by a set T, then relabel this row by the incidence vector u_T of $V_1 \cup V_2 \setminus (T \cup \hat{\Gamma}(T))$ ($u_T(i) = 0$ iff $i \in T \cup \hat{\Gamma}(T)$)

Let A be the set of all vectors v_S and B be the set of all vectors u_T.
Proof (Cont’d)

- in order to apply Razborov’s theorem, we will now label the rows and columns of this matrix by vectors from special subsets of vectors \(A \) and \(B \) in \(\{0, 1\}^{2n} \) so that:
 - \(f_{G,k}(A) = 1 \) and \(f_{G,k}(B) = 0 \)
 - for every \(R \in R_{\text{mon}}(A, B) \), the submatrix \(M_R \) has rank 1
- if a row of \(M \) is labeled by a set \(S \), then relabel this row by the incidence vector \(v_S \) of \(S \cup \Gamma(S) \) (\(v_S(i) = 1 \) iff \(i \in S \cup \Gamma(S) \))
- if a column of \(M \) is labeled by a set \(T \), then relabel this row by the incidence vector \(u_T \) of \(V_1 \cup V_2 \setminus (T \cup \hat{\Gamma}(T)) \) (\(u_T(i) = 0 \) iff \(i \in T \cup \hat{\Gamma}(T) \))
- let \(A \) be the set of all vectors \(v_S \) and \(B \) be the set of all vectors \(u_T \)
Proof (Cont’d)

- in order to apply Razborov’s theorem, we will now label the rows and columns of this matrix by vectors from special subsets of vectors A and B in $\{0, 1\}^{2n}$ so that:
 - $f_{G,k}(A) = 1$ and $f_{G,k}(B) = 0$
 - for every $R \in R_{\text{mon}}(A, B)$, the submatrix M_R has rank 1

- if a row of M is labeled by a set S, then relabel this row by the incidence vector v_S of $S \cup \Gamma(S)$ ($v_S(i) = 1$ iff $i \in S \cup \Gamma(S)$)

- if a column of M is labeled by a set T, then relabel this row by the incidence vector u_T of $V_1 \cup V_2 \setminus (T \cup \hat{\Gamma}(T))$ ($u_T(i) = 0$ iff $i \in T \cup \hat{\Gamma}(T)$)

- let A be the set of all vectors v_S and B be the set of all vectors u_T
Proof (Cont’d)

- in order to apply Razborov’s theorem, we will now label the rows and columns of this matrix by vectors from special subsets of vectors A and B in $\{0, 1\}^{2n}$ so that:
 - $f_{G,k}(A) = 1$ and $f_{G,k}(B) = 0$
 - for every $R \in R_{\text{mon}}(A, B)$, the submatrix M_R has rank 1
- if a row of M is labeled by a set S, then relabel this row by the incidence vector v_S of $S \cup \Gamma(S)$ ($v_S(i) = 1$ iff $i \in S \cup \Gamma(S)$)
- if a column of M is labeled by a set T, then relabel this row by the incidence vector u_T of $V_1 \cup V_2 \setminus (T \cup \hat{\Gamma}(T))$ ($u_T(i) = 0$ iff $i \in T \cup \hat{\Gamma}(T)$)
- let A be the set of all vectors v_S and B be the set of all vectors u_T
Proof (Cont’d)

- in order to apply Razborov’s theorem, we will now label the rows and columns of this matrix by vectors from special subsets of vectors A and B in $\{0, 1\}^{2n}$ so that:
 - $f_{G,k}(A) = 1$ and $f_{G,k}(B) = 0$
 - for every $R \in R_{\text{mon}}(A, B)$, the submatrix M_R has rank 1
- if a row of M is labeled by a set S, then relabel this row by the incidence vector v_S of $S \cup \Gamma(S)$ ($v_S(i) = 1$ iff $i \in S \cup \Gamma(S)$)
- if a column of M is labeled by a set T, then relabel this row by the incidence vector u_T of $V_1 \cup V_2 \setminus (T \cup \hat{\Gamma}(T))$ ($u_T(i) = 0$ iff $i \in T \cup \hat{\Gamma}(T)$)
- let A be the set of all vectors v_S and B be the set of all vectors u_T
Proof (Cont’d)

- in order to apply Razborov’s theorem, we will now label the rows and columns of this matrix by vectors from special subsets of vectors A and B in $\{0, 1\}^{2n}$ so that:
 - $f_{G,k}(A) = 1$ and $f_{G,k}(B) = 0$
 - for every $R \in \mathcal{R}_{\text{mon}}(A, B)$, the submatrix M_R has rank 1
- if a row of M is labeled by a set S, then relabel this row by the incidence vector v_S of $S \cup \Gamma(S)$ ($v_S(i) = 1$ iff $i \in S \cup \Gamma(S)$)
- if a column of M is labeled by a set T, then relabel this row by the incidence vector u_T of $V_1 \cup V_2 \setminus (T \cup \hat{\Gamma}(T))$ ($u_T(i) = 0$ iff $i \in T \cup \hat{\Gamma}(T)$)
- let A be the set of all vectors v_S and B be the set of all vectors u_T
Proof (Cont’d)

- let us verify that $f_{G,k}(A) = 1$ and $f_{G,k}(B) = 0$
- note that $f_{G,k}(x) = 1$ iff $x \geq v_S$ for some S, hence $f(A) = 1$
- if the graph satisfies the isolated point condition for $2k$, then we have the following intersection property: for any two subsets $S, T \subseteq V_1$ of size at most k,

 $$S \cap T = \emptyset \text{ iff } \Gamma(S) \cap \hat{\Gamma}(T) \neq \emptyset$$

- each pair of vectors v_S and u_T has a coordinate i on which $0 = u_T(i) < v_S(i) = 1$, hence $u_T \not\geq v_S$ and u_T is rejected by f
Proof (Cont’d)

- Let us verify that $f_{G,k}(A) = 1$ and $f_{G,k}(B) = 0$

- Note that $f_{G,k}(x) = 1$ iff $x \geq v_S$ for some S, hence $f(A) = 1$

- If the graph satisfies the isolated point condition for $2k$, then we have the following intersection property: for any two subsets $S, T \subseteq V_1$ of size at most k,

$$S \cap T = \emptyset \iff \Gamma(S) \cap \hat{\Gamma}(T) \neq \emptyset$$

- Each pair of vectors v_S and u_T has a coordinate i on which $0 = u_T(i) < v_S(i) = 1$, hence $u_T \not\geq v_S$ and u_T is rejected by f
Proof (Cont’d)

- let us verify that $f_{G,k}(A) = 1$ and $f_{G,k}(B) = 0$
- note that $f_{G,k}(x) = 1$ iff $x \geq v_S$ for some S, hence $f(A) = 1$
- if the graph satisfies the isolated point condition for $2k$, then we have the following intersection property: for any two subsets $S, T \subseteq V_1$ of size at most k,

\[S \cap T = \emptyset \text{ iff } \Gamma(S) \cap \hat{\Gamma}(T) \neq \emptyset \]

- each pair of vectors v_S and u_T has a coordinate i on which $0 = u_T(i) < v_S(i) = 1$, hence $u_T \preceq v_S$ and u_T is rejected by f
Proof (Cont’d)

- let us verify that $f_{G,k}(A) = 1$ and $f_{G,k}(B) = 0$
- note that $f_{G,k}(x) = 1$ iff $x \geq v_S$ for some S, hence $f(A) = 1$
- if the graph satisfies the isolated point condition for $2k$, then we have the following intersection property: for any two subsets $S, T \subseteq V_1$ of size at most k,

\[S \cap T = \emptyset \text{ iff } \Gamma(S) \cap \hat{\Gamma}(T) \neq \emptyset \]

- each pair of vectors v_S and u_T has a coordinate i on which $0 = u_T(i) < v_S(i) = 1$, hence $u_T \not\geq v_S$ and u_T is rejected by f
Proof (Cont’d)

- Let us verify that \(f_{G,k}(A) = 1 \) and \(f_{G,k}(B) = 0 \).
- Note that \(f_{G,k}(x) = 1 \) iff \(x \geq v_S \) for some \(S \), hence \(f(A) = 1 \).
- If the graph satisfies the isolated point condition for \(2k \), then we have the following intersection property: for any two subsets \(S, T \subseteq V_1 \) of size at most \(k \),

\[
S \cap T = \emptyset \iff \Gamma(S) \cap \hat{\Gamma}(T) \neq \emptyset
\]

- Each pair of vectors \(v_S \) and \(u_T \) has a coordinate \(i \) on which \(0 = u_T(i) < v_S(i) = 1 \), hence \(u_T \nless v_S \) and \(u_T \) is rejected by \(f \).
Proof (Cont’d)

- it remains to verify that for every $R \in \mathcal{R}_{\text{mon}}(A, B)$, the submatrix M_R has rank 1
- for each node $i \in V_1 \cup V_2$, let $R_i = \{v_S|v_S(i) = 1\} \times \{u_T|u_T(i) = 0\}$
- if $i \in V_1$, then the corresponding entry of the intersection matrix M is 0, because then $S \cap T \neq \emptyset$
- if $i \in V_2$, then this entry is 1 because then $\Gamma(S) \cap \hat{\Gamma}(T) \neq \emptyset$ and hence $S \cap T = \emptyset$
- thus, each of the rectangles R_i is either 0-monochromatic or 1-monochromatic, and hence, has rank 1
Proof (Cont’d)

- it remains to verify that for every $R \in \mathcal{R}_{\text{mon}}(A, B)$, the submatrix M_R has rank 1
- for each node $i \in V_1 \cup V_2$, let $R_i = \{v_S | v_S(i) = 1\} \times \{u_T | u_T(i) = 0\}$
- if $i \in V_1$, then the corresponding entry of the intersection matrix M is 0, because then $S \cap T \neq \emptyset$
- if $i \in V_2$, then this entry is 1 because then $\Gamma(S) \cap \hat{\Gamma}(T) \neq \emptyset$ and hence $S \cap T = \emptyset$
- thus, each of the rectangles R_i is either 0-monochromatic or 1-monochromatic, and hence, has rank 1
Proof (Cont’d)

- it remains to verify that for every $R \in \mathcal{R}_{\text{mon}}(A, B)$, the submatrix M_R has rank 1
- for each node $i \in V_1 \cup V_2$, let
 $$R_i = \{v_S | v_S(i) = 1\} \times \{u_T | u_T(i) = 0\}$$
- if $i \in V_1$, then the corresponding entry of the intersection matrix M is 0, because then $S \cap T \neq \emptyset$
- if $i \in V_2$, then this entry is 1 because then $\Gamma(S) \cap \hat{\Gamma}(T) \neq \emptyset$ and hence $S \cap T = \emptyset$
- thus, each of the rectangles R_i is either 0-monochromatic or 1-monochromatic, and hence, has rank 1
Proof (Cont’d)

- it remains to verify that for every $R \in \mathcal{R}_{\text{mon}}(A, B)$, the submatrix M_R has rank 1
- for each node $i \in V_1 \cup V_2$, let
 $$R_i = \{v_S|v_S(i) = 1\} \times \{u_T|u_T(i) = 0\}$$
- if $i \in V_1$, then the corresponding entry of the intersection matrix M is 0, because then $S \cap T \neq \emptyset$
 - if $i \in V_2$, then this entry is 1 because then $\Gamma(S) \cap \hat{\Gamma}(T) \neq \emptyset$ and hence $S \cap T = \emptyset$
- thus, each of the rectangles R_i is either 0-monochromatic or 1-monochromatic, and hence, has rank 1
Proof (Cont’d)

- it remains to verify that for every $R \in \mathcal{R}_{\text{mon}}(A, B)$, the submatrix M_R has rank 1
- for each node $i \in V_1 \cup V_2$, let $R_i = \{v_S | v_S(i) = 1\} \times \{u_T | u_T(i) = 0\}$
- if $i \in V_1$, then the corresponding entry of the intersection matrix M is 0, because then $S \cap T \neq \emptyset$
- if $i \in V_2$, then this entry is 1 because then $\Gamma(S) \cap \hat{\Gamma}(T) \neq \emptyset$ and hence $S \cap T = \emptyset$
- thus, each of the rectangles R_i is either 0-monochromatic or 1-monochromatic, and hence, has rank 1
Proof (Cont’d)

- it remains to verify that for every $R \in \mathcal{R}_{\text{mon}}(A, B)$, the submatrix M_R has rank 1
- for each node $i \in V_1 \cup V_2$, let $R_i = \{v_S|v_S(i) = 1\} \times \{u_T|u_T(i) = 0\}$
- if $i \in V_1$, then the corresponding entry of the intersection matrix M is 0, because then $S \cap T \neq \emptyset$
- if $i \in V_2$, then this entry is 1 because then $\Gamma(S) \cap \hat{\Gamma}(T) \neq \emptyset$ and hence $S \cap T = \emptyset$
- thus, each of the rectangles R_i is either 0-monochromatic or 1-monochromatic, and hence, has rank 1
Summarizing

- Explicit bipartite graphs, satisfying the isolated neighbor condition for $k = \Omega(\log n)$ are known.
- Such are, for example, Paley graphs.
- Thus, the corresponding Boolean function $f_{G,k}$ requires monotone formula size at least $\binom{n}{k} = n^{\Omega(\log n)}$.
Explicit bipartite graphs, satisfying the isolated neighbor condition for \(k = \Omega(\log n) \) are known.

Such are, for example, Paley graphs.

Thus, the corresponding Boolean function \(f_{G,k} \) requires monotone formula size at least \(\binom{n}{k} = n^{\Omega(\log n)} \).
Explicit bipartite graphs, satisfying the isolated neighbor condition for $k = \Omega(\log n)$ are known.

Such are, for example, **Paley graphs**.

Thus, the corresponding Boolean function $f_{G,k}$ requires monotone formula size at least $\binom{n}{k} = n^{\Omega(\log n)}$.
Explicit bipartite graphs, satisfying the isolated neighbor condition for $k = \Omega(\log n)$ are known.

Such are, for example, **Paley graphs**.

Thus, the corresponding Boolean function $f_{G,k}$ requires monotone formula size at least $\binom{n}{k} = n^{\Omega(\log n)}$.
Paley Graphs

- A bipartite Paley graph is a bipartite graph $G_q = (V_1, V_2, E)$ with parts $V_1 = V_2 = \mathbb{F}_q$ for q odd prime congruent to 1 modulo 4; two nodes, $x \in V_1$ and $y \in V_2$, are joined by an edge iff $x - y$ is a non-zero square in \mathbb{F}_q.

- The condition $q \equiv 1 \pmod{4}$ is only to ensure that -1 is a square in the field, so that the resulting graph is undirected.

- Given two disjoint sets of nodes $A, B \subseteq V_1$, let $v(A, B)$ denote the number of nodes in V_2 joined to each node of A and to no node of B.

A bipartite Paley graph is a bipartite graph $G_q = (V_1, V_2, E)$ with parts $V_1 = V_2 = \mathbb{F}_q$ for q odd prime congruent to 1 modulo 4; two nodes, $x \in V_1$ and $y \in V_2$, are joined by an edge iff $x - y$ is a non-zero square in \mathbb{F}_q.

The condition $q \equiv 1(\text{mod } 4)$ is only to ensure that -1 is a square in the field, so that the resulting graph is undirected.

Given two disjoint sets of nodes $A, B \subseteq V_1$, let $v(A, B)$ denote the number of nodes in V_2 joined to each node of A and to no node of B.

A bipartite Paley graph is a bipartite graph $G_q = (V_1, V_2, E)$ with parts $V_1 = V_2 = \mathbb{F}_q$ for q odd prime congruent to 1 modulo 4; two nodes, $x \in V_1$ and $y \in V_2$, are joined by an edge iff $x - y$ is a non-zero square in \mathbb{F}_q.

The condition $q \equiv 1(\text{mod } 4)$ is only to ensure that -1 is a square in the field, so that the resulting graph is undirected.

Given two disjoint sets of nodes $A, B \subseteq V_1$, let $v(A, B)$ denote the number of nodes in V_2 joined to each node of A and to no node of B.

A bipartite Paley graph is a bipartite graph $G_q = (V_1, V_2, E)$ with parts $V_1 = V_2 = \mathbb{F}_q$ for q odd prime congruent to 1 modulo 4; two nodes, $x \in V_1$ and $y \in V_2$, are joined by an edge iff $x - y$ is a non-zero square in \mathbb{F}_q.

The condition $q \equiv 1(\text{mod } 4)$ is only to ensure that -1 is a square in the field, so that the resulting graph is undirected.

Given two disjoint sets of nodes $A, B \subseteq V_1$, let $v(A, B)$ denote the number of nodes in V_2 joined to each node of A and to no node of B.

A bipartite Paley graph is a bipartite graph $G_q = (V_1, V_2, E)$ with parts $V_1 = V_2 = \mathbb{F}_q$ for q odd prime congruent to 1 modulo 4; two nodes, $x \in V_1$ and $y \in V_2$, are joined by an edge iff $x - y$ is a non-zero square in \mathbb{F}_q.

The condition $q \equiv 1(\text{mod } 4)$ is only to ensure that -1 is a square in the field, so that the resulting graph is undirected.

Given two disjoint sets of nodes $A, B \subseteq V_1$, let $v(A, B)$ denote the number of nodes in V_2 joined to each node of A and to no node of B.

A bipartite Paley graph is a bipartite graph $G_q = (V_1, V_2, E)$ with parts $V_1 = V_2 = \mathbb{F}_q$ for q odd prime congruent to 1 modulo 4; two nodes, $x \in V_1$ and $y \in V_2$, are joined by an edge iff $x - y$ is a non-zero square in \mathbb{F}_q.

The condition $q \equiv 1(\text{mod } 4)$ is only to ensure that -1 is a square in the field, so that the resulting graph is undirected.

Given two disjoint sets of nodes $A, B \subseteq V_1$, let $v(A, B)$ denote the number of nodes in V_2 joined to each node of A and to no node of B.

A bipartite Paley graph is a bipartite graph $G_q = (V_1, V_2, E)$ with parts $V_1 = V_2 = \mathbb{F}_q$ for q odd prime congruent to 1 modulo 4; two nodes, $x \in V_1$ and $y \in V_2$, are joined by an edge iff $x - y$ is a non-zero square in \mathbb{F}_q.

The condition $q \equiv 1(\text{mod } 4)$ is only to ensure that -1 is a square in the field, so that the resulting graph is undirected.

Given two disjoint sets of nodes $A, B \subseteq V_1$, let $v(A, B)$ denote the number of nodes in V_2 joined to each node of A and to no node of B.

Paley Graphs

- A bipartite Paley graph is a bipartite graph $G_q = (V_1, V_2, E)$ with parts $V_1 = V_2 = \mathbb{F}_q$ for q odd prime congruent to 1 modulo 4; two nodes, $x \in V_1$ and $y \in V_2$, are joined by an edge iff $x - y$ is a non-zero square in \mathbb{F}_q.

- The condition $q \equiv 1(\text{mod } 4)$ is only to ensure that -1 is a square in the field, so that the resulting graph is undirected.

- Given two disjoint sets of nodes $A, B \subseteq V_1$, let $v(A, B)$ denote the number of nodes in V_2 joined to each node of A and to no node of B.

Paley Graphs

- A bipartite Paley graph is a bipartite graph $G_q = (V_1, V_2, E)$ with parts $V_1 = V_2 = \mathbb{F}_q$ for q odd prime congruent to 1 modulo 4; two nodes, $x \in V_1$ and $y \in V_2$, are joined by an edge iff $x - y$ is a non-zero square in \mathbb{F}_q.

- The condition $q \equiv 1(\text{mod } 4)$ is only to ensure that -1 is a square in the field, so that the resulting graph is undirected.

- Given two disjoint sets of nodes $A, B \subseteq V_1$, let $v(A, B)$ denote the number of nodes in V_2 joined to each node of A and to no node of B.

Paley Graphs

- A bipartite Paley graph is a bipartite graph $G_q = (V_1, V_2, E)$ with parts $V_1 = V_2 = \mathbb{F}_q$ for q odd prime congruent to 1 modulo 4; two nodes, $x \in V_1$ and $y \in V_2$, are joined by an edge iff $x - y$ is a non-zero square in \mathbb{F}_q.

- The condition $q \equiv 1(\text{mod } 4)$ is only to ensure that -1 is a square in the field, so that the resulting graph is undirected.

- Given two disjoint sets of nodes $A, B \subseteq V_1$, let $v(A, B)$ denote the number of nodes in V_2 joined to each node of A and to no node of B.

Paley Graphs
Paley Graphs

- A bipartite Paley graph is a bipartite graph $G_q = (V_1, V_2, E)$ with parts $V_1 = V_2 = \mathbb{F}_q$ for q odd prime congruent to 1 modulo 4; two nodes, $x \in V_1$ and $y \in V_2$, are joined by an edge iff $x - y$ is a non-zero square in \mathbb{F}_q.

- The condition $q \equiv 1(\text{mod } 4)$ is only to ensure that -1 is a square in the field, so that the resulting graph is undirected.

- Given two disjoint sets of nodes $A, B \subseteq V_1$, let $v(A, B)$ denote the number of nodes in V_2 joined to each node of A and to no node of B.
A bipartite Paley graph is a bipartite graph $G_q = (V_1, V_2, E)$ with parts $V_1 = V_2 = \mathbb{F}_q$ for q odd prime congruent to 1 modulo 4; two nodes, $x \in V_1$ and $y \in V_2$, are joined by an edge iff $x - y$ is a non-zero square in \mathbb{F}_q.

The condition $q \equiv 1(\text{mod } 4)$ is only to ensure that -1 is a square in the field, so that the resulting graph is undirected.

Given two disjoint sets of nodes $A, B \subseteq V_1$, let $v(A, B)$ denote the number of nodes in V_2 joined to each node of A and to no node of B.

Paley Graphs
Theorem

Let $G_q = (V_1, V_2, E)$ be a bipartite Paley graph with $q > 9$, and A, B be disjoint sets of nodes in V_1 such that $|A| + |B| = k$. Then

$$\left| v(A, B) - 2^{-k}q \right| \leq k\sqrt{q}.$$

In particular, $v(A, B) > 0$ as long as $k2^k, \sqrt{q}$.

Disjointness Matrix

Let $k \leq n$ be natural numbers, and X be a set of n elements. A k-disjointness matrix over X is a 0/1-matrix $D = D(n, k)$ whose rows and columns are labeled by subsets of X of size at most k; the entry $D_{A,B}$ in the A-th row and B-th column is defined by:

$$D_{A,B} = \begin{cases} 0 & \text{if } A \cap B \neq \emptyset, \\ 1 & \text{if } A \cap B = \emptyset. \end{cases}$$

Theorem (Razborov 1987)

The k-disjointness matrix $D = D(n, k)$ has full rank over \mathbb{F}_2, that is,

$$\text{rk}_{\mathbb{F}_2}(D) = \sum_{i=0}^{k} \binom{n}{i}.$$
Disjointness Matrix

Let $k \leq n$ be natural numbers, and X be a set of n elements. A k-disjointness matrix over X is a 0/1-matrix $D = D(n, k)$ whose rows and columns are labeled by subsets of X of size at most k; the entry $D_{A,B}$ in the A-th row and B-th column is defined by:

$$D_{A,B} = \begin{cases} 0 & \text{if } A \cap B \neq \emptyset, \\ 1 & \text{if } A \cap B = \emptyset. \end{cases}$$

Theorem (Razborov 1987)

The k-disjointness matrix $D = D(n, k)$ has full rank over \mathbb{F}_2, that is,

$$\text{rk}_{\mathbb{F}_2}(D) = \sum_{i=0}^{k} \binom{n}{i}.$$
Disjointness Matrix

Let \(k \leq n \) be natural numbers, and \(X \) be a set of \(n \) elements. A \(k \)-disjointness matrix over \(X \) is a \(0/1 \)-matrix \(D = D(n, k) \) whose rows and columns are labeled by subsets of \(X \) of size at most \(k \); the entry \(D_{A,B} \) in the \(A \)-th row and \(B \)-th column is defined by:

\[
D_{A,B} = \begin{cases}
0 & \text{if } A \cap B \neq \emptyset, \\
1 & \text{if } A \cap B = \emptyset.
\end{cases}
\]

Theorem (Razborov 1987)

The \(k \)-disjointness matrix \(D = D(n, k) \) has full rank over \(\mathbb{F}_2 \), that is,

\[
\text{rk}_{\mathbb{F}_2}(D) = \sum_{i=0}^{k} \binom{n}{i}.
\]
Proof

- let \(N = \sum_{i=0}^{k} \binom{n}{i} \)
- we must show that the rows of \(D \) are linearly independent over \(\mathbb{F}_2 \), i.e., that for any non-zero vector \(\lambda = (\lambda_{I_1}, \lambda_{I_2}, \ldots, \lambda_{I_N}) \) in \(\mathbb{F}_2^N \) we have \(\lambda \cdot D \neq 0 \)
- consider the following polynomial:

\[
f(x_1, \ldots, x_n) = \sum_{|I| \leq k} \prod_{i \in I} x_i.
\]

- since \(\lambda \neq 0 \), at least one of the coefficients \(\lambda_I \) is nonzero, and we can find some \(I_0 \) such that \(\lambda_{I_0} \neq 0 \) and \(I_0 \) is maximal in that \(\lambda_I = 0 \) for all \(I \subset I_0 \)
- assume w.l.o.g. that \(I_0 = \{1, \ldots, t\} \), and make in the polynomial \(f \) the substitution \(x_i := 1 \) for all \(i \not\in I_0 \)
Proof

- let $N = \sum_{i=0}^{k} \binom{n}{i}$

- we must show that the rows of D are linearly independent over \mathbb{F}_2, i.e., that for any non-zero vector $\lambda = (\lambda_{I_1}, \lambda_{I_2}, \ldots, \lambda_{I_N})$ in \mathbb{F}_2^N we have $\lambda \cdot D \neq 0$

- consider the following polynomial:

$$f(x_1, \ldots, x_n) = \sum_{|I| \leq k} \prod_{i \in I} x_i.$$

- since $\lambda \neq 0$, at least one of the coefficients λ_I is nonzero, and we can find some I_0 such that $\lambda_{I_0} \neq 0$ and I_0 is maximal in that $\lambda_I = 0$ for all $I \subset I_0$

- assume w.l.o.g. that $I_0 = \{1, \ldots, t\}$, and make in the polynomial f the substitution $x_i := 1$ for all $i \not\in I_0$
Proof

- let \(N = \sum_{i=0}^{k} \binom{n}{i} \)

- we must show that the rows of \(D \) are linearly independent over \(\mathbb{F}_2 \), i.e., that for any non-zero vector \(\lambda = (\lambda_{I_1}, \lambda_{I_2}, \ldots, \lambda_{I_N}) \) in \(\mathbb{F}_2^N \) we have \(\lambda \cdot D \neq 0 \)

- consider the following polynomial:

\[
f(x_1, \ldots, x_n) = \sum_{|I| \leq k} \prod_{i \in I} x_i.
\]

- since \(\lambda \neq 0 \), at least one of the coefficients \(\lambda_I \) is nonzero, and we can find some \(I_0 \) such that \(\lambda_{I_0} \neq 0 \) and \(I_0 \) is maximal in that \(\lambda_I = 0 \) for all \(I \subset I_0 \)

- assume w.l.o.g. that \(I_0 = \{1, \ldots, t\} \), and make in the polynomial \(f \) the substitution \(x_i := 1 \) for all \(i \notin I_0 \)
Proof

- let $N = \sum_{i=0}^{k} \binom{n}{i}$
- we must show that the rows of D are linearly independent over \mathbb{F}_2, i.e., that for any non-zero vector $\lambda = (\lambda_{l_1}, \lambda_{l_2}, \ldots, \lambda_{l_N})$ in \mathbb{F}_2^N we have $\lambda \cdot D \neq 0$
- consider the following polynomial:

$$f(x_1, \ldots, x_n) = \sum \prod_{|I| \leq k, i \in I} x_i.$$

- since $\lambda \neq 0$, at least one of the coefficients λ_I is nonzero, and we can find some I_0 such that $\lambda_{I_0} \neq 0$ and I_0 is maximal in that $\lambda_I = 0$ for all $I \subset I_0$
- assume w.l.o.g. that $I_0 = \{1, \ldots, t\}$, and make in the polynomial f the substitution $x_i := 1$ for all $i \not\in I_0$
Proof

- let \(N = \sum_{i=0}^{k} \binom{n}{i} \)
- we must show that the rows of \(D \) are linearly independent over \(\mathbb{F}_2 \), i.e., that for any non-zero vector \(\lambda = (\lambda_{l_1}, \lambda_{l_2}, \ldots, \lambda_{l_N}) \) in \(\mathbb{F}_2^N \) we have \(\lambda \cdot D \neq 0 \)
- consider the following polynomial:

\[
 f(x_1, \ldots, x_n) = \sum_{|I| \leq k} \prod_{i \in I} x_i.
\]

- since \(\lambda \neq 0 \), at least one of the coefficients \(\lambda_I \) is nonzero, and we can find some \(l_0 \) such that \(\lambda_{l_0} \neq 0 \) and \(l_0 \) is maximal in that \(\lambda_I = 0 \) for all \(I \subset l_0 \)
- assume w.l.o.g. that \(l_0 = \{1, \ldots, t\} \), and make in the polynomial \(f \) the substitution \(x_i := 1 \) for all \(i \notin l_0 \)
Proof

- let $N = \sum_{i=0}^{k} \binom{n}{i}$
- we must show that the rows of D are linearly independent over \mathbb{F}_2, i.e., that for any non-zero vector $\lambda = (\lambda_{I_1}, \lambda_{I_2}, \ldots, \lambda_{I_N})$ in \mathbb{F}_2^N we have $\lambda \cdot D \neq 0$
- consider the following polynomial:

$$f(x_1, \ldots, x_n) = \sum_{|I| \leq k} \prod_{i \in I} x_i.$$

- since $\lambda \neq 0$, at least one of the coefficients λ_I is nonzero, and we can find some I_0 such that $\lambda_{I_0} \neq 0$ and I_0 is maximal in that $\lambda_I = 0$ for all $I \subset I_0$
- assume w.l.o.g. that $I_0 = \{1, \ldots, t\}$, and make in the polynomial f the substitution $x_i := 1$ for all $i \not\in I_0$
Proof (Cont’d)

▶ after this substitution has been made, a non-zero polynomial over the first t variables x_1, \ldots, x_t remains such that the term $x_1 x_2 \ldots x_t$ is left untouched (here we use the maximality of I_0)

▶ hence, after the substitution we obtain a polynomial which is 1 for some assignment (a_1, \ldots, a_t) to its variables

▶ but this means that the polynomial f itself takes the value 1 on the assignment $b = (a_1, \ldots, a_t, 1, \ldots, 1)$
Proof (Cont’d)

- after this substitution has been made, a non-zero polynomial over the first \(t \) variables \(x_1, \ldots, x_t \) remains such that the term \(x_1 x_2 \ldots x_t \) is left untouched (here we use the maximality of \(I_0 \))

- hence, after the substitution we obtain a polynomial which is 1 for some assignment \((a_1, \ldots, a_t)\) to its variables

- but this means that the polynomial \(f \) itself takes the value 1 on the assignment \(b = (a_1, \ldots, a_t, 1, \ldots, 1) \)
Proof (Cont’d)

- after this substitution has been made, a non-zero polynomial over the first t variables x_1, \ldots, x_t remains such that the term $x_1 x_2 \ldots x_t$ is left untouched (here we use the maximality of l_0)

- hence, after the substitution we obtain a polynomial which is 1 for some assignment (a_1, \ldots, a_t) to its variables

- but this means that the polynomial f itself takes the value 1 on the assignment $b = (a_1, \ldots, a_t, 1, \ldots, 1)$
Proof (Cont’d)

- after this substitution has been made, a non-zero polynomial over the first t variables x_1, \ldots, x_t remains such that the term $x_1 x_2 \ldots x_t$ is left untouched (here we use the maximality of l_0)
- hence, after the substitution we obtain a polynomial which is 1 for some assignment (a_1, \ldots, a_t) to its variables
- but this means that the polynomial f itself takes the value 1 on the assignment $b = (a_1, \ldots, a_t, 1, \ldots, 1)$
Proof (Cont’d)

▸ hence

\[
1 = f(b) = \sum_{|I| \leq k} \prod_{i \in I} b_i
\]

▸ let \(J_0 = \{i : a_i = 0\} \)

▸ then \(|J_0| \leq k\) and, moreover, \(\prod_{i \in I} b_i = 1\) iff \(I \cap J_0 = \emptyset \), which is equivalent to \(D_{I,J_0} = 1 \)

▸ thus,

\[
\sum_{|I| \leq k} \lambda_I D_{I,J_0} = 1,
\]

meaning that the \(J_0 \)-th coordinate of the vector \(\lambda \cdot D \) is non-zero
Proof (Cont’d)

- hence

\[1 = f(b) = \sum_{|I| \leq k} \prod_{i \in I} b_i \]

- let \(J_0 = \{i : a_i = 0\} \)

- then \(|J_0| \leq k \) and, moreover, \(\prod_{i \in I} b_i = 1 \) iff \(I \cap J_0 = \emptyset \), which is equivalent to \(D_{I,J_0} = 1 \)

- thus,

\[\sum_{|I| \leq k} \lambda_I D_{I,J_0} = 1, \]

meaning that the \(J_0 \)-th coordinate of the vector \(\lambda \cdot D \) is non-zero

\[\square \]
Proof (Cont’d)

- hence

\[1 = f(b) = \sum_{|I| \leq k} \prod_{i \in I} b_i \]

- let \(J_0 = \{ i : a_i = 0 \} \)

- then \(|J_0| \leq k \) and, moreover, \(\prod_{i \in I} b_i = 1 \) iff \(I \cap J_0 = \emptyset \), which is equivalent to \(D_{I,J_0} = 1 \)

- thus,

\[\sum_{|I| \leq k} \lambda_I D_{I,J_0} = 1, \]

meaning that the \(J_0 \)-th coordinate of the vector \(\lambda \cdot D \) is non-zero
Proof (Cont’d)

- hence

\[
1 = f(b) = \sum_{|I| \leq k} \prod_{i \in I} b_i
\]

- let \(J_0 = \{ i : a_i = 0 \} \)
- then \(|J_0| \leq k \) and, moreover, \(\prod_{i \in I} b_i = 1 \) iff \(I \cap J_0 = \emptyset \), which is equivalent to \(D_{I,J_0} = 1 \)

- thus,

\[
\sum_{|I| \leq k} \lambda_I D_{I,J_0} = 1,
\]

meaning that the \(J_0 \)-th coordinate of the vector \(\lambda \cdot D \) is non-zero
Proof (Cont’d)

- hence

\[1 = f(b) = \sum \prod_{i \in I} b_i \]

- let \(J_0 = \{i : a_i = 0\} \)
- then \(|J_0| \leq k \) and, moreover, \(\prod_{i \in I} b_i = 1 \) iff \(I \cap J_0 = \emptyset \), which is equivalent to \(D_{I,J_0} = 1 \)
- thus,

\[\sum_{|I| \leq k} \lambda_I D_{I,J_0} = 1, \]

meaning that the \(J_0 \)-th coordinate of the vector \(\lambda \cdot D \) is non-zero