5n Lower Bound on the Circuit Size

A. Kulikov, O. Melanich, and I. Mihajlin

Steklov Institute of Mathematics at St. Petersburg
Russian Academy of Sciences

Computability in Europe
June 21, 2012
Boolean Circuits

Inputs:
\(x_1, \ldots, x_n, 0, 1 \)

Gates:
binary functions

Fan-out:
unbounded

\[
\begin{align*}
g_1 &= x_1 \oplus x_2 \\
g_2 &= x_2 \land x_3 \\
g_3 &= g_1 \lor g_2 \\
g_4 &= g_2 \lor 1 \\
g_5 &= g_3 \equiv g_4
\end{align*}
\]
Known Lower Bounds

- **Non-constructive**: counting shows that almost all functions of n variables have circuit size $\Theta(2^n/n)$.
Known Lower Bounds

- Non-constructive: counting shows that almost all functions of n variables have circuit size $\Theta(2^n / n)$.
- Constructive:
Known Lower Bounds

- **Non-constructive:** counting shows that almost all functions of n variables have circuit size $\Theta(2^n/n)$.
- **Constructive:**
 - Full binary basis B_2:
 - $3n - o(n)$ [Blum, 1984; Demenkov, Kulikov, 2011]
Known Lower Bounds

- **Non-constructive**: counting shows that almost all functions of \(n\) variables have circuit size \(\Theta(2^n/n)\).

- **Constructive**:
 - Full binary basis \(B_2\):
 \[3n - o(n)\] [Blum, 1984; Demenkov, Kulikov, 2011]
 - Basis \(U_2 = B_2 \setminus \{\oplus, \equiv\}\):
 \[5n - o(n)\] [Iwama, Morizumi, 2002]
This Talk

- This talk: a very simple proof of a $5n - o(n)$ lower bound on the circuit size over U_2 for a linear function $f : \{0, 1\}^n \rightarrow \{0, 1\}^{\log n}$ (recall that U_2 contains all binary functions except for \oplus and \equiv).
This Talk

- This talk: a very simple proof of a $5n - o(n)$ lower bound on the circuit size over U_2 for a linear function $f : \{0, 1\}^n \rightarrow \{0, 1\}^{\log n}$ (recall that U_2 contains all binary functions except for \oplus and \equiv).
- The proof uses the standard gate elimination technique: during $n - o(n)$ steps we assign a constant to a variable and eliminate at least 5 gates.
This Talk

- This talk: a very simple proof of a $5n - o(n)$ lower bound on the circuit size over U_2 for a linear function $f : \{0, 1\}^n \rightarrow \{0, 1\}^{\log n}$ (recall that U_2 contains all binary functions except for \oplus and \equiv).
- The proof uses the standard gate elimination technique: during $n - o(n)$ steps we assign a constant to a variable and eliminate at least 5 gates.
- The proof consists of four cases only.
Function

- $f : \{0, 1\}^n \rightarrow \{0, 1\}^{\log n}$, $f(x) = Ax$, where A is an $\log n \times n$ matrix s.t. all its columns are pairwise different and non-zero (check-matrix for Hamming codes)
Function

- $f : \{0, 1\}^n \rightarrow \{0, 1\}^{\log n}$, $f(x) = Ax$, where A is an $\log n \times n$ matrix s.t. all its columns are pairwise different and non-zero (check-matrix for Hamming codes)

- important property of f: for any two input variables at least one output of f depends essentially on one of these variables only
Proof

- **Case 1**: $\text{out}(x_i) = 1$ — impossible

- **Case 2**: $\text{out}(x_i) \geq 3$ — eliminate 5 gates

- **Case 3**: $\text{out}(x_i) = \text{out}(x_j) = 2$
 - **Case 3.1**: x_i and x_j feed exactly the same two gates — impossible
 - **Case 3.2**: x_i and x_j feed different gates — eliminate 5 gates
Proof

- **Case 1**: $\text{out}(x_i) = 1$ — impossible
- **Case 2**: $\text{out}(x_i) \geq 3$ — eliminate 5 gates

\[x_i \quad x_j \]

- **Case 3.1**: x_i and x_j feed exactly the same two gates — impossible
- **Case 3.2**: x_i and x_j feed different gates — eliminate 5 gates
Proof

- **Case 1:** $\text{out}(x_i) = 1$ — impossible
- **Case 2:** $\text{out}(x_i) \geq 3$ — eliminate 5 gates
- **Case 3:** $\text{out}(x_i) = \text{out}(x_j) = 2$
Proof

- **Case 1:** $\text{out}(x_i) = 1$ — impossible
- **Case 2:** $\text{out}(x_i) \geq 3$ — eliminate 5 gates
- **Case 3:** $\text{out}(x_i) = \text{out}(x_j) = 2$
 - **Case 3.1:** x_i and x_j feed exactly the same two gates — impossible
Proof

- **Case 1**: \(\text{out}(x_i) = 1\) — impossible
- **Case 2**: \(\text{out}(x_i) \geq 3\) — eliminate 5 gates
- **Case 3**: \(\text{out}(x_i) = \text{out}(x_j) = 2\)
 - **Case 3.1**: \(x_i\) and \(x_j\) feed exactly the same two gates — impossible
 - **Case 3.2**: \(x_i\) and \(x_j\) feed different gates — eliminate 5 gates
Case 1: $\text{out}(x_i) = 1$

assigning the value 0 to x_j makes the circuit independent of x_i while the function must still depend on x_i, a contradiction
Case 2: \(\text{out}(x_i) \geq 3 \)

assigning the value 1 to \(x_i \) eliminates at least 5 gates
Case 3.1: out(x_i) = out(x_j) = 2 and they feed exactly the same two gates

the circuit does not distinguish between
{$x_i = 0, x_j = 1$} and {$x_i = 1, x_j = 0$}, a contradiction
Case 3.2: \(\text{out}(x_i) = \text{out}(x_j) = 2 \) and they feed different gates

assigning 0 to \(x_j \) eliminates 3 gates and leaves only one wire from \(x_i \)
Thank you for your attention!