
Tight upper bound on splitting by linear
combinations for pigeonhole principle ?

Vsevolod Oparin1,2

1 St. Petersburg Academic University
8/3 Khlopina, St.Petersburg, 194021, Russia

2 Steklov Institute of Mathematics at St. Petersburg,
27 Fontanka, St.Petersburg, 191023, Russia

oparin.vsevolod@gmail.com

Abstract. The usual DPLL algorithm uses splittings (branchings) on
single Boolean variables. We consider an extension to allow splitting on
linear combinations mod 2, which yields a search tree called a linear
splitting tree. We prove that the pigeonhole principle has linear splitting
trees of size 2O(n). This is near-optimal since Itsykson and Sokolov [1]
proved a 2Ω(n) lower bound. It improves on the size 2Θ(n logn) for splitting
on single variables; thus the pigeonhole principle has a gap between linear
splitting and the usual splitting on single variables. This is of particular
interest since the pigeonhole principle is not based on linear constraints.
We further prove that the perfect matching principle has splitting trees
of size 2O(n).

1 Introduction

Splitting is a well known method for solving NP-hard problems. In the case of the
satisfiability problem for a Boolean CNF formula, the highly successful DPLL
algorithms are based on splitting [2,3]. DPLL works in the following way to
search for satisfying assignments for a CNF formula φ. The algorithm chooses a
variable x and a first value α to substitute. The algorithm substitutes x = α and
runs recursively on the simplified formula φ|x=α. If this does not succeed, it tries
φ|x=1⊕α. If there is no success again, the algorithm returns FAIL. Otherwise, it
returns a satisfying assignment.

There is extensive research on hard examples for DPLL algorithms. It is well
known that systems of linear equations mod 2, such as the Tseitin tautologies, are
hard for DPLL and resolution [4,5,6,1]. However, they can be quickly solved by
splitting on linear combinations mod 2. Thus it is natural to consider generalizing
DPLL to use linear splitting.

A linear splitting algorithm maintains a system of linear equations over F2.
Initially, the system is empty. Instead of choosing a single variable, the algorithm
chooses a linear form

∑
i αi · xi and a first value β. The algorithm adds the

? Research is partially supported by the Government of the Russian Federation under
Grant 14.Z50.31.0030.

equation
∑
i αi ·xi = β to the system and runs itself recursively. The second call

runs with the equation
∑
i αi · xi = 1 + β.

On every step of the recursion the algorithm checks three conditions before
splitting again.

– If the system is inconsistent, the algorithm backtracks. This condition can
be checked in polynomial time by Gaussian elimination.

– If the system violates any single clause, the algorithm backtracks. The system
violates a clause C = l1 ∨ l2 ∨ · · · ∨ lk, if for every i ∈ [k] the system plus
the equation li = 1 is inconsistent. All clauses can be checked in polynomial
time.

– If the system has exactly one solution, the algorithm returns a satisfying
assignment. This is also can be checked by Gaussian elimination.

Otherwise, the algorithm selects a linear form for the next splitting. The entire
execution tree is a binary tree called a linear splitting tree.

Several prior works combine linear substitutions and splitting. For example,
the recent algorithm of Seto and Tamaki [7] solves the satisfiability problem for
an arbitrary formula of linear size c ·n in 2(1−µc)·n steps using splitting by linear
forms. Kulikov and Demenkov [8] use a formula which is non-trivial up to the
linear number of linear substitutions to show a lower bound of 3n− o(n) for the
circuit complexity over the full binary basis.

Itsykson and Sokolov [1] provide a family of hard formulas for linear splitting.
In particular, they prove that the pigeonhole principle, where m pigeons fly to
n holes, has no linear splitting tree of size less than 2Ω(n). On the other hand, it
is known that splitting by single Boolean variables gives a tree of size 2O(n logn)

and this bound is tight [9]. So it is natural to ask whether the bound for the
pigeonhole principle with linear splitting is tight.

We answer this by showing that the pigeonhole principle has a linear splitting
tree of size 2O(n). The pigeonhole principle is not based on linear constraints, so
this gap between splitting by single variables and by linear forms is interesting.

We also consider the perfect matching principle built on arbitrary graphs.
Any graph of odd cardinality has a polynomial-size splitting tree [1], but nothing
is known about graphs of even cardinality. For an arbitrary n, we prove a 2O(n)

upper bound on splitting trees for graphs on n vertices.

2 Preliminaries

We will use the following notation: [n] = {1, 2, . . . , n}. Let X = {x1, . . . , xn}
be a set of variables that take values from F2. A linear form is a polynomial∑n
i=1 αi · xi over F2.
Consider a binary tree T with edges labeled by linear equalities. For every

vertex v of T we denote by ΦTv the system of all equalities that are written along
the path from the root to vertex v.

A linear splitting tree for a CNF formula ϕ is a binary tree T with the
following properties. Every internal node is labeled by a linear form that depends

2

on variables from ϕ. For every internal node labeled by a linear form f , one of
the incident edges going to the children is labeled by f = 0, and the other one
is labeled by f = 1.

For every leaf v of the tree exactly one of the following conditions holds: 1)
The system ΦTv has no solution. We call such leaf degenerate. 2) The system
ΦTv is satisfiable but violates a clause C of the formula ϕ. We say that such leaf
violates clause C. 3) The system ΦTv has exactly one solution and the solution
satisfies the formula ϕ. We call such leaf satisfying.

A linear splitting tree may be viewed as a tree of recursive calls for the
algorithm solving SAT for the CNF formula ϕ. The algorithm maintains a system
of linear equations Φ and starts with a given formula ϕ and Φ = True. Given a
formula ϕ and a system of linear equations Φ, the algorithm looks for a satisfying
assignment of ϕ ∧ Φ. At every step the algorithm chooses a linear form f and a
value α ∈ F2 and makes two recursive calls: on the input (ϕ,Φ ∧ (f = α)) and
on the input (ϕ,Φ ∧ (f = 1 + α)).

The algorithm backtracks in one of the three cases: 1) The system Φ has no
solution; 2) The system Φ contradicts a clause C of the formula ϕ. (A system Ψ
contradicts a clause (l1 ∨ l2 ∨ · · · ∨ lk) iff for all i ∈ [k] the system Ψ ∧ (li = 1) is
unsatisfiable.) 3) The system Φ has a unique solution that satisfies ϕ. All three
cases can be checked in polynomial time.

Note that if it is enough to find merely one satisfying assignment, the algo-
rithm may stop at the first satisfying leaf. In the case of unsatisfiable formulas,
the algorithm must traverse the whole splitting tree.

Proposition 1. [1] For every linear splitting tree T for a formula ϕ it is possible
to construct a splitting tree without degenerate leaves. The number of vertices in
the new tree is at most the number of vertices in T .

3 Upper bound for the pigeonhole principle

Let we have m pigeons and n holes. Every pigeon should fly to at least one hole.
The pigeonhole principle states that if m > n, there exists a hole with at least
two pigeons inside.

We encode the reverse statement into an unsatisfiable CNF formula. For
i ∈ [m] and j ∈ [n] let xi,j be a variable such that the i-th pigeon flies to the
j-th hole iff xi,j = 1.

We encode the fact that the i-th pigeon flies somewhere by the clause∨
j∈[n]

xi,j .

Also we encode, that the j-th hole accepts at most one pigeon by the set of
clauses

¬xi1,j ∨ ¬xi2,j
for every i1 6= i2 ∈ [m]

We denote the conjunction of all these clauses by PHPmn . Obviously, the
formula PHPmn is unsatisfiable if m > n.

3

Theorem 1. For all m > n there exists a linear splitting tree for PHPmn of size
2O(n).

Proof. The formula PHPn+1
n is a subformula of PHPmn . So it is enough to build

a tree for PHPn+1
n only.

We construct the tree by induction on n. The base n = 1 is trivial.

For n > 1, we reduce PHPn+1
n to multiple copies of PHP

n/2+1
n/2 . This is done

by building a linear splitting tree T of size 2O(n). Every leaf of T either will

violate one of the clauses or will correspond to an instance of PHP
n/2+1
n/2 . (The

second kind of leaves will become the root of a tree for PHP
n/2+1
n/2 .)

The logarithm LG(n) of the size of the whole splitting tree for PHPn+1
n can

be expressed by the inequality

LG(n) ≤ log(2O(n) · 2LG(bn/2c)) = O(n) + LG(bn/2c).

Hence LG(n) = O(n). So the size of the tree is 2O(n).

We split the pigeons into two almost equal parts L = [1, b(n + 1)/2c] and
R = [b(n + 1)/2c + 1, n + 1]. We refer to these parts as “left” and “right”,
respectively. For every hole j we define two linear forms:

LEFT(j) =
⊕

i∈L xi,j ,
RIGHT(j) =

⊕
i∈R xi,j .

The tree T starts with a full binary tree TQ of height 2n. Every branch in TQ
queries the values LEFT(j) and RIGHT(j) for every hole j. So TQ has 22n leaves.
T will be defined from TQ by replacing each leaf ` of TQ with a polynomial-size
subtree T`. In each T`, all but possibly one of its leaves will be labeled by violated
clauses (see Figure 1).

Fix a leaf ` of tree TQ. For each hole j, we have fixed values of LEFT(j) and
RIGHT(j). There are four cases.

1. LEFT(j) = 1, RIGHT(j) = 1.

2. LEFT(j) = 0, RIGHT(j) = 1.

3. LEFT(j) = 1, RIGHT(j) = 0.

4. LEFT(j) = 0, RIGHT(j) = 0.

If Case 1 holds for any hole j, the splitting tree T` has size O(n2) and finds
a violated clause. T` can be described as a tree of recursive calls of the following
algorithm. First, we go through all pigeons in the left part and split by xi,j
for i ∈ L. Once xi,j = 1 is found, we go through the pigeons of the right part
and do the same until we find xi′,j = 1. Both variables exist since LEFT(j) =
RIGHT(j) = 1. Once two non-zero variables are found, we return a violated
clause.

Otherwise, we form T` by chaining together splitting trees Tj , one for each
hole j. Tj is formed depending on which of the Cases 2-4 holds.

4

2. Suppose Case 2 holds, so LEFT(j) = 0. The leaves of the tree Tj either will
violate an injectivity clause for hole j or will ensure that no left pigeon flies
to hole j. The tree Tj has the following structure. For every left pigeon i we
split by the variable xi,j . If xi,j = 1, we can find a violated clause. Since
LEFT(j) = 0, there must be another xi′,j = 1 for i′ ∈ L. We split by xi′,j
for every pigeon i′ ∈ L\{i} and find a violated clause.
Otherwise, the values for all left pigeons i ∈ L are zero. In this case, we come
to a leaf at which we know no left pigeon flies to the j-th hole.

3. Suppose Case 3 holds, so RIGHT(j) = 0. The tree Tj is formed dually as
above, and each leaf of Tj either will violate an injectivity clause for hole j
or will ensure that no right pigeon flies to hole j.

4. Suppose Case 4 holds, so both LEFT(j) = 0 and RIGHT(j) = 0. Tj is
formed as in the previous two cases, but now we split on xi,j for all pigeons
i. Each leaf of Tj either will violate an injectivity clause or will ensure that
no pigeon flies to hole j.

TQ

polynomial-size trees

PHPm1
bn/2c PHPm2

bn/2c PHPm3
bn/2c PHPm4

bn/2c

T

Fig. 1. Tree structure for PHPmn . The small polynomial-size trees contain trees Tj
chained together.

By design every tree Tj has exactly one leaf not labeled by a violated clause.
We call such a leaf free. We connect all trees Tj each to the next one using free
leaves, forming a chain of trees. The chain of trees forms the tree T` and has size
O(n3). We attach chain T` to the leaf `.

The last tree in the chain has exactly one free leaf. At this leaf if any hole
j has LEFT(j) = 0, then no pigeon flies there from the left part L. Likewise,
if any hole j has RIGHT(j) = 0, then no pigeon flies there from the right part
R. We separate holes into two disjoint parts: the first part has the holes j with
LEFT(j) = 1, the second part has the holes j with RIGHT(j) = 1. The pigeons
in L can fly only to the first part, the pigeons in R can fly only to the second
part.

We show that at least one part of holes is less than the number of pigeons
that fly there. Let hl and hr be the number of holes with LEFT(j) = 1 and
RIGHT(j) = 1, respectively. We prove that either hl < |L| or hr < |R| by
contradiction. Suppose hl ≥ |L| and hr ≥ |R|. Since the sets of holes of the
subformulas are distinct, hl + hr ≤ n.

5

So

n ≥ hl + hr ≥ |L|+ |R| = n+ 1,

which is impossible.

Since L and R are less than dn/2e, we can take a set of holes and pigeons

that form a formula PHP
n/2+1
n/2 and attach a tree for this formula to the free

leaf of the chain (see Fig. 1).

4 Upper bound on the perfect matching principle

In terms of CNF encoding, the perfect matching principle is similar to the pi-
geonhole principle. The formula PMPG, built on an arbitrary graph G = 〈V,E〉,
encodes that every vertex has exactly one edge, taken into the matching. For-
mally, we provide a variable xe for each edge e ∈ E. For every vertex v we encode
that there exists at least one edge taken into the matching:∨

u∈V :(u,v)∈E

x(u,v).

Also for every pair of edges (u, v) and (w, v) with a common endpoint v we
encode, that they can not be both taken into the matching:

¬x(u,v) ∨ ¬x(w,v).

The formula PMPG is the conjunction of all these clauses. Obviously, if the graph
G has no perfect matching, the formula is unsatisfiable.

Itsykson and Sokolov proved the following proposition.

Proposition 2 ([1]). Let G be a graph on an odd number of vertices. Then the
formula PMPG has a splitting tree of a polynomial size.

Using Theorem 1 and Proposition 2, we prove the following theorem. Note
that n can be even.

Theorem 2. Let G = 〈V,E〉 be a graph on n vertices, which has no perfect
matching. Then the formula PMPG has a splitting tree of the size 2O(n).

Proof. We use Tutte’s criterion to prove the theorem.

Criterion 1 (Tutte, 1947) A graph G has a perfect matching iff for any set
S ⊆ V the following statement holds: o(G − S) ≤ |S|, where G − S denotes
the graph G without vertices of the set S and o(G − S) denotes the number of
connected components with odd cardinality in the obtained graph.

We reduce the problem to the pigeonhole principle. Suppose the graph G
has no perfect matching. Let S ⊆ V be a set such that |S| < o(G − S).

6

Let v1, v2, · · · , vn be the vertices of the set S and C1, C2, · · · , Cm be the odd-
cardinality connected components of the graph G − S. For every vertex vj and
connected component Ci we introduce a variable

yi,j =
⊕

(u,vj)∈E,u∈Cj

xu,vj .

By the criterion m > n. Let us construct a formula PHPmn , built on y’s, and
build a splitting tree Ty of size 2O(n) as it was done in Theorem 1. Every node
in the tree Ty has a linear form on y’s.

We build a tree Tx using the structure of Ty. We expand all y’s into the xor
of x’s. At some nodes of Tx we may have empty linear forms: no edge connects
a vertex of S and a connected component of G − S. In this case, one of the
outgoing edges is labeled by the equation 0 = 1. We truncate the corresponding
subtree since the system becomes inconsistent.

We replace all leaves of Ty by polynomial-size trees that finds violated clauses
of PMPG. Fix a leaf ` of Ty labeled by a clause C`. We replace corresponding
leaf of Tx by a tree T`. The structure of T` depends on clause C`. There are two
possible cases.

1. Clause C` is of type ¬yi1,j ∨ ¬yi2,j . Then there exist two connected compo-
nents Ci1 and Ci2 and vertex vj ∈ S s.t. yi1,j = 1 and yi2,j = 1.

2. Clause C` is of type
∨
j yi,j . Then there exists connected component Ci s.t.

yi,j = 0 for every vertex vj ∈ S.

1. We have at least two edges in the matching coming to the vertex vj . Tree T`
corresponds to the recursive tree of the following algorithm that finds these edges.
Check every edge e between vj and Ci1 . Once the edge e1 with xe1 = 1 is found,
switch to the second component Ci2 and repeat the search. Once the second edge
e2 with xe2 = 1 is found, return falsified clause ¬xe1 ∨ ¬xe2 . Both edges exist
since yi1,j =

⊕
(u,vj)∈E,u∈Ci1

x(u,vj) = 1 and yi2,j =
⊕

(u,vj)∈E,u∈Ci2
x(u,vj) = 1.

Tree T` has size O(n2).

2. We have yi,j = 0 for every vj ∈ S. It means that either xu,v = 0 for every
u ∈ Ci and v ∈ S or there are at least two x(u,vj) = 1 for a fixed vertex vj .

First, we ensure that the variables xu,v = 0. Tree T` begins with a splitting
tree Ti that corresponds to the following algorithm. The algorithm goes through
all variables xe for all edges between S and Ci. Once, the algorithm finds x(u,vj) =
1 for a vertex vj , it starts to look for the second x(u′,vj) = 1 for all u′ ∈ Ci\{u}.
There must exist such a variable since yi,j =

⊕
(u,vj)∈E,u∈Ci

x(u,vj) = 0. Once
the variable is found, the algorithm returns a violated clause.

If all variables are zero, we end up at a free leaf of Ti where Ci has no outgoing
edge taken into the matching. We consider Ci as a graph of the odd-cardinality
and use Proposition 2 to get a polynomial-size splitting tree TCi

. We attach TCi

to the free leaf of tree Ti forming T`.

7

5 Open question

Tight bounds on splitting trees for perfect matching is still an open question.
Itsykson and Sokolov provided polynomial-size splitting trees for graphs on odd
number of vertices. We have just proved, that formula built on an arbitrary
graph has a splitting tree of size 2O(n). It is an interesting question if the formula
PMPG has exponential lower bounds for arbitrary graphs or even such case can
be solved with polynomial-size splitting trees.

Acknowledgements

The work is performed according to the Russian Government Program of Com-
petitive Growth of Kazan Federal University. The author is grateful to Dmitry
Itsykson for fruitful discussions and to Sam Buss for valuable advices that im-
prove readability of the paper.

References

1. D. Itsykson and D. Sokolov, Mathematical Foundations of Computer Science 2014:
39th International Symposium, MFCS 2014, Budapest, Hungary, August 25-29,
2014. Proceedings, Part II, ch. Lower Bounds for Splittings by Linear Combina-
tions, pp. 372–383. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014.

2. M. Davis, G. Logemann, and D. Loveland, “A machine program for theorem-
proving,” Communications of the ACM, vol. 5, pp. 394–397, 1962.

3. M. Davis and H. Putnam, “A computing procedure for quantification theory,” Jour-
nal of the ACM, vol. 7, pp. 201–215, 1960.

4. G. S. Tseitin, “On the complexity of derivation in the propositional calculus,” Za-
piski nauchnykh seminarov LOMI, vol. 8, pp. 234–259, 1968. English translation of
this volume: Consultants Bureau, N.Y., 1970, pp. 115–125.

5. A. Urquhart, “Hard examples for resolution,” JACM, vol. 34, no. 1, pp. 209–219,
1987.

6. M. Alekhnovich, E. A. Hirsch, and D. Itsykson, “Exponential lower bounds for
the running time of DPLL algorithms on satisfiable formulas,” J. Autom. Reason.,
vol. 35, no. 1-3, pp. 51–72, 2005.

7. K. Seto and S. Tamaki, “A satisfiability algorithm and average-case hardness for
formulas over the full binary basis,” in Computational Complexity (CCC), 2012
IEEE 27th Annual Conference on, pp. 107–116, June 2012.

8. E. Demenkov and A. S. Kulikov, Mathematical Foundations of Computer Science
2011: 36th International Symposium, MFCS 2011, Warsaw, Poland, August 22-26,
2011. Proceedings, ch. An Elementary Proof of a 3n - o(n) Lower Bound on the
Circuit Complexity of Affine Dispersers, pp. 256–265. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011.

9. S. Dantchev and S. Riis, “Tree resolution proofs of the weak pigeon-hole principle,”
in Computational Complexity, 16th Annual IEEE Conference on, 2001., pp. 69–75,
2001.

8

