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Abstract 

We offer a novel approach to agent-based economic modeling. 
Previous work has modeled learning agents as neural 
networks, sets of fuzzy rules and other learning algorithms. In 
this paper, we present an approach based on representing an 
agent's production cycle as a finite state machine. We show 
that the finite state machine model offers natural 
representations for basic economic features such as 
complementary and substitute commodities and various 
production strategies with transition costs. Our experimental 
results show that the model behaves in perfect accordance 
with basic economic laws that shows the model's validity. 
 

1. Introduction 
Agent-based modeling has played an increasingly 
important role in understanding market behaviour. 
Existing research has been primarily centered on 
modeling financial markets with agents either following 
predefined strategies or learning the optimal strategy via 
different learning algorithms. 

We aim to create a general equilibrium model 
representing a market of companies producing different 
commodities with different manufacturing processes, a 
model that would accurately reflect the behaviour of 
supply, demand, and prices in a real economy. A 
classical model of this market is the well-known 
Walrasian model for N different commodities produced 
with M different resources (production factors), where 
general equilibrium is achieved by maximizing each 
agent's profit; see (Black, 1995) for a detailed 
exposition. The general equilibrium model leads to nice 
mathematical properties (Walras' Law and others). 
However, this model assumes each agent is perfectly 
rational and computationally unbounded and the general 
equilibrium is static, while the real world market tries to 
achieve equilibrium in a constantly changing world. 
Thus, the need arises to offer agent-based models with 
limited and learning agents. 

(Zimmermann, Neuneier, and Grothmann, 2001) 
offer an agent-based model of the FX-Market where 
agents base their decisions on incomplete information 
coming from a limited number of error-prone sources of 
information. The agents are modeled as error-correcting 
neural networks. (Kooths, Mitze, and Ringhut, 2004) 
and (Kooths, 1999) create a macroeconomic model 
where agents are modeled as neural networks with 
additional fuzzy rules representing knowledge about the 
economy. Other approaches have also been tested; for a 
detailed survey of agent-based economy models see 

(LeBaron, 2006), (Tesfatsion, 2006) and references 
therein. 

Agent-based models with agents represented as 
finite state machines (FSMs) are widely used in 
computer animation (see, for example, (Rudomin, 
Millan, and Hernandez, 2005)), while learning FSMs 
has been already applied to automata-based 
programming developed by (Shalyto and Tukkel, 2001). 

Developing systems of reactive agents with finite 
automata was suggested in (Naumov, Shalyto, 2003). 
The authors assert that their approach can allow to 
create systems of self-learning adaptive agents. The 
approach was further developed in (Shalyto, Naumov, 
Korneev, 2005), where interaction between objects was 
considered as interaction between finite automata. 
Finally, the theory was applied to creating a reactive 
multi-agent real-life environment, namely a system of 
robots who deliver items from one place to another 
(Yartsev, Korneev, Shalyto, Kotov, 2005). All robots in 
this system were controlled by finite automata logic. 

However, as far as we know this is the first agent-
based economy simulation where agents would be 
represented and trained as FSMs. In this paper, we fill 
the gap by constructing an economic model with 
adaptive agents based on finite state machines. The 
underlying FSM of an agent represents its production 
cycle. We have implemented a model economy with 
these agents, and results of our experiments were in 
good accordance with basic economic laws. 

The paper is organized as follows. Section 2 
describes the model itself: in 2.1, we show how to 
model a company with finite state machines, and 2.2 
describes the market model in our approach and shows a 
concrete example of a production cycle. Section 3 lists 
the results of the experiments; we show that the model 
behaves just as the economic laws predict, thus 
establishing that the model is valid. 

2. Description of the model 

2.1. Modeling production with finite 
state machines 
A finite state machine is a directed graph with captions 

on edges ΣE,V,=FA  where V is the set of vertices, 

∑ is the FSM's alphabet (the set of input events), 

and { }ΣσV,vv|σvv=e=E ∈∈21,2,1,  is the set 

of edges (possible transitions). An 



edge σvv=e 2,1, means that transition from v1 to v2 

with input event σ is possible. A finite state machine has 

two kinds of special vertices: a unique Vs∈ is labeled 

as the initial vertex and some { } Vt,t K ⊂...0, represent 

the set of terminal vertices. Sometimes it is reasonable 
to associate both income and outcome events with each 

edge. Then ΠΣ,E,V,=Tr , 

{ }ΠπΣ,σV,vv|πσ,vv=e=E ∈∈∈21,2,1,  

(these FSMs are usually called transducers). A path in a 
FSM is an ordered set 

,πσvv=e|v,evev=P L 00,1,0,01,1,0,0, ...  

1LL1L1 π,σvv=e,,πσvv=e −−− 11,0,11,2,1, ...  

We call the word ( ) 1L0, σ,σσ=PILabel −...1,  the input 

label of the path P, and by the output label of the path P 

we mean the word ( ) 1L0, π,ππ=POLabel −...1, . A 

cycle is a path with identical start and finish: Lv=v0 . 

We describe a complete working example of a 
production cycle FSM below; for more information on 
FSMs we refer to (Lothaire 2005). 

We model the production cycle of each agent as a 
finite state machine. The state of the FSM corresponds 
to a certain stage of the production process. The initial 
state corresponds to the zero-stage of the production; the 
product then travels from one production department to 
another, as the FSM travels from one state to another. 

Each state transition corresponds to performing a 
certain production stage and, as such, requires a certain 
amount of resources. We add an internal resource pool 
for each agent and consider the resources necessary to 
complete a certain production stage as the input event 
for the corresponding transition. The transition may take 
place only if enough resources are available. 

A product travels from one production stage to 
another until it is ready. A complete product 
corresponds to a terminal state of the FSM. Then the 
product goes to a “warehouse” where it awaits 
deployment to the market. In the FSM terms, we model 
a certain production stage as a transition from a terminal 
state to the initial state; to this transition we associate 
the resources necessary to store and transport the 
complete product to the market. 

Each production stage produces something; thus, we 
add to each edge a set of output resources that get 
produced during this transition. It is natural for finite 
state machines to have both input and output (entry and 
exit) actions; in our model, the entry action consumes 
resources, while the exit action produces new resources. 

Besides a natural representation of a real-life 
company, the FSM formalism has several formal 
advantages. First, it easily allows an agent to be flexible. 
In the real world, an agent can reorganize his or her 
company to produce different commodities (at the very 
least, different kinds of a commodity). In the FSM 
model, we allow the FSM to be non-linear (to have 

forks). Depending on the path an agent takes, different 
commodities will be consumed and produced. 

Second, while in the real world agents may adapt 
their strategies to changing market conditions, it takes 
time and resources to complete the adaptation. In the 
FSM model, this “transition cost” is modeled naturally: 
if a FSM is currently in a non-terminal state, it will take 
time and resources to reach the terminal state before the 
agent can choose a different path starting from the initial 
state. 

Finally, in the real world the agents' behaviour is 
only suboptimal: agents do not possess complete 
information about the market and sometimes cannot 
compute the absolute best strategy. With this in mind, 
we model the agents as having rather simple strategies. 

An agent is modeled as a pair SFSM,  consisting of a 

FSM and a strategy S. 

2.2. Modeling the market 
In this subsection, we describe how the market itself and 
interaction between agents are represented in our model. 
We model the market as a virtual “bulletin board” where 
each agent may post an offer indicating that he is willing 
to sell a certain amount of a certain product for a certain 
price. When an agent needs to buy a certain product, he 
queries the market for the selling offers on this 
particular product. To model insufficient information, 
we have the market to return only a certain random 
subset of the offers (the offers that this agent “knows 
of”). The agent then reviews these offers, chooses the 
most profitable, and satisfies them (buys the necessary 
product). 

Note how the model naturally represents 
complementary goods and substitutes. In economics, 
commodities are called complementary if the cross-
elasticity of their demand 
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is positive, and the commodities are substitutes if the 

cross-elasticity is negative (here BQ0 , BQ1  – demand 

values for good B before and after the price of 

commodity A changed, AP1 ,  AP0  – prices on the 

commodity A). In the FSM model, complementary 
goods will often appear on consecutive edges of the 
production finite state machine, while substitute goods 
will appear on parallel edges or edges of parallel paths 
of the FSM. This results in that whenever an agent buys 
a certain commodity, his demand for the 
complementaries increases (he is halfway through the 
production, so he needs to complete it), while his 
demand for the substitutes decreases (he has already 
come through a certain path, and he will not return to a 
parallel edge in this cycle). 

Finally, let us present a complete example of a 
production cycle in our model. The FSM belonging to 
an agent D is depicted on Fig. 1. 



 
The initial state is marked as 0, while 3 and 5 are 

terminal states. Labels with – and + denote resource 
costs and resource outcome, respectively; the example 
has four different resources, from R1 to R4. Here is a 
sample production cycle. 
 1. Registering offers. Suppose that other agents  F1 
... FN have registered the following offers: 

<R1, price=1.0, amount=12.0>, 
<R1, price=2.0, amount=34.0>,  
<R1, price=3.0, amount=45.0>, 
<R2, price=10.0, amount=67.0>,  
<R3, price=4.0, amount=89.0>. 

 2. Deciding upon the production path. Agent D 
analyses situation on the market and decides that the 
path {0, 1, 2, 3} is expected to be better than the path 
{0, 4, 5}. We do not specify here how agent D chooses 
his path; he may be guided by a reinforcement learning 
algorithm or by a complete statistical analysis of the 
market history. 
 3. Buying resources. To begin his production cycle, 
A needs to buy 1.0 of the resource R1. He sends a 
request for purchasing R1. The market randomly selects 
a subset of registered propositions, say, 

<R1, price=1.0, amount=12.0>, 
<R1, price=3.0, amount=45.0>, 

and shows this set to D. Agent D chooses the most 
profitable proposition, with the price of 1.0, and makes 
his purchase. 
 4. Transition. Agent D now has the necessary 
resources to complete the first step of his strategy and 
move to state 1. 
Note that after these steps agent D is completely 
committed to his chosen production path; he cannot 
switch to producing R4 before completing this round of 
R3, even if in state 2 he suddenly discovers that the 
market is desperately lacking R4, and the prices could 
be exorbitant. We now skip a few steps as D gathers all 
necessary resources and completes his production cycle. 
Suppose that A has just made the transition from state 3 
back to state 0 and obtained 10.0 units of R3. 
 5. Registering a selling offer. As D now has a 
surplus of R3, he will be willing to register an offer to 
sell R3. Again, we do not precisely specify the decision 
rule, but as input D should consider both his production 
cost and the market situation which he is able to peek by 
viewing the (random subset of) offers on R3. 

After this step, the production cycle repeats. D is 
now able to choose another path. 

3. Experiments 
We have implemented the FSM market model and 
performed experiments that were aimed to check the 
basic economic facts about the model; they should serve 
as “sanity checks” for our modeling method. As a 
general result, the model turned out to be extremely 
viable, in clear-cut cases always performing just as the 
economic theory predicts. Thus, we expect it to have 
some predictive power as well, but this should be 
supported by further practical experiments. In this 
section, we describe the experiments we have carried 
out. 

3.1. Production-possibility frontier 
The production-possibility frontier is a curve that shows 
the maximal volume of producing a certain commodity 
dependent on the level of production of another 
commodity. This function should be decreasing, as 
increasing the level of production of a certain 
commodity should lower the amount of resources the 
market is ready to assign to producing other 
commodities. Besides, it should be convex, as in 
shifting from  commodity A to commodity B the market 
would first shift the resources that are most useful for B 
and least useful for A. 

Our experimental scenario included two 
commodities: A (automobiles) and B (blankets). Each 
agent is able to produce both commodities, and agent's 
FSM has several paths corresponding to different output 
ratio (automobiles)/(blankets) of the commodities that 
this agent produces during a production cycle. 
Moreover, each agent has a personalized production 
FSM that has its own (randomly varied) production 
costs and A/B ratios. A certain “command center” orders 
some agents to switch production from A to B, and the 
agents (with some delay, as described above) switch 
production; the remaining agents act in their own 
interest. Fig. 2 shows the results of this experiment: the 
production-possibility frontier is almost convex, with 
small fluctuations that can be related to suboptimal 
behaviour of the agents. 

3.2. Overstocking 
In this experiment we generated a world where each 
production cycle of each agent generates some surplus; 
in other words, each agents generates more resources 
than it consumes. In the real world, after an initial surge 
the overproducing warehouses would be full, and prices 
would experience a steady monotone decrease as the 
overproduction continues. As prices drop, some agents 
should become unprofitable and should quit the market 
(switch to the strategy of producing and consuming 
nothing), which gradually compensates overproduction 
and stabilizes the prices.  

 

Fig 1. A sample production FSM 



Fig. 3 depicts the results of the experiment; the 
graph on the left shows how prices behave with time, 
the graph in the middle shows how many agents are 
active (produce something) at this time, and the graph 
on the right shows the gross sales volume. Both curves 
behave just as predicted reach an equilibrium. 

3.3. Equilibrium 
In the real world, overproduction is natural, and it is 
naturally compensated by consumers who buy end 
products. To model this situation, we introduced a 
special agent (representing the consumers) that buys 
surplus resources. Fig. 4 shows that in this case, 
equilibrium is reached faster, and both sales and prices 
stabilize at higher levels. 

3.4. Raw materials and end products 
In this experiment we divided nine commodities of the 
model into two groups: {r0, r1, r2} and {r3, ..., r8}. We 
assume that production of a commodity depends 
strongly on other commodities of its group and to a 
much lesser extent on the commodities of the other 
group. At time 1000, we introduce an agent who buys 
lots of r0, thus raising prices. As a result, prices for r1 
and r2 also rise, while prices for r3,...,r8 stay virtually 
the same. Fig. 5a shows the price graph. 
 

3.5. Complementaries and substitutes 
In the first part of this experiment, r0, r1, and r2 are 
complementaries, that is, we increase the probability 
that they appear on consecutive edges of the production 
FSMs. An increase in the price of r0 should cause a 
decrease in demand on r1 and r2. 

Fig. 5b shows what happens if at time 1000 we 
introduce an agent who buys lots of r0. The market 
reacts by rising all prices except for r1 and r2: since 
producers buy less r0, they need less r1 and r2, too. 
Fig. 6a shows the same experiment with only these three 
commodities left on the market, and Fig. 6b shows the 
results of an experiment with three commodities, among 
which r0 and r2 are complementaries: an increase in 
the price of r0 causes an increase in the price of r2. 

In the second part of this experiment, we introduce 
r0, r1, and r2 as substitutes, that is, increase the 
probability that they appear on parallel paths in 
production FSMs. At time 600, we introduced an agent 
who buys lots of r0, thus increasing its price; as a 
result, agents begin to use less r0 and more r1 and r2. 
Fig. 6a shows the prices volume graphs for the three 
resources in this experiment. Fig. 7 shows the demand 
volumes for experiment with substitute commodities. 

4. Conclusion 
In this paper, we introduced a novel approach to 
modeling agents that act as producers and consumers on 

 

Fig 2. The production-possibility frontier 

 

Fig 3. Overstocking: a – prices; b – active agents; c – gross sales 
 



a market. We model an agent's production as a finite 
state machine with spent and produced resources as 
entry and exit actions. We have shown that a finite state 

machine is a natural way to model a company's 
production, and have shown how to model the basic 
properties of an economic agent and basic types of 

 

Fig. 4. Equilibrium: a – gross sales volume; b – prices 

 
Fig. 5. Prices on a group of commodities: a – raw materials and end products, b – complementaries 

 

 

Fig. 6. Prices on complementary commodities: a – a group of three commodities; b – a group of two 

 

Fig. 7. Demand on substitute commodities 



market commodities via finite state machines. We have 
implemented the proposed model and performed 
experiments in order to verify that the model works, and 
it works indeed: in all experiments the model behaved 
as expected. 

As with any other model, we can point out the 
limitations of our approach. The primary limitation is 
that to create adequate results, the FSM agent-based 
model requires a large number of independent agents. 
This means that the model is applicable only to perfect 
competition markets and monopolistic competition 
markets. 

This paper is, to a large extent, a proof of concept, 
evidence in support of the validity of the FSM model. 
Further work should deal with different learning 
algorithms and different pricing strategies for the agents. 
We plan to experiment how different strategies compete 
with each other and how well different FSM learning 
algorithms perform in this model. The model provides a 
natural competitive environment for testing various 
FSM learning algorithms against each other. And, of 
course, the ultimate test for our model would be to learn 
on real data (for example, on the stock market data) and 
test its predictive power. 
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