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FEEBLY SECURE CRYPTOGRAPHIC PRIMITIVES

ABsTrRACT. In 1992, A. Hiltgen [9] provided first constructions of
provably (slightly) secure cryptographic primitives, namely feebly
one-way functions. These functions are provably harder to invert
than to compute, but the complexity (viewed as the circuit com-
plexity over circuits with arbitrary binary gates) is amplified only
by a constant factor (in Hiltgen’s works, the factor approaches 2).

In traditional cryptography, one-way functions are the basic prim-
itive of private-key schemes, while public-key schemes are constructed
using trapdoor functions. We continue Hiltgen’s work by providing
examples of feebly secure trapdoor functions where the adversary is
guaranteed to spend more time than honest participants (also by
a constant factor). We give both a (simpler) linear and a (better)
non-linear construction.

§1. INTRODUCTION

Modern cryptography has virtually no provably secure constructions.
Starting from the first Diffie-Hellman key agreement protocol [4] and the
first public-key cryptosystem RSA [20], not a single public-key crypto-
graphic protocol has been proven secure (naturally, there exist secure se-
cret key protocols, e.g., the one-time pad scheme [22,24]). An unconditional
proof of security would be hard to find indeed, since it would necessarily
imply that P # NP.

There are complete cryptographic constructions, both one-way func-
tions [15] and public-key cryptosystems [7] (see also [6]). However, the con-
ditional results they provide are not related to widely believed assumptions
of computational complexity (like P # NP). Moreover, the asymptotic na-
ture of these completeness results does not permit us to say anything about
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how hard is it to break a given cryptographic protocol for keys of a specific
length, which is exactly what one needs in practice.

At present, there is no hope to prove the security either in this “hard”
sense or in the sense of classical cryptographic definitions [5]. But if we
are unable to prove a superpolynomial gap between the complexities of
honest parties and adversaries, perhaps we can prove at least some gap?
In 1992, Alain Hiltgen [9] managed to present a function that is almost
twice (2 —o(1) times) harder to invert than to compute. His example is
a linear function over GF(2) with a matrix that has few non-zero entries
while the inverse matrix has many non-zero entries; the complexity gap
follows by a simple argument of Lamagna and Savage [14,21]: every bit
of the output depends non-idly on many variables and all these bits cor-
respond to different functions, hence a lower bound on the complexity of
computing them all together. The model of computation here is the most
general one: the number of gates in a Boolean circuit that uses arbitrary
binary Boolean gates. We have already noted that little more could be
expected for this model at present. For example, the best known lower
bound for the general circuit complexity of a specific Boolean function is
3n —o(n) (see [2,25]).

In this work, we construct another feebly secure cryptographic primi-
tive: namely, we present constructions of feebly secure trapdoor functions.
Of course, in order to obtain the result, we have to prove a lower bound
on the circuit complexity of a certain function. We use the gate elimi-
nation technique, which has been known from the 1970s and which has
been used in proving virtually all known bounds in general circuit com-
plexity [2,18,23]. New methods would be of great interest; alas, there has
been little progress in general circuit complexity since Blum’s result of
1984 [2]. Over the latest years, efforts in circuit complexity have been relo-
cated mostly towards results related to circuits with bounded depth and/or
restricted set of functions computed in a node (see, e.g., [1,8,13,19]). How-
ever, in our work we allow the most general By ; basis and do not restrict
the depth of an adversary; a restricted adversary makes little sense in the
cryptographic setting.

We do not introduce new techniques; thus, our main results are the
constructions. We give both a (simpler) linear and a (better) non-linear
constructions. Both our constructions consist of two parts, two functions
combined into one by direct sum. For the first of these functions, the adver-
sary’s task (following a cryptographic tradition, we will call him Charlie)
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is harder than the task of a sender encoding the message (Bob), and for
the second function the adversary is worse off than the decoding receiver
(Alice). We will show that if one part of the message is encoded in the first
way, and another in the second, then Charlie’s task will be harder than
the task of both Alice and Bob. Exactly speaking, the inversion complex-
ity for an adversary will be at least £ (respectively, 22) times higher than
the complexities of key generation, function evaluation, and inversion with
trapdoor in our nonlinear (resp., linear) construction.

The paper is organized as follows. In Section 2, we give basic definitions
of the notions used in this chapter. In Section 3, we establish certain com-
binatorial properties of the matrices we are working with (candidates for
hard functions). In Section 4, we present the basic gate elimination method
that will be used in further sections to prove lower bounds, and apply it
to linear feebly one-way functions; in Section 5, we show a nonlinear fee-
bly one-way construction. In Section 6 we present the constructions of a
linear and a nonlinear feebly secure trapdoor function (family of circuits).
In Sections 7 and 8 we prove their security. Section 9 concludes the paper.
This work is a joint journal version of [12,17].

§2. DEFINITIONS

Boolean circuits (see, e.g., [25]) are one of the few computational models
that allow for proving specific rather than asymptotic lower bounds on the
complexity. In this model, a function’s complexity is defined as the minimal
size of a circuit computing this function. Circuits consist of inputs and
gates, and gates can implement various Boolean functions.

We denote by B, ,, the set of all 2m2" functions f : B® — B™, where
B = {0,1} is the field with two elements.

Definition 1. Let Q2 be a set of Boolean functions f : B™ — B (m may
differ for different f). Then an Q-circuit is a directed acyclic labeled graph
with vertices of two kinds:

e vertices of indegree O (vertices that no edges enter) labeled by one

of the variables x1,...,x,, and
o vertices labeled by a function f € Q with indegree equal to the arity
of f.

Vertices of the first kind are called inputs or input variables; vertices of
the second kind, gates. The size of a circuit is the number of gates in it.
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Each gate of an 2-circuit computes some Boolean function. The circuit
complexity of a function f : B™ — B™ in the basis  is denoted by Cq(f)
and is defined as the minimal size of an Q-circuit that computes f (that
has m output gates which compute the result of applying function f to
input bits). We use circuits with arbitrary binary gates (this is known as
general circuit complexity), i.e., every gate of a circuit is labeled by one of
16 Boolean functions from B, ;. To avoid negation gates, we allow also to
define an output as the negation of the value obtained in a gate; to avoid
identity gates, we also allow to define an output as the value of a variable
or the negation of it. It is easy to see that constant gates 0 and 1 can also be
eliminated, i.e., we can assume that all gates in a circuit compute Boolean
functions that depend non-trivially on both inputs. In what follows, we
denote by C(f) the circuit complexity of f in this model.

We want the size of circuits breaking our constructions to be larger than
the size of circuits that implement honest parties. For one-way functions,
that means comparing computing to inverting. Following Hiltgen [9-11],
for every injective function of n variables f, € By, we can define its
measure of one-wayness as

C(fzh)
Mol =65
Hiltgen’s work was to find sequences of functions f = {f,}22, with a

large asymptotic constant llim infl Mpg(fn), which Hiltgen calls f’s order
—00 n>

of one-wayness. (He considers the case m = n; it remains an open problem
to see if considering m > n and thus injective and not bijective functions
may help.) We will discuss his results in more detail in Section 4.

In this context, we have to give a more detailed definition of a trapdoor
function than the regular cryptographic definition [5]: since we are inter-
ested in constants here, we must pay attention to all the details. The next
definition does not say anything about the complexity of evaluation and
the hardness of inversion, but merely sets up the dimensions.

Definition 2. For given functions pi,ti,m,c: N — N, a feebly trapdoor
candidate is a sequence of triples of circuits

C = {(Key,,, Eval,,Inv,,)} >~ |, where:

n=1>?

e {Key,}5%, is a family of sampling circuits Key,, : B" — BPI(W) x
Bti(n),
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e {Eval,}22, is a family of evaluation circuits Eval, : BPI(M x
B™(") — B gnd
o {Inv,}5%, is a family of inversion circuits Inv, : BH(® x Be(®) —
B™(n)
such that for every security parameter n, every seed s € B™, and every
mput m € Bm(n),

IHVn(Keme (S)a Eva‘ln (Keyn,l (S)a Hl)) = 1,

where Key,, ,(s) and Key,, 5(s) are the first pi(n) bits ( “public informa-
tion”) and the last ti(n) bits ( “trapdoor information”) of Key, (s), respec-
tively.

Informally speaking, n is the security parameter (the length of the ran-
dom seed), m(n) is the length of the input to the function, ¢(n) is the length
of the function’s output, and pi(n) and ti(n) are lengths of the public and
trapdoor information, respectively. In our constructions, m(n) = ¢(n) and
pi(n) = ti(n).

To find how secure a function is, one needs to know the size of the min-
imal circuit that could invert the function without knowing the trapdoor
information. In addition to the worst-case complexity C(f), we introduce
a stronger notion that we will use in this case.

Definition 3. We denote by C,(f) the minimal size of a circuit that
correctly computes a function f € By, on more than a fraction of its
inputs (of length n). Obviously, Co(f) < C(f) for all f and 0 < a < 1.

Definition 4. A circuit N breaks a feebly trapdoor candidate

C = {Key,,,Eval,,, Inv, }
on seed length n with probability o if, for uniformly chosen seeds s € B™
and inputs m € B

( P)r . [N(Keynvl(s),Evaln(Keynvl(s),m)) =m] > a.
s,m)€

A size s circuit that breaks a feebly trapdoor candidate
C = {Key,,,Eval,,, Inv, }
on seed length n in the sense of Definition 4 represents a counterexample
for the statement C,(Inv,) > s.
Remark 1. In fact, in what follows we prove a stronger result: we prove

that no circuit (of a certain size) can break our candidate for any random
seed s, that is, for every seed s, every adversary fails.
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Definition 5. We say that a feebly trapdoor candidate
C = {(Key,,, Eval,,, Inv,,)} >~

n=1
has order of security k£ with probability « if
Coz(fpi(n)Jrc(n)) Ca(fpi(n)Jrc(n)) Cll(fpi(n)+c(n)) Sk
C(Key,) ' C(Eval,) ~  C(lav,) -
where the function fuin)+cn) € Bpi(n)+e(n),m(n) mMaps

lim inf min
l—oon>l

(Keym1 (s), Eval, (Key, ;(s), m)) — M.

We say that a feebly trapdoor candidate has order of security k if it has
order of security k with probability o = %.

Example 1. We begin with simple examples. If there is no secret key at
all, that is, ti(n) = 0, then each feebly trapdoor candidate

{(Key,,, Eval,, Inv,)}

n=1

has order of security at most 1, since the sequence of circuits {Inv, }52,
successfully inverts it. If {(Key,,, Eval,,Inv,)} | implements a trapdoor
function in the usual cryptographic sense, then k& = oco. Moreover, k =
oo even if every adversary requires a superlinear number of gates. Our
definitions are not designed to distinguish between these (presumably very
different) cases.

Remark 2. One could consider key generation as a separate process and
omit its complexity from the definition of the order of security. However, we
prove our results for the definition stated above as it makes them stronger.
Remark 3. Let us note explicitly that we are talking about one-time
security. An adversary can amortize his circuit complexity on inverting
a feebly trapdoor candidate for the second time for the same seed, for
example, by computing the trapdoor information and successfully reusing
it. Thus, in our setting one has to pick a new seed for every input.

Over the rest of this paper, we develop the constructions of feebly trap-
door functions (that is, feebly trapdoor candidates with a nontrivial order
of security). We present two constructions based on two different feebly
secure one-way functions, linear and nonlinear.

§3. MATRICES OF HARD FUNCTIONS

Our linear constructions are based on a linear function f : B" — B"
shown by A. Hiltgen to be feebly one-way of order % [9,10]. We restrict
ourselves to the case when n = 0 (mod 4) for reasons that will presently
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become clear. Note that Definition 5 carries through this restriction: for
n # 0 (mod 4) one can simply consider a circuit with input size equal to
the lowest multiple of 4 greater than n.

In what follows, all computations are done over Fy. We introduce stan-
dard matrix notation:

ey, denotes the unit k x k matrix;

0y, the zero k x k matrix;

ei;, the matrix whose only nonzero element is at position (i, 5);
€ix, the matrix where the i*® row consists of 1’s, and all other
elements are zero;

e.j, the matrix where the 4t column consists of 1’s, and all other
elements are zero;

1, the k£ x k matrix filled with 1’s;

uy, the upper triangular & x k matrix (u;; =1 < i <j);

l, the lower triangular k£ x k matrix (l;; =1 & i > j);

™M, the permutation matrix for 7 (m;; =1 & j = 7(i)).

By e, 0, 1, u, and [ without subscripts we denote the correspondent ma-
trices of dimension ¢ x %. We also set 0 = 0, to be the cyclic permutation
1—2—3...—n.

In this notation the matrix of the Hiltgen’s function f is

A=e, +mys; + €n,241.

Lemma 6. Let n = 4k for some k € N. Then

Proof.

1 l 1
A _(1 et+u)’

A_2

e+u? 0
lnun+un1n+( 0 l2>

Easy calculations. (I

We are also interested in the n x 2n matrix 2 consisting of A=2 and
A~1 stacked together:

A= (A2 A7),

We need the following properties of A~ and 2.

Lemma 7. Let n = 4k for some k € N. Then:

(1)

All columns of A (and, hence, A~') are different.
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(2) Each row of A= (respectively, A) contains at least & (resp., 2*)
nonzero entries.

(3) After removing all but any two (resp., oll but any five) columns of
A7t (resp., A) there remains at least one row with two nonzero
entries.

Proof. Let us first interpret the results of Lemma 6. Each row of A con-
tains two ones (on the diagonal and to the right) except for the last row
that has three ones, in positions (n,1), (n, § + 1), and (n,n). Each row of
A~! has at least £ non-zero elements (ones), and the (£ 4 1)
not contain a single zero.

The A~? matrix also has lots of ones: (1,u, +u,1,) is an n x n matrix
filled with zeroes and ones chequered, since

row does

(1pun)i =1 & j=1 (mod 2),
(unly)i =1 & i=0 (mod 2).
Moreover,
(e+u?);; =1 & j>i and i+j=0 (mod 2),
®)j=1 <& i>j and i+j=0 (mod?2),

and thus A~? has two triangular blocks filled with ones: for 1 <i < j < %
and for % +1 < j < i < n. Thus, each row of A~2 contains at least %
ones; moreover, its triangular blocks consisting of ones coincide with the
triangular blocks of A~! filled with zeroes, and the rest is covered with
zeroes and ones chequered.

We now proceed to proving Lemma 7. The first claim is obvious.

The it row of A~! contains % +i nonzero entries for i < § and §+n—1
nonzero entries for 7 > % Thus, the second claim holds for the matrix A~!.
At the same time, the i’s row of A~2 contains at least %n —% nonzero entries
for 7 < % and at least % + %(z — % —1) nonzero entries for i > % Therefore,
the 7" row of A=? contains at least

n+,+3n i_5n+i
2 TPy T3 T Y
nonzero entries for 7 < % and at least
n n 1 n ™m 1 omn
n P O N L Y B L
2+n z+2+2(z 5 1) 1 2(z 1) 1

n

nonzero entries for ¢ > &, which proves the second claim.
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Let us now prove the third claim. Since A~! has a row that contains only
nonzero entries, all but one columns of this matrix should be removed to
leave just one nonzero entry. The same holds for the left part of the matrix
A™2 (see its first row). The same holds for the right part of the matrix
A~? without the last column (see its last row). O

§4. GATE ELIMINATION

In this section, we first briefly remind about Hiltgen’s methods and
then introduce gate elimination as the primary (and, to be honest, the
only) technique for proving general circuit lower bounds. Hiltgen proved
all his bounds with the following very simple argument due to Lamagna
and Savage.

Proposition 8 ( [14,21]; [9, Theorems 3 and 4]).

(1) Suppose that f : B® — B depends non-idly on each of its n vari-
ables, that is, for every i there exist values ay,...,a;—1,0i41,- .-,
an € B such that

flar,...;a;-1,0,ai41,...,0,) # f(ar,...,0i-1,1,ai41,...,a,).

Then C(f) = n— 1.
(2) Let f = (fO,...,f) : B* — B™, where f* is the k*™ compo-
nent of f. If the m component functions f9) are pairwise different,

neither of them equals the negation of another, and each of them
satisfies C(fV) = c>1 then O(f) > c+m — 1.

Proof. (1) Consider the minimal circuit of size s computing f. Since
f depends (here and in what follows we say “depends” meaning
“depends non-idly”) on all n of its variables, each input gate must
have at least one outgoing edge. Since the circuit is minimal, each
of the other gates, except possibly the output, also must have at
least one outgoing edge. Therefore, the circuit has at least s+n—1
edges. On the other hand, a circuit with s binary gates cannot have
more than 2s edges. Therefore, 2s > s +n — 1.

(2) Consider a circuit computing f. Note that it has at least ¢ — 1
gates that do not compute any function of circuit complexity ¢ or
more (they are the first ¢—1 gates in some topological order). Also
for each component function f(* there must be a separate output
gate different from those ¢ — 1 first gates.

O
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Hiltgen counted the minimal complexity of computing one bit of the
input (e.g., since each row of A™! has at least 5 nonzero entries, the mini-
mal complexity of each component of A~1j is %) and thus produced lower
bounds on the complexity of inverting the function (e.g. the complexity of
computing A1y is at least 5+n—2= 37" —2).

Besides, in cryptography it is generally desirable to prove not only worst-
case bounds, but also that an adversary is unable to invert the function
on a substantial fraction of inputs.

Hiltgen proves such result for the square matrix A~!; the error probabil-
ity is 1/2. However, in our constructions we also use rectangular matrices,
and it turns out that a similar simple argument does not provide sufficient
bounds for our matrices. Therefore, we use a different way of proving lower
bounds, namely gate elimination that has been previously used for every
lower bound in “regular” general circuit complexity [25].

The basic idea of this method is to use the following inductive argument.
Consider a function f and a circuit of minimal size C' that computes it.
Now substitute some value ¢ for some variable x thus obtaining a circuit for
the function f|,—.. The original circuit C' can now be simplified, because
the gates that had this variable as inputs become either unary (recollect
that the negation can be embedded into subsequent gates) or constant
(in this case we can even proceed to eliminating subsequent gates). The
important case here is when the gate is non-linear, such as an AND or an
OR gate. In this case it is always possible to choose a value for an input
of such gate so that this gate becomes a constant. One then proceeds by
induction as long as it is possible to find a suitable variable that eliminates
many enough gates. Evidently, the number of eliminated gates is a lower
bound on the complexity of f.

First, we prove a prerequisite to the master lemma.

Lemma 9. Let t > 0. Assume that x : B'Y — B" is a linear func-
tion with matriz X over GF(2). Assume also that all columns of X are
different, there are no zero rows in X, and after removing any t columns
of X, the matriz still has at least one row containing at least two nonzero
entries. Then C(x) =t + 1 and, moreover, no circuit with less than t + 1
gates can compute x on more than % of the inputs.

Proof. We argue by induction on ¢. For ¢ = 0 the statement is obvious: a
circuit with no gates cannot compute x & y on more than % of the inputs.
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Consider a circuit implementing x on more than % of the inputs and

fix a topological order on its nodes. We denote the actual function this
circuit implements by h (it does not need to be linear, but does have to
coincide with y on more than % of the inputs). We have to prove that we
can eliminate at least ¢ gates from this circuit, and there still will be at
least one gate left.

It cannot be the case that the circuit contains no gates as two different
linear functions h and x cannot coincide on more than % of the inputs.

Consider the topmost gate g in this order. Since g is topmost, its incom-
ing edges come from the inputs of the circuit, denote them by = and y. To
eliminate a gate, we simply substitute a value to x; substituting a value
for one variable is equivalent to removing a column from the matrix, and
it reduces t by at most 1.

To invoke the induction hypothesis, it remains to note that if A coincides
with y on more than % of the inputs, then either h|,—¢ or h|,=; coincides
with the corresponding restriction of y on more than % of the remaining
inputs. Thus, if h did compute x on more than % of the inputs, substituting
this value of = into h would yield a function of n—1 inputs that contradicted
the induction hypothesis. O

The following is a “master” lemma that we will apply to our matrices.

Lemma 10. Let t,u > 1. Assume that x : B'Y — B is a linear function
with matriz X over GF(2). Assume also that all columns of X are differ-
ent, every row of X has at least u nonzero entries, and after removing any
t columns of X, the matrix still has at least one row containing at least
two nonzero entries. Then C(x) = u +t and, moreover, Cs/4(x) > u +t.

Proof. This time, we argue by induction on u. For © = 1 the induction
base follows from Lemma 9.

Consider a circuit implementing y on more than % of the inputs and fix
a topological order on its nodes. We denote the actual function this circuit
implements by h (it does not need to be linear, but does have to coincide
with x on more than 2 of the inputs).

Consider the topmost gate g in this order. Since g is topmost, its in-
coming edges come from the inputs of the circuit, denote them by « and y.
Neither of its input variables can be marked as an output, because while
u > 2 each row still has at least two variables, and two different linear
functions cannot coincide on more than 1/2 of the inputs.
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Let us show that one of the input variables z,y of g enters some other
gate. Assume that this is not the case. Then h is a function of neither x
nor y but only g(z,y); we show that this cannot be the case for a function
computing y on more than % of the inputs. Note that x depends on = and
y separately; in particular, for one of these variables, say x, there exists
an output x; that depends only on z: x; = = © .., 2, where y ¢ Z.
we remind that in an optimal circuit every gate is binary and depends
non-idly on both inputs. In particular, there exist values a and b such that
9(0,a) = g(1,b). Thus, for every assignment of the remaining variables
h; # x: either on input strings with (z = 0,y = a) or on input strings with
(z =1,y = b), which makes it wrong on at least 1 of all inputs.

Thus one of the input variables of g, say x, enters some other gate.
By setting x to any constant we can eliminate at least 2 gates. To invoke
the induction hypothesis, it remains to note that if A coincides with x on
more than % of the inputs, then either h|,—o or h|,—; coincides with the
corresponding restriction of x on more than % of the remaining inputs.

Thus, we have proven that as long as all rows of X contain more than one
non-zero element, there exists a variable such that substituting a value for
this variable eliminates at least 2 gates (we call these variables “good”).
Substituting a value into a variable is equivalent to removing a column
from X. Thus, one substitution reduces u and ¢ by at most 1, and we
apply the induction hypothesis.

Applying this induction for u — 1 steps gives us at least 2(u — 1) gates
in total.

After all “good” variables have been eliminated, we begin a new induc-
tion, this time on ¢. It is simple: as long as there is at least one gate, we
can remove the topmost gate, one gate per step. Note that we still need
to choose the “correct” value for eliminated variables to stay in the half
where h coincides with y on more than % of the inputs. This will continue
as long as there is at least one row with two nonzero entries (put another
way, if at least one row still has two nonzero entries, the circuit must con-
tain at least one gate, and thus the topmost gate indeed exists). Therefore,
we will eliminate at least 2(u — 1) + ((¢ + 1) — (u — 1)) = uw + t gates in
total. (]

In what follows we will also use block-diagonal matrices. Intuition hints
that joint computation of two functions that have different inputs should
be as hard as computing them separately (thus, the lower bound should
be the sum of respective lower bounds). However, for certain functions it
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is not the case, as seen in [25, Section 10.2]. We show it for our particular
case.

Lemma 11. Assume that a linear function ( is determined by a block
diagonal matrix

X, 0 ... 0 sy

0 X, ... 0 #(2)
C(f(1)7f(2)77f(m)) = . .2 . x. )

0 0 ... X, Zm)

and the matrices X satisfy the requirements of Lemma 10 with u;(n)
and t;(n), respectively (the matrices may be non-square and of different
dimensions). Then C({) > E;-n:l(uj (n)+t;(n)) and, moreover, Cs,4(C) >

>oimi (uj(n) +t5(n)).

Proof. We proceed similarly to Lemma 10. Note that when we substitute
a variable from (1), it does not change anything in X», and vice versa.
Thus we substitute “good” variables (those that eliminate two gates) as
long as we have them and then substitute “bad” variables (eliminating
one gate per step) when we do not have good ones separately for each
matriz. If one of the matrices runs out of rows that contain at least two
nonzero entries (it may happen after eliminating u;(n) — 1 “good” and
then t;(n) —u;(n) +2 other variables from it), we substitute the remaining
variables corresponding to this matrix and forget about this part of the
block-diagonal matrix.

It can happen, however, that one of the inputs (variables) in the topmost
gate is from #1) and the other one is from #(?). Both cases from the proof
of Lemma 10 go through smoothly in this situation: in the first case we
substitute a value for the good variable, and the second case is impossible
for the same reasons.

Thus, eliminating all columns from X; leads to eliminating at least

2(ui—1)+(ti—ui+2) =t; +u;
gates, and we obtain the overall bound of
C3/4(C) = Z(Uj +t5).

Jj=1
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We now formulate the direct consequences of these lemmas and note
upper bounds for our specific matrices.

Lemma 12. Let n,n’ =0 (mod 4),
aB) =AT'E, (@)= (A A7),

o A7t A2 0 o
a*(:v) = 0 0 A71 Ly

where A7' denotes a matriz with the same structure as A™', but with
dimension n' instead of n. Then Cs/4(a) > 37” =2, Cyj4(az) = 1%” -5,

Csyq(a) > 200 4 130 7,

Proof. Follows from Lemmas 10 and 11, by substituting the respective
bounds u(n) and t(n) from Lemma 7 (in particular, ¢(n) = n — 2 for the

matrix A~ and t(n) = 2n — 5 for ). O
Lemma 13.
(1) There exists a circuit of size 37" — 1 that implements the linear

function ¢ : B® — B" with matriz A™L.
(2) There exists a circuit of size 77" that implements the linear function
¢ : B2" — B™ with matriz ( AL A ) .
5n

(3) There exists a circuit of size 5 — 1 that implements the linear

function ¢ : B — B" with matriz ( A~ A7! ).

Proof.

(1) First construct the sum @?:/f z; (% — 1 gates). Then, adding one
by one each of the inputs z;, i = n,n —1,..., 5, compute all
outputs y;, i = n,n — 1,..., 5 and, by the way, the sum of all
inputs ), z; (this takes another % gates). Finally, the first %
outputs will be computed by “subtracting” the first % inputs from
the sum of all inputs one by one (another 3 gates).

(2) To implement the left part of this matrix, we need 2% — 1 gates.
Afterwards we add to each output the two bits from the right part
of the matrix (three bits in case of the last row); we add 2n + 1
gates in this way.

(3) Note that in this case

pla,b) = (A7 A1) ( Z ) =Aa®b)



46 E. A. HIRSCH, O. MELANICH, S. I. NIKOLENKO

for any a,b € B"™. Thus, we first add a ® b (n gates) and then

3n

implement A™! (3 — 1 gates).
(]

§5. A NONLINEAR FEEBLY SECURE ONE-WAY FUNCTION

Over the previous two sections, we have discussed linear feebly secure
one-way functions. However, a nonlinear approach can yield better con-
stants.

Our nonlinear feebly trapdoor constructions are based on a feebly one-
way function resulting from uniting Hiltgen’s linear feebly one-way func-
tion with the first computationally asymmetric function of four variables
[16]. Consider the following function fi:

y1 = (o1 © T2)Tn © Tp—1, (1)
y2 = (1 © x2)Tpy B T2, (2)
ys = 1 O x3,
Ys = T3 3] Iy,

Yn—1 = Tp—2 D Tp—1,
Yn = Tp.
In order to get f,, !, we sum up all rows except the last one:
Y19 ... B Yn—1 =71 B 2.

Further, substituting y,, instead of x,, to (1-2), we find x» and x,,_1. Then
Z,—2 can be found using y,,—; and z,_1, etc. Thus the inverse function
looks like

Tn = Yn,
o= (1 @ ... ©Yn—1)yn D Y2,
Tno1= W1 @ ... ©Yn—1)Yn D Y1,
Tpo=W D OYn-1)Un ©Y1 ®Yn—1,
( )

Tn3=W D .. DYn-1)Yn DY1 D Yn—1 D Yn—2,

3= B... PYn—1)Un PY1 BYn—1D...DYs,
=W @ DYn-1)Un DY1 D Yn—1 D ... DYs.
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Lemma 14. The family of functions { o}, , is feebly one-way of order 2.

Proof. It is easy to see that f, can be computed in n + 1 gates. Each
component function of f, !, except for the last one, depends non-trivially
of all n variables, and all component functions are different. Therefore, to
compute f, ! we need at least (n — 1) + (n — 2) = 2n — 3 gates (since f,
is invertible, Proposition 8 is applicable to f,, and f,*). Therefore,

2n—3
Mep(fn) > .
#(fn) n+1

On the other hand, f, cannot be computed faster than in n — 1 gates
because all component functions f,, are different, and only one of them
is trivial (depends on only one variable). At the same time, f, ! can be
computed in 2n — 2 gates: one computes (y1 @D ... D Y,—1)yn in n — 1 gates
and spends one gate to compute each component function except the last
one. We get,

2n—3 2n —2
< Mp(fa) < 22,
n+1 F(fn) n—1
which is exactly what we need. O

The following theorem (Theorem 16) states that any circuit with less
than precisely the necessary number of gates fails to invert our function on
more than % of its inputs. We will need it in proving the order of security
of our trapdoor construction. First we prove a preparatory lemma.

Lemma 15. In a circuit implementing f'r:1|yi1:ﬂ17~~~7yil:ﬂl wherel < n—3,
n ¢ {ir,... i} andVk € [1..1] a;, € {0,1,yn, YD1} on more than 3 of the
inputs, each variable (except, possibly, y,) cannot be marked as an output
and enters at least one gate.

Proof. First, note that for i # n

$i|yk:yn :(yl@---@yk—l @yn®yk+1@---@yn—l)yn@---
:(yl@---@yk—l@1@yk+1@---@yn—l)yn@---:$i|yk:1:

if the linear part of z; doesn’t include yi. Similarly, when one substitutes

Yk = Yn, while the linear part of z; depends on yg, or yr = y, ® 1 the

expression for x; looks like one has substituted the value from {0, 1} instead
of yg.

(1) Proof by contradiction. We denote the actual function this circuit

implements by h. Let hy = y; be an output (j #n). Asl<n—3,

this output does not depend on at least one variable except for
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yn and y;. Denote it by y;. The following possibilities exhaust all
possible cases.

(a)

k=n=xr = yn.

Counsider two different values of the variable y,, (0 and 1) and
fix the values of all remaining variables. For one of the values
of y,,, h computes a wrong value because

hn|yn=0 = hn|yn=1

(as h, does not depend on y,) and

Tnly,=0 # Tnly,=1.
Thus h differs from f, ! at least on 1 of the inputs. Contra-
diction.
=W )y ©DB.czz,rvi ¢ Z.
Counsider two different values of the variable y; (0 and 1). For
each fixed value set of the remaining variables, where y,, = 1,
for one of the values of y; h computes a wrong value because

hk(yn = ]-7yi = 07) = hk(yn = ]-7yi = 17"')7

xk(yn = ]‘Jyl = 07) 7‘4— wk(yn = ]-7yz = ]-7"')7

because |y, =1 =Y D .. ..

Thus, we see that h differs from f, ! at least on % of the

inputs. Contradiction.

e =Wi® - )Un®Y; .. ..

Similarly we have

hk(yn = anl = 07) = hk(yn = anl = ]-7"')7

xk(yn = ani = 07) 75 xk(yn = ani = 17"')7
because x|y, =0 = y¥; © ..., and come to a contradiction the
same way.

(2) Let y; neither enter any gate nor be an output, i.e. h doesn’t
depend on y; at all. By the structure of f, ' there exists such k
that the output z, = (y; B ... )yn®y,; ®... (for j # 2 one can take
k =1, for j =2 one can take k = 2). Then

hi(yn = 0,y; =0,...) = h(yn = 0,y; = 1,...),
Tp(yn =0,y; =0,...) #xp(yn =0,y = 1,...).

Thus h differs from f,7 ! at least on % of the inputs. Contradiction.

d
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Theorem 16. Cy/4(f; ") > 2n — 4.

Proof. Consider an optimal circuit implementing f,,* on more than % of
the inputs. We will substitute, step by step, the values from {0, 1, y,,, y,®1}
instead of some variables (except for y,,) to eliminate at least two gates
(“good” variables). The following lemma states that while we have at least
three variables left and one of them is y,,, we can make “good” substitu-
tions.

. . . —1 3
Lemma 17. In a circuit computing f, Yiy=a,...,yi,=a; 0T MOTE than I

of the inputs, where | < n—3, n ¢ {i1,...,i;}, and Vk € [1..]] a;, €
{0, 1, yn, yn® 1}, one can substitute a value from {0,1,y,, y, ® 1} for some
variable other than y,, in such a way that at least two gates are eliminated,
and the resulting circuit computes the corresponding restriction of f;; 1 on
more than % of the remaining inputs.

Proof. We write f, ! instead of f, [y =a,,....y;,=a, for brevity. We denote
the actual function this circuit implements by h. Let g be a gate whose
incoming edges come from the inputs of the circuit (denote them y; and
yj). Such a gate exists by Lemma 15. The following possibilities exhaust
all possible cases.

(1) One of the input variables of g, say y;, enters some other gate, and
i # n. In this case, by setting y; to any constant we can eliminate
at least 2 gates. Note that if h coincides with £, on more then
% of the inputs, then either h|,,—o or h|y,—=1 coincides with the
corresponding restriction of f, ! on more than % of the remaining
inputs.

(2) Neither y; nor y; is equal to y, or enters any other gate. In this
case h is a function of neither y; nor y; but only g(y;,y;) (as
neither y; nor y; is an output by Lemma 15). We show that it is
impossible. By the structure of f, ! there exists an output zy =
(Wi ®Y; ©...)0Un ©Yi © P,y 2, where y; ¢ Z. There are two
possible cases.

(a) hy, depends on g(yi, y;)-
(i) g is linear. Then

hie(yi = 0,45 = L,yn=0,...) = hg(y;i = L,y; = 0,yn = 0,...),

as well as

hi(yi =0,y; = 0,4, =0,...) = hg(y; = L,y; = Ly, =0,...),
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k(Y = 0,55 =0,yn =0,...) #Zaw(ys = Ly; = Lyn =0,...),
therefore h differs from f, ! at least on % of the inputs.
Contradiction.

(ii) ¢ is non-linear. Then there exist such a and b that

he(yi = a,y; =0,yn =1,..) = h(yi =a,y; = Ly, = 1,...),

xk(yi:aayj :ann :17) #xk(yi:aayj = ]-7yn :]-7)
as well as

hi(yi = 0,y; = b,yn =0,...) = hg(ys = L,y; = b,yn = 0,...),

wk(yz = an] = b;yn = 07) 7‘4— wk(yz = ]-Jyj = b:yn = 07"')7
therefore h differs from f, ! at least on i of the inputs.
Contradiction.

(b) hi depends on neither y; nor y;. Then

hi(yi = 0,yn = 0,..) = hi(yi = Lyn = 0,..),

xk(yl = ann = 07) 7‘4— wk(yz = ]-7yn = 07"')7
therefore h differs from f, ! at least on % of the inputs. Con-
tradiction.

(3) Without loss of generality, j = n, y; does not enter any other
gate and g is non-linear. We show that it is impossible. Indeed,
otherwise one can substitute to y, some value such that neither of
the outputs depends on y;. By the structure of f,, !, for each value
of y,, one can find an output zy = y; & .... Then

hk(yl :ann :a7"') :hk(yl = ]-Jyn:a;"');

xk(yl = ann = a;"') 7+‘ wk(yl = ]-7yn = (L,..-),
therefore h differs from f,; ! at least on I of the inputs. Contra-
diction.

(4) Without loss of generality, j = n, y; does not enter any other gate
and g is linear. Let g be an output, say hi. Then either there exists
such y; that for some value of y,,, zx = y; ® ..., or k = n; both
of this cases similarly lead us to a contradiction. Therefore, g has
subsequent gates. We make one of the substitutions y; = y, or
Yi = yn @© 1, so that h coincides with the corresponding restriction
of f,7! on more than % of the remaining inputs. Thus we eliminate
both g and its subsequent gates, i.e. at least 2 gates.

d
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By inductive application of Lemma 17 we can substitute n — 2 “good”
variables and eliminate at least 2n — 4 gates. (]

Remark 4. It is easy to see that f, ! equals its linear part on the fraction

3 of the inputs (namely, for y, = 0 and for @}, y; = 0) and can be
computed using n — 3 gates. Therefore the constant % in Theorem 16
cannot be improved.

§6. THREE CONSTRUCTIONS

We are almost ready to present the constructions of our feebly trapdoor
functions (recall Definition 2). In this section, we consider three different
constructions, none of which works by itself; however, we will merge the
first and the third (linear case) and the second and the third (nonlinear
case) into one in the subsequent section, and the resulting mixture will be
feebly secure.

In our first two constructions, inversion with trapdoor is faster than
inversion without trapdoor, but, unfortunately, evaluating the function is
exactly as hard as inversion without trapdoor in the second construction
and even harder in the first. In terms of Definition 2, we now present feebly
trapdoor candidates with identical lengths of the seed, public information,
trapdoor, input, and output ¢(n) = m(n) = pi(n) = ti(n) = n. Given a
random seed, the sampler produces a pair of public and trapdoor informa-
tion (pi, ti), where ti is the random seed itself and pi = A(ti) (thus, the
sampler can be implemented using n + 1 gates).

In the first, linear construction, the output ¢ for an input m is computed
as follows:

Eval, (pi,m) = A7 (pi) @ A(m).

An upper bound on evaluation circuit complexity immediately follows

from Lemma 13; one can evaluate this function with a circuit of size 2.

2
Inversion with trapdoor goes as follows:
Inv,(ti,c) = A~ (A7 (pi) @ c) = A7 (ti @ ).

Due to the nice linearity (note that bounds proven in previous sections do
not apply here, because the inversion matrix has a lot of identical columuns),

this circuit can be implemented in 57” — 1 gates: first one computes ti ®
c using n gates, then one applies A~! using another 37" — 1 gates (see

Lemma 13).
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Finally, an adversary has to invert Bob’s message the hard way:

m= A" (AL (pi) & o) :m( pi ) .

C

Let us denote the function that the adversary has to compute by Adv,,. Its
two arguments are the public information and the codeword. By Lemma 12,
the complexity of this function is at least 1%” — 5 gates, and any adversary
with less than 132 — 5 gates fails on at least % of the inputs.

The second (nonlinear) construction is a bit simpler than the linear one.
For f asin Section 5 we have:

Key, (s) = (fu(s),5),
Eval, (piym) = £ (pi) & m
)= e =tise
Adv(pi,c) = i (pi) ® e
In the first two constructions, evaluation is not easier than inversion
without trapdoor. In order to fix this problem, we use also a different
construction, a candidate trapdoor function with ¢(n) = m(n) = n and
pi(n) = ti(n) = 0. Our third construction is just the feebly one-way func-

tion itself. Thus, the public and trapdoor information are not used at all.
In the linear case, the evaluation and inversion functions are as follows:

Eval,,(m) = A(m),
Inv,(c) = A7 (c),
Adv,(c) = A7 (c).
Similarly, in the nonlinear case we have, for f as in Section 5,
Eval,(m) = f(m),
Inv,(c) = f*(c),
Adv,(c) = f1(c).

This construction, of course, is not a trapdoor function at all because
inversion is implemented with no regard for the trapdoor. For a message
m of length |m| = n the evaluation circuit has n+ 1 gates, while inversion,
by Lemma 12 and Theorem 16, can be performed only by circuits of 37” -2
and 2n — 4 gates each for the linear and nonlinear versions, respectively.

Thus, in this construction evaluation is easy and inversion is hard, both
for an honest participant of the protocol and for an adversary.

Inv, (ti,c
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§7. A LINEAR FEEBLY SECURE TRAPDOOR FUNCTION

In the previous section, we have constructed three candidate trapdoor
functions. In one of them, evaluation was easy while inversion was hard;
in the other two, inversion with trapdoor was easy, and evaluation and
inversion without trapdoor were both hard. We now combine the first and
third of these functions into a linear construction where it is easier for both
inversion with trapdoor and evaluation than for an adversary.

We split the input into two parts; the first part mq, of length n, will
be subject to our first (nontrivial) construction, while the second part
ma, of length an, will be subject to the second construction (the one-way
function itself). We will choose « later to maximize the relative hardness
for an adversary.

We first consider the linear construction. In this construction, each par-
ticipant has a block-diagonal matrix:

. A1 A 0 pi Cc1
= (43 2)(E) -(2)
ti
. A"t At 0 my
Inv,(ti,c) = ( 0 0 A*_1> c1 :(mz >,
C2
. A2 A7l 0 i ma
= (44 2)(3) ().
2

where A, denotes the matrix with the same structure as A, but with
dimension an instead of n. Thus, in terms of Definition 2, we get a feebly
trapdoor candidate where inputs and outputs are longer than the seed and
the public and trapdoor information: pi(n) = ti(n) = n, ¢(n) = m(n) =
(1+ a)n.

Lemma 13 yields upper bounds for evaluation and inversion with trap-
door, and Lemma 12 yields a lower bound for the adversary:

7 )
C(Eval,) < 771 +an+1, C(nv,) < 771 +— -2,

13n 3an
> 47
03/4(Advn) = 4 + B 7
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Thus, to get a feebly trapdoor function we simply need to choose a such
that

13 3a _ 7 13 3a

5
—+ = >-+a and —+—>§+

3«
4 2 2 4 2 '

2
The second inequality is trivial, and the first one yields o > %
We would like to maximize the order of security of this trapdoor function

(Definition 5); since sampling is always strictly faster than evaluation and
inversion with trapdoor, we are maximizing

min ¢ lim 703/4(Advn) im 703/4(Advn) = min 14_3 * 37& % + 370(
n=eo  C(Inv,) 'n—eco C(Eval,) | 243’ Tha [

This expression reaches maximum when « = 2, and the order of security
in this case reaches % We summarize this in the following theorem.

Theorem 18. There exists a linear feebly trapdoor function with seed
length pi(n) = ti(n) = n, input and output length c¢(n) = m(n) = 3n, and
order of security %

Example 2. Let us give the minimal example for which this construction
yields a nontrivial security guarantee. As we have already mentioned, all
linear constructions in this chapter are based on a linear function f : B" —
B" developed by A. Hiltgen [9]. The smallest n for which f is strictly harder
to invert than to compute is 7, but since we need n to be a multiple of four,
we consider n = 8 in this example. For n = 8, C(f) = 9, C(f!) = 11,
C(f~?) = 11. Lemma 13 yields precise estimates for the complexity of key
generation, function evaluation, and its inversion with trapdoor:

C(Keyg) = 11,
C’(Evalg) = 29,
C(Invg) = 30.

On the other hand, Lemma 12 implies that
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§8. A NONLINEAR FEEBLY SECURE TRAPDOOR FUNCTION

In the nonlinear case, we unite the second and the third trapdoor can-
didates from Section 6 and get the following construction:

Key,(s) = (fu(s),5),
Evaly, (pi,m1,m2) = (f, " (pi) ® m1, fan(ms)),
Inv,,(ti,c1,¢2) = (fr " (Di) @ 1, fan (¢2)) = (ti ® c1, fan (¢2)),
Adv,(piscr,ea) = (fr (pi) © c1, fap (e2)),

Upper bounds are easy to obtain. For the lower bound on Adv,,, how-
ever, we have to work a bit harder.
We introduce the following notation for Adv,,:

(W1, yn) = i,
(s1,...,8n) = c1,
Vo = {¥n: Yntan}
X1 ={y1, - Yn,S1,---»5n},
(Ynt1s-- > Yntan) = C2,
S ={s1,--+,8n},
Xo ={Yn+1,- -+ Yntan}-

The lower bound on the complexity of Adv, is proven similarly to the
proof for f, 1 (see Theorem 16 and Lemma 15). At each step, we consider
a gate g with two incoming input variables and perform a substitution
that eliminates one (when substituting a variable from SUY},) or two (for
other substitutions) gates in such a way that the circuit still coincides with
the corresponding restriction of Adv,, on more than % of the inputs. The
difference is that we now have two blocks X; and X, of different size,
and the first block computes f,,;* @ ¢; rather than f,!. It turns out that
all cases when variables from the same block enter the gate g (except for
variables from S) still go through smoothly when we have two blocks. If
a variable from S enters g, we substitute a suitable constant instead and
eliminate one gate. Other cases (when variables from different blocks enter
g) are almost similar to the cases from Lemma 17. There are, however, two
subtleties here.

(1) When a block X, has only one variable z; not from Y,, U S left,
we substitute some value instead of it. On one hand, it is useless
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already since it may be an output and may not enter any gate;
on the other hand, its presence significantly complicates our case-
by-case analysis. If there are still variables from X,. NS left, then,
when we substitute a constant instead of x;, they all may become
outputs. Therefore, in this case we substitute instead of z; any
variable from S (or its negation).

If the inputs of g come from different blocks, and one of them is
y; € Yy, then the gate g is necessarily linear and, substituting y;
(or its negation) instead of the second variable, we can eliminate
two gates. If both inputs of g come from Y,,, we substitute one of
them with the other (or its negation).

These arguments are formalized in Lemma 19 and Theorem 20. Lemma 19
states that while we still have at least one block that contains at least two
variables not from Y, US or at least one variable from S, each variable of
this block (except, possibly, a variable from Y,,) cannot be an output and
enters at least one gate.

Lemma 19. Consider a restriction Adv,|, or Aan|au{yin:c}, where:

(1)
(2)

(7)
(8)

o = {yll = ai,.--,Y; = al} U {y.h = Q15 Yjm = al+m} U
{spr =du,...,8p, =du};

[<n-3;

Yiv, - - - Yi,, Yi, are in the same block, say X,;

Wiy i, NY, =0, yi, €Y, (at least two variables that do not
belong to Y,, U S remain in X,);

Yjrs---Yj € Xt, wheret =3 —r;

Vk € [1..l+m] ap € {0,1}UY, U{y® 1|y € Y,} (besides, we
can substitute for the last variable from (X;\ S)\ Y, a value from
XinSUu{sel|seX; NS},

c€ (Yo \{yi, ) U{y®1[yeYn\yi};

u >0, Vke[l.u] dp €{0,1}.

Consider a circuit that implements one of these restrictions on more than
% of the inputs. Then the following statements hold for this circuit.

(1)
(2)
(3)

Each variable of X, \ S (except, possibly, y;,) cannot be marked
as an output and enters at least one gate.

If I < n— 2 then each variable from S N X, cannot be marked as
an output and enters at least one gate.

If l =n — 2 and the value from X, NSU{s®1]|se X,NS} is
substituted for the last variable of (X, \ S)\ Y, then each variable
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Proof.
(1)

from SNX, cannot be marked as an output and enters at least one
gate.

We denote the actual function this circuit implements by h.

The proof of Lemma 15 that dealt with a single block goes through
in this case, too. Note that substituting a variable from another
block X; for a variable from X, does not invalidate the proof of
Lemma 15 since it is equivalent to simply renaming a variable in
the block X,.. A substitution of the same variable for two variables
yi, and y;, is equivalent to substituting y;, for y;,; similar for
more than two variables. A substitution of the same variable (or
its negation) for some variables from X, \ Y,, is equivalent to sub-
stituting constants and possibly renaming one of the variables. Its
easy to see that all cases from the proof of Lemma 15 go through
smoothly in this situation. If S C X, it changes nothing. It is also
clear that y;, cannot be an output hs in the block X since x5 does
not depend on y;, .
Let s be an output h;. If 2; does not depend on s then h evidently
differs from Adv,, at least on % of the inputs. Otherwise [ = k and
Jys i = (Ys ®...)yYp ® s ® . ... Then, for one of the values of y,,
T = ys D sk @ ..., and h differs from Adv,, at least on 1 of the
inputs, which is a contradiction. Suppose that sy neither enters
any gate nor is an output. Then h does not depend on s; at all.
However, there exists an output x; = s @ ..., so h differs from
Adv,, at least on % of the inputs, and this is a contradiction again.
Let s be an output h;. If 2; does not depend on sy then h evidently
differs from Adv,, at least on % of the inputs. Otherwise there are
three possible cases.
(@) 1 =(sx®...)Yp P sk ®.... Then
hl(yp = I,Sk = 0,...) 75 hl(yp = I,Sk = 1,...),
z(yp=1,8,=0,...)=x(yp = 1,5, =1,...),
therefore, h differs from Adv,, at least on % of the inputs, and
we have arrived to a contradiction.

(b) w1 = (51 & - Jyp @ Doy ? a2 C X, \ {si}ya € {0,1}.
Then

hl(yp:(),sk :0,...) ;éhl(yp:(),sk :1,...),
z(yp=0,s,=0,...) =ay(yp = 0,5, =1,...),
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therefore, h differs from Adv, at least on % of the inputs,
which is a contradiction.

() zi=(s51D...)yp®sk®.... This case is similar to the previous
one.

Suppose that si neither enters any gate nor is an output. Then

there exists an output z;, which is equal to either s; @ ... or

(sk ®...)yp @ sk & .... Therefore, h differs from Adv,, at least on
either £ or 1 of the inputs, respectively, and this is a contradiction.

d

Theorem 20. C3/4(Adv,) > 3n + 2an — 8.

Proof. We proceed similarly to Theorem 16. When there is only one vari-
able y; ¢ Y, U S left in some block X, we do the following.

(1) If there are no variables from S left in X, we substitute to y;
such a value that h coincides with the corresponding restriction of
Adv,, on more than % of the remaining inputs.

(2) If 3s € SN X, then we substitute to y; either s or s ® 1 so that h
coincides with the corresponding restriction of Adv,, on more than
% of the remaining inputs.

Thus, in what follows we assume that in each block either there are no
variables left that do not belong to Y,, U S or there are at least two such
variables.

Lemma 21. Consider a restriction of Adv,, such that:

(1) the values from {0,1}UY,U{y®1 |y € Y,,} are substituted instead
of some variables not from Y, U S;

(2) the values from Y,, U{y ®1 |y € Y,,} are substituted instead of
some variables from Y,;

(3) the values from {0,1} are substituted instead of some variables
from S;

(4) at least in one block, either there are at least two variables left
¢ Y, US or there is at least one variable from S.

Consider a circuit that implements this restriction on more than % of the
inputs. Then one can either

(1) substitute a value from {0,1}UY, U{y® 1|y € Y,} into some
variable not in Y, US so that at least two gates are eliminated, or
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(2) substitute a value from Yo\ zU{y @1 |y € Y, \ 2z} instead of
z € Y, or substitute a constant value to some variable s € S in
such a way that at least one gate is eliminated.

All these substitutions can be made in such a way that the resulting circuit
computes the corresponding restriction of Adv,, on more than % of the
remaining inputs.

Proof. Let g be a gate whose incoming edges come from the inputs of the

circuit. Such a gate exists by Lemma 19. Note that all cases from the proof

of Lemma 17 go through smoothly if the inputs are from the same block.

If one of the inputs of g is s € S then we substitute a constant value to s

in such a way that h coincides with the corresponding restriction of Adv,
3

on more than 3 of the remaining inputs. It remains to consider the cases

when one of the inputs is in X; \ S and the other is in X, (we denote them
by y; and y;).
(1) One of the inputs, say y;, enters some other gate and i # n. Then
y; is evidently a “good” variable.
(2) Neither y; nor y; enter any other gate, and i # n and j # n + an.
We show that it is impossible. By Lemma 19, neither y; nor y; is
an output (since both blocks contain at least two variables not in
Y, US). In this case h is a function of neither y; nor y; but only
9(y;,y;). There exists an output

T = (y; © @W%@Zh’@@z
veV z€Z
such that y; ¢ Z U V. There are two possible cases.
(a) g is linear. The proof is similar to the one in the case 2 of the
Lemma 17.
(b) g is nonlinear. There exists an output

Zry = (y] S2 @ U)yn+an b @ w,
uclU weW
where y; ¢ UUW, y; ¢ W (for brevity, in expressions for
xp and x; we use y,, and Y, +qn, respectively. However, we do
take into account that in fact y, can be substituted instead
of Yntan, and vice versa.) If hy or h; depends on neither y;
nor y; then we come to a contradiction similar to case 2 of
Lemma 17. Otherwise there exist such a and b that

hi(yi =0,y = a,y, =0,...) = h(y;i = L, y; = a,y, = 0,...),
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T

ryi=0y=0a,yp, =0,...) Zax(y; =1,y; = a,y, =0,...)

as well as

hi(yi = 0,95 = 0,¥ntan =1,...) = h(yi = b,y5 = Lyntan=1,...),

wl(yl = bayj = annJran = ]-7) 7‘4— ml(yl = bay] = 07yn+ozn = ]-7)

(3)

Therefore, h differs from Adv,, on at least % of the inputs,
which is a contradiction.
Without loss of generality, ¢ # n and y; does not enter any other
gates, 7 = n+an, and g is nonlinear. We show that it is impossible.
Indeed, otherwise there exist such a that

hn+om(yi = 4, Yn+an = 0) = hn—i—an(yi =, Yn+an = ]-)7

wn+an(yi = 0, Yntan = 0) # wn+an(yi = 0, Yntan = 1)-

Therefore, h differs from Adv,, on at least % of the inputs, which
is a contradiction.
Without loss of generality, ¢ # n and y; does not enter any other
gates, 7 = n + an and g is linear. First we show that g cannot be
an output. Let g be an output, say hg. The following possibilities
exhaust all possible cases.

(a) k < n. By the data Jy; € X1 : | # ¢ and | # n. There exists

such a that @y, = = y1 ® . ... Then

hie(yr = 0,yn = a,.-) = hi(yr = Lyn = a;..),

xk(yl = ann = a;"') 7+‘ mk(yl = ]-7yn = a;"'):
therefore h differs from Adv,, at least on % of the inputs.
Contradiction.

(b) k> n. Then xk|y,=0 = Tgly,=1 and hg|y,=0 7# hkly,=1. There-
fore h differs from Adv,, at least on % of the inputs. Contra-
diction.

So g has subsequent gates. We substitute to y; either y; or y; ®1

so that h coincides with the corresponding restriction of Adv,, on

more than % of the remaining inputs. Thus we eliminate both g¢
and its subsequent gates, i.e., at least two gates.

t =n and j = n + an. We substitute to y; either y; or y; ® 1

so that h coincides with the corresponding restriction of Adv, on

more than % of the remaining inputs.

d
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Thus, on each step we substitute either a “good” variable, a variable
from Y;,, or a variable from S. While there exists a block with at least 2
variables not in Y;, U S or with at least one variable from S, restrictions
of the original circuit obtained by substitutions described in Lemmas 17
and 21 satisfy the assumptions of Lemma 21. Thus, in block X; we have
n—2 “good” variables and n variables such that substituting each of them
eliminates at least one gate, and in block X> we have an — 2 “good”
variables. Therefore, we get a lower bound 2(n — 2) + n + 2(an — 2) =
3n + 2an — 8. (]

Lemma 22. The following upper and lower bounds hold for the compo-
nents of our nonlinear trapdoor construction:
C(KeYn) SR + ]-7
CEval,) <2n—2+n+an+1=3n+an—1,
C(Inv,) < n+2an — 2,
Cs/4(Advy) > 3n + 2an — 8.
Proof. All upper bounds follow from the fact that one can compute f,

by n + 1 gates, f,, ! by 2n — 2 gates (see Theorem 14), and “®c¢;” by n
gates. The lower bound follows from Theorem 20. O

To maximize the order of security of this trapdoor function (Defini-
tion 5), we have to find « that maximizes

Cs/4(Advy) C34(Advn) Cs/4(Advy)
{ C(Key,) = C(Ewval,) > C(Inv,) }
:min{3+2a 3+ 2 3+2a}

1 "3+a’l+ 2

. {3+2a 3+2a}
= min .

lim inf min
l—oon>l

3+a’l+2a

It is easy to see that this expression is maximized for a = 2, and the
optimal value of the order of security is % We summarize this in the
following theorem.

Theorem 23. There exists a nonlinear feebly trapdoor function with seed
length pi(n) = ti(n) = n, input and output length c(n) = m(n) = 3n, and
order of security %
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§9. FINAL REMARKS

After we published our papers [12,17], we were made aware of an earlier
result by A. Hiltgen who, in his PhD thesis [10], constructed a nonlinear
feebly one-way function of order 2. This function can also be used as a
base for our nonlinear trapdoor construction, yielding the same order of
security % by similar arguments.

In [3,12,17], a superpolynomial bound on the success probability of
adversary was claimed for adversaries with slightly weaker resources than
ones for which the constant probability bound was proven. We have re-
cently found a flaw in the proofs. Thus, these claims (in particular, the
results of [12, Section 3.3]) remain open questions both for feebly one-way
and feebly trapdoor functions.

Another direction for further research is to develop the notions of other
feebly secure primitives. Also orders of security can certainly be improved;
however, further progress here will remain very limited until new methods
in general circuit complexity emerge.

Acknowledgements. The authors are grateful to Grigory Yaroslavtsev
for a useful remark and to Yury Lifshits for references to A. Hiltgen’s
papers.
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