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Abstract. We consider the problem of managing a bounded size First-In-First-Out (FIFO) queue buffer,
where each incoming unit-sized packet requires several rounds of processing before it can be transmitted
out. Our objective is to maximize the total number of successfully transmitted packets. We consider both
push-out (when the policy is permitted to drop already admitted packets) and non-push-out cases. In
particular, we provide analytical guarantees for the throughput performance of our algorithms. We fur-
ther conduct a comprehensive simulation study which experimentally validates the predicted theoretical
behaviour.
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1 Introduction

This work is mostly motivated by buffer management problems within Network Processors (NPs) in a
packet-switched network. Such NPs are responsible for complex packet processing tasks in modern high-
speed routers, including, to name just a few, forwarding, classification, protocol conversion, and intrusion
detection. Common NPs usually rely on multi-core architectures, where multiple cores perform various pro-
cessing tasks required by the arriving traffic. Such architectures may be based on a pipeline of cores [1], a
pool of identical cores [2–4], or a hybrid pool pipeline [5]. In response to operator demands, packet pro-
cessing needs are becoming more heterogeneous, as NPs need to cope with more complex tasks such as
advanced VPN services and hierarchical classification for QoS, among others. Unlike general purpose pro-
cessors, modern NPs employ run-to-completion processing. Recent results in data path provisioning provide
a possibility to have information about future required processing a priori (for instance, this is possible in one
of the modes of the OpenFlow protocol [6]). In this work, we consider a model that captures the character-
istics of this architecture. We evaluate the performance of such systems for the case when information about
required processing is available a priori. The main concern in this setting is to maximize the throughput
attainable by the NP, measured by the total number of packets successfully processed by the system.

In what follows, we adopt the terminology used to describe buffer management problems. We focus our
attention on a general model where we are required to manage admission control and scheduling modules
of a single bounded size queue that process packets in First-In-First-Out order. In this model, arriving traffic
consists of unit-sized packets, and each packet has a processing requirement (in processor cycles). A packet
is successfully transmitted once the scheduling module has scheduled the packet for processing for at least
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its required number of cycles. If a packet is dropped upon arrival or pushed out from the queue after being
admitted due to admission control policy considerations (if push-out is allowed), then the packet is lost
without gain to the algorithm’s throughput.

1.1 Our Contributions

In this paper, we consider the problem of managing a FIFO queue buffer of size B, where each incoming
unit-sized packet requires at most k rounds of processing before it can be transmitted out. Our objective is to
maximize the total number of successfully transmitted packets. For online settings, we propose algorithms
with provable performance guarantees. We consider both push-out (when the algorithm can drop a packet
from the queue) and non-push-out cases. We show that the competitive ratio obtained by our algorithms de-
pends on the maximum number of processing cycles required by a packet. However, none of our algorithms
needs to know the maximum number of processing cycles in advance. We discuss the non-push-out case in
Section 2 and show that the on-line greedy algorithm NPO is k-competitive, and that this bound is tight.
For the push-out case, we consider two algorithms: a simple greedy algorithm PO that in the case of con-
gestion pushes out the first packet with maximal required processing, and Lazy-Push-Out (LPO) algorithm
that mimics PO but does not transmit packets if there is still at least one admitted packet with more than one
required processing cycle. Intuitively, it seems that PO should outperform LPO since PO tends to empty
its buffer faster but we demonstrate that these algorithms are not comparable in the worst case. Although
we provide a lower bound of PO, the main result of this paper deals with the competitiveness of LPO. In
particular, we demonstrate that LPO is at most

(
ln k + 3 + o(B)

B

)
-competitive. In addition, we demonstrate

several lower bounds on the competitiveness of both PO and LPO for different values of B and k. These
results are presented in Section 3. The competitiveness result of LPO is interesting in itself but since “lazy”
algorithms provide a well-defined accounting infrastructure we hope that a similar approach can be applied
to other systems in similar settings. From an implementation point of view we can define a new on-line
algorithm that will emulate the behaviour of LPO and will not delay the transmission of processed packets.
In Section 4 we conduct a comprehensive simulation study to experimentally verify the performance of the
proposed algorithms. All proofs not appearing in the body of the paper can be found in the Appendix.

1.2 Related Work

Keslassy et al. [7] were the first to consider buffer management and scheduling in the context of network
processors with heterogeneous processing requirements for the arriving traffic. They study both SRPT (short-
est remaining processing time) and FIFO (first-in-first-out) schedulers with recycles, in both push-out and
non-push-out buffer management cases, where a packet is recycled after processing according to the pri-
ority policy (FIFO or SRPT). They showed competitive algorithms and worst-case lower bounds for such
settings. Although they considered a different architecture (FIFO with recycles) than the one we consider in
this paper, they provided only a lower bound for the push-out FIFO case, and it remains unknown if it can
be attained.

Kogan et al. [8] considered priority-based buffer management and scheduling in both push-out and non-
push-out settings for heterogeneous packet sizes. Specifically, they consider two priority queueing schemes:
(i) Shortest Remaining Processing Time first (SRPT) and (ii) Longest Packet first (LP). They present com-
petitive buffer management algorithms for these schemes and provide lower bounds on the performance of
algorithms for such priority queues.

The work of Keslassy et al. [7] and Kogan et al. [8], as well as our current work, can be viewed as
part of a larger research effort concentrated on studying competitive algorithms with buffer management for
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bounded buffers (see, e.g., a recent survey by Goldwasser [9] which provides an excellent overview of this
field). This line of research, initiated in [10, 11], has received tremendous attention in the past decade.

Various models have been proposed and studied, including, among others, QoS-oriented models where
packets have weights [10–13] and models where packets have dependencies [14, 15]. A related field that
has received much attention in recent years focuses on various switch architectures and aims at designing
competitive algorithms for such multi-queue scenarios; see, e.g., [16–20]. Some other works also provide
experimental studies of these algorithms and further validate their performance [21].

There is a long history of OS scheduling for multithreaded processors which is relevant to our research.
For instance, the SRPT algorithm has been studied extensively in such systems, and it is well known to be
optimal with respect to the mean response [22]. Additional objectives, models, and algorithms have been
studied extensively in this context [23–25]. For a comprehensive overview of competitive online scheduling
for server systems, see a survey by Pruhs [26]. When comparing this body of research with our proposed
framework, one should note that OS scheduling is mostly concerned with average response time, but we
focus on estimation of the throughput. Furthermore, OS scheduling does not allow jobs to be dropped,
which is an inherent aspect of our proposed model since we have a limited-size buffer.

The model considered in our work is also closely related to job-shop scheduling problems [27], most
notably to hybrid flow-shop scheduling [28] in scenarios where machines have bounded buffers but are not
allowed to drop and push out tasks.

1.3 Model Description

We consider a buffer with bounded capacity B that handles the arrival of a sequence of unit-sized packets.
Each arriving packet p is branded with the number of required processing cycles r(p) ∈ {1, . . . ,k}. This
number is known for every arriving packet; for a motivation of why such information may be available
see [29]. Although the value of k will play a fundamental role in our analysis, we note that our algorithms
need not know k in advance. In what follows, we adopt the terminology used in [8]. The queue performs two
main tasks, namely buffer management, which handles admission control of newly arrived packets and push-
out of currently stored packets, and scheduling, which decides which of the currently stored packets will be
scheduled for processing. The scheduler will be determined by the FIFO order employed by the queue. Our
framework assumes a multi-core environment, where we have C processors, and at most C packets may be
chosen for processing at any given time. However, for simplicity, in the remainder of this paper we assume
the system selects a single packet for processing at any given time (i.e., C = 1). This simple setting suffices
to show both the difficulties of the model and our algorithmic scheme. We assume discrete slotted time,
where each time slot t consists of three phases:

(i) arrival: new packets arrive, and the buffer management unit performs admission control and, possibly,
push-out;

(ii) assignment and processing: a single packet is selected for processing by the scheduling module;
(iii) transmission: packets with zero required processing left are transmitted and leave the queue.

If a packet is dropped prior to being transmitted (i.e., while it still has a positive number of required
processing cycles), it is lost. Note that a packet may be dropped either upon arrival or due to a push-out
decision while it is stored in the buffer. A packet contributes one unit to the objective function only upon
being successfully transmitted. The goal is to devise buffer management algorithms that maximize the overall
throughput, i.e., the overall number of packets transmitted from the queue.

We define a greedy buffer management policy as a policy that accepts all arrivals if there is available
buffer space in the queue. A policy is work-conserving if it always processes whenever it has admitted
packets that require processing in the queue.
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Fig. 1. Zoom in on a single time slot for greedy, push-out, and work-conserving algorithm.

We say that an arriving packet p pushes out a packet q that has already been accepted into the buffer
iff q is dropped in order to free buffer space for p, and p is admitted to the buffer instead in FIFO order. A
buffer management policy is called a push-out policy whenever it allows packets to push out currently stored
packets. Figure 1 shows a sample time slot in our model (for greedy and push-out case).

For an algorithm ALG and a time slot t, we denote the set of packets stored in ALG’s buffer at time t
by IBALGt .

The number of processing cycles of a packet is key to our algorithms. Formally, for every time slot t
and every packet p currently stored in the queue, its number of residual processing cycles, denoted rt(p), is
defined to be the number of processing cycles it requires before it can be successfully transmitted.

Our goal is to provide performance guarantees for various buffer management algorithms. We use com-
petitive analysis [30, 31] when evaluating performance guarantees provided by our online algorithms. An
algorithm ALG is said to be α-competitive (for some α ≥ 1) if for any arrival sequence σ the number of
packets successfully transmitted by ALG is at least 1/α times the number of packets successfully transmit-
ted by an optimal solution (denoted OPT) obtained by an offline clairvoyant algorithm.

1.4 Proposed Algorithms

Algorithm 1 NPO(p): Buffer Management Policy
1: if buffer occupancy is less than B then
2: accept p
3: else
4: drop p
5: end if

Next we define both push-out and non-push-out algorithms. The Non-Push-Out Algorithm (NPO) is a
simple greedy work-conserving policy that accepts a packet if there is enough available buffer space. Already
admitted packets are processed in First-In-First-Out order. If during arrivals NPO’s buffer is full then any
arriving packet is dropped even if it has less processing required than a packet already admitted to NPO’s
buffer (see Algorithm 1).

Next we introduce two push-out algorithms. The Push-Out Algorithm (PO) is also greedy and work-
conserving, but now, if an arriving packet p requires less processing cycles than at least one packet in its
buffer, then PO pushes out the first packet with the maximal number of processing cycles in its buffer
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Algorithm 2 PO(p): Buffer Management Policy
1: if buffer occupancy is less than B then
2: accept p
3: else
4: let q be the first (from HOL) packet with maximal number of residual processing
5: if rt(p) < rt(q) then
6: drop q and accept p according to FIFO order
7: end if
8: end if

and accepts p according to FIFO order (see Algorithm 2). The second algorithm is a new Lazy-Push-Out
algorithm LPO that mimics the behaviour of PO with two important differences: (i) LPO does not transmit
a Head-Of-Line packet with a single processing cycle if its buffer contains at least one packet with more
than one residual processing cycle, until the buffer contains only packets with a single residual processing
cycle; (ii) once all packets in LPO’s buffer (say there are m packets there) have a single processing cycle
remaining, LPO transmits them over the next m/C processing cycles where C is the number of processing
cores; observe that during this time, if an arriving packet p requires less processing than the first packet q
with maximal number of processing cycles in LPO’s buffer, p pushes out q (similarly to PO).

Intuitively, LPO is a weakened version of PO since PO tends to empty its buffer faster. Simulations also
support this view (see Section 4). However, Theorem 1 shows that LPO and PO are incomparable in the
worst case.

Theorem 1. (1) There exists a sequence of inputs on which PO processes ≥ 3
2 times more packets than

LPO. (2) There exists a sequence of inputs on which LPO processes ≥ 5
4 times more packets than PO.

Proof. To see (1), consider two bursts of B packets:

– first burst of B packets with required work 2 arriving at time slot t = 1;
– second burst of B packets with required work 1 arriving at time slot t = B.

By the time the second burst arrives, LPO has processed no packets, while PO has processed B
2 packets.

Then both algorithms processB packets of required work 1 over the nextB time slots. Since we have arrived
at a state where both algorithms have empty buffers, we can repeat the procedure, getting an asymptotic
bound.

To prove (2), suppose for simplicity that k > B
2 . The following table demonstrates the sequence of

arrivals and the execution of both algorithms (#ALG denotes the number of packets processed by ALG up
to this time; no packets arrive during time slots not shown in the table).

t Arriving IBLPO
t # LPO IBPO

t # PO

1 2 ×B 2 . . . 2 0 2 . . . 2 0

B k × B
2 1 . . . 1 0 k . . . k 2 . . . 2 B/2

2B − 1 none 1 B − 1 k . . . k 1 B − 1

2B 1 × B
2 1 . . . 1 B 1 . . . 1 k . . . k B

5B
2 − 1 none 1 3B/2− 1 1 . . . 1 k . . . k-B/2+1 B
5B
2 1 ×B 1 . . . 1 3B/2 1 . . . 1 B
7B
2 none ∅ 5B/2 ∅ 2B

Similar to (1), we can repeat this sequence. ut
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LPO is an online push-out algorithm that obeys the FIFO ordering model, so its competitiveness is
an interesting result by itself. But we believe this type of algorithms to be a rather promising direction for
further study since they provide a well-defined accounting infrastructure that can be used for system analysis
in different settings. From an implementation point of view we can define a new on-line algorithm that will
emulate the behaviour of LPO but will not delay the transmission of processed packets. Observe that such an
algorithm is not greedy. Although we will briefly discuss the competitiveness of an NPO policy and lower
bounds for PO, in what follows NPO and PO will be mostly used as a reference for the simulation study.

2 Competitiveness of the Non-Push-Out Policy

The following theorem provides a tight bound on the worst-case performance of NPO; its proof is given in
the Appendix.

Theorem 2. (1) For a sufficiently long arrival sequence, the competitiveness of NPO is at least k.
(2) For a sufficiently long arrival sequence, the competitiveness of NPO is at most k.

As demonstrated by the above results, the simplicity of non-push-out greedy policies does have its price.
In the following sections we explore the benefits of introducing push-out policies and provide an analysis of
their performance.

3 Competitiveness of Push-Out Policies

In this section, we show lower bounds on the competitive ratio of PO and LPO algorithms and prove an
upper bound for LPO.

3.1 Lower bounds

In this part we consider lower bounds on the competitive ratio of PO and LPO for different values of k and
B. Proofs of Theorems 3 and 4 are given in the Appendix.

Theorem 3. The competitive ratio of both LPO and PO is at least 2
(
1− 1

B

)
for k ≥ B. The competitive

ratio for k < B is at least 2k
k+1 for PO and at least 2k−1

k for LPO.

For large k (of the order k ≈ Bn, n > 1), logarithmic lower bounds follow.

Theorem 4. The competitive ratio of PO (LPO) is at least blogB kc+ 1−O( 1
B ).

3.2 Upper Bound on the Competitive Ratio of LPO

We already know that the performance of LPO and PO is incomparable in the worst case (see Theorem 1),
and it remains an interesting open problem to show an upper bound on the competitive ratio of PO. In this
section we provide the first known upper bound of LPO. Specifically, we prove the following theorem.

Theorem 5. LPO is at most
(
ln k + 3 + o(B)

B

)
-competitive.
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We remind that LPO does not transmit any packet until all packets in the buffer have exactly one pro-
cessing cycle left. The definition of LPO allows for a well-defined accounting infrastructure. In particular,
LPO’s definition helps us to define an iteration during which we will count the number of packets trans-
mitted by the optimal algorithm and compare it to the contents of LPO’s buffer. The first iteration begins
with the first arrival. An iteration ends when all packets in the LPO buffer have a single processing pass left.
Each subsequent iteration starts after the transmission of all LPO packets from the previous iteration.

We assume that OPT never pushes out packets and it is work-conserving; without loss of generality,
every optimal algorithm can be assumed to have these properties since the input sequence is available for
it a priori. Further, we enhance OPT with two additional properties: (1) at the start of each iteration, OPT
flushes out all packets remaining in its buffer from the previous iteration (for free, with extra gain to its
throughput); (2) let t be the first time when LPO’s buffer is congested during an iteration; OPT flushes out
all packets that currently reside in its buffer at time t− 1 (again, for free, with extra gain to its throughput).
Clearly, the enhanced version of OPT is no worse than the optimal algorithm since both properties provide
additional advantages to OPT versus the original optimal algorithm. In what follows, we will compare LPO
with this enhanced version of OPT for the purposes of an upper bound.

To avoid ambiguity for the reference time, t should be interpreted as the arrival time of a single packet. If
more than one packet arrive at the same time slot, this notation is considered for every packet independently,
in the sequence in which they arrive (although they might share the same actual time slot).

Claim. Consider an iteration I that begins at time t′ and ends at time t. The following statements hold:
(1) during I , the buffer occupancy of LPO is at least the buffer occupancy of OPT; (2) between two sub-
sequent iterations I and I ′, OPT transmits at most | IBLPO

t | packets; (3) if during a time interval [t′,t”],
t′ ≤ t” ≤ t, there is no congestion then during [t′,t”] OPT transmits at most | IBLPO

t” | packets.

Proof. (1) LPO takes as many packets as it can until its buffer is full and once full it remains so for the
rest of the iteration hence its buffer is at least as full as OPT’s during an iteration. (2) By (1), at the end
of an iteration the buffer occupancy of LPO is at least the buffer occupancy of OPT; moreover, all packets
in LPO buffer at the end of an iteration have a single processing cycle. (3) Since during [t′,t”] there is no
congestion and since LPO is greedy, LPO buffer contains all packets that have arrived after t, and thus,
OPT cannot transmit more packets than have arrived. ut

We denote by Mt the maximal number of residual processing cycles among all packets in LPO’s buffer
at time t; by Wt, the total residual work for all packets in LPO’s buffer at time t.

Lemma 1. For every packet accepted by OPT at time t and processed by OPT during the time interval
[ts,te], t ≤ ts ≤ te, if | IBLPO

t−1 | = B then Wte ≤Wt−1 −Mt.

Proof. If LPO’s buffer is full then a packet p accepted by OPT either pushes out a packet in LPO’s buffer or
is rejected by LPO. If p pushes a packet out, then the total work Wt−1 is reduced by Mt− rt(p). Moreover,
after processing p, Wte ≤Wt−1− (Mt− rt(p))− rt(p) =Wt−1−Mt. Otherwise, if p is rejected by LPO
then rt(p) ≥Mt, and thus Wte ≤Wt−1 − rt(p) ≤Wt−1 −Mt. ut

Let t be the time of the first congestion during an iteration I that has ended at time t′. Observe that by
definition, at time t, OPT flushes out all packets that were still in its buffer at time t − 1. We denote by
f(B,W ) the maximal number of packets that OPT can process during [t,t′], where W =Wt−1.

Lemma 2. For every ε > 0, f(B,W ) ≤ B−1
1−ε ln W

B + o(B ln W
B ).
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Proof. By definition, LPO does not transmit packets during an iteration. Hence, if the buffer of LPO is full,
it will remain full until the end of iteration. At any time t, Mt ≥ Wt

B : the maximal required processing is no
less than the average. By Lemma 1, for every packet p accepted by OPT at time t, the total workW =Wt−1
is reduced by Mt after OPT has processed p. Therefore, after OPT processes a packet at time t′, Wt′ is at
most W

(
1− 1

B

)
.

We now prove the statement by induction on W . The base is trivial for W = B since all packets are
already 1’s.

The induction hypothesis is now that after one packet is processed by OPT, there cannot be more than
f(B,WB

(
1− 1

B

)
) ≤ B−1

1−ε ln
[
W
B

(
1− 1

B

)]
packets left, and for the induction step we have to prove that

B − 1

1− ε
ln

[
W

B

(
1− 1

B

)]
+ 1 ≤ B − 1

1− ε
ln
W

B
.

This is equivalent to

ln
W

B
≥ ln

[
W

B

B − 1

B
e

1−ε
B−1

]
,

and this holds asymptotically because for every ε > 0, we have e
1−ε
B−1 ≤ B

B−1 for B sufficiently large. ut

Now we are ready to prove Theorem 5.

Proof (of Theorem 5). Consider an iteration I that begins at time t′ and ends at time t.

1. LPO’s buffer is not congested during I . In this case, by Claim 3.2(3) OPT cannot transmit more than
| IBLPO

t | packets during I .
2. During I , LPO’s buffer is first congested at time t′′, t′ ≤ t′′ ≤ t. If during I OPT transmits less

than B packets then we are done. By Claim 3.2(3), during [t′,t′′] OPT can transmit at most B packets.
Moreover, at most B packets are left in OPT buffer at time t′′ − 1. By Lemma 2, during [t′′,t] LPO

transmits at most (ln k + o(B)
B )B packets (because W ≤ kB), so the total amount over a congested

iteration is at most (ln k + 2 + o(B)
B )B packets.

Therefore, during an iteration OPT transmits at most (ln k + 2 + o(1))| IBLPO
t | packets. Moreover, by

Claim 3.2(2), between two subsequent iterations OPT can transmit at most | IBLPO
t | additional packets.

Thus, LPO is at most ln k + 3 + o(B)
B -competitive. ut

The bound shown in Theorem 5 is asymptotic. To cover small values of B, we show a weaker bound
(log2 k instead of ln k) on inputs where LPO never pushes out packets that are currently being processed.

The following theorem shows an upper bound for this family of inputs; it also provides motivation for a
new algorithm that does not push out packets that are currently being processed. This restriction is practical
(if a packet is being processed, perhaps this means that it has left the queue and gone on, e.g., to CPU cache),
and the analysis of such an algorithm is an interesting problem that we leave open.

Theorem 6. For every B > 0 and k > 0, if LPO never pushes out packets that are currently being pro-
cessed then LPO is at most

(
log2 k + 3 + B−1

B

)
-competitive.

Proof. The case when there is no congestion during iteration is identical to the same case of Theorem 5.
If, during an iteration I , LPOp’s buffer is congested, it is full and it will remain full till the end of

iteration. If during I OPT transmits less thanB packets then we are done. Otherwise, consider sub-intervals
of time during I when OPT transmits exactly B packets.
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We denote by AOi the average number of processing passes between all packets transmitted by OPT
during the ith subinterval. We also denote byAsi and byAei the average number of residual processing passes
among all packets in LPOp’s buffer at the start and at the end of the ith subinterval, respectively. Since any
packet processed during the subinterval is not pushed out, Aei = min(Ai,A

s
i − Ai). Clearly, as a result the

maximal number of subintervals during an iteration is achieved whenAi = Asi−Ai. Therefore, the maximal
number of subintervals during an iteration is bounded by log2 k (recall thatAs1 ≤ k). By definition, OPT can
gain at most 2B packets at the time of the first congestion during iteration. In the worst case, from the end of
the last subinterval till the end of iteration OPT can transmit at most B− 1 additional packets. Thus, during
a congested iteration OPT transmits at most (log2 k + 2)B + B − 1 packets. Moreover, by Claim 3.2(2),
between two subsequent iterations OPT can transmit at most B additional packets. Thus, LPOp is at most(
log2 k + 3 + B−1

B

)
-competitive. ut

4 Simulation Study

In this section, we consider the proposed policies (both push-out and non-push-out) for FIFO buffers and
conduct a simulation study in order to further explore and validate their performance. Namely, we compare
the performance of NPO, PO, and LPO in different settings. It was shown in [7] that a push-out algorithm
that processes packets with less required processing first is optimal. In what follows we denote it by OPT∗.
Clearly, OPT in the FIFO queueing model does not outperform OPT∗.

Our traffic is generated using an ON-OFF Markov modulated Poisson process (MMPP), which we use to
simulate bursty traffic. The choice of parameters is governed by the average arrival load, which is determined
by the product of the average packet arrival rate and the average number of processing cycles required by
packets. For a choice of parameters yielding an average packet arrival rate of λ, where every packet has its
required number of passes chosen uniformly at random within the range [1,k], we obtain an average arrival
load (in terms of required passes) of λ · k+1

2 .
In our experiments, the “OFF” state has average arrival rate λ = 0.3, and the “ON” state has average

arrival rate λ = 4.5 (the number of packets is uniformly distributed between 3 and 6). By performing
simulations for variable values of the maximal number of required passes k in the range [1,40], we essentially
evaluate the performance of our algorithms in settings ranging from underload (average arrival load of 0.3
for k = 1 and 0.6 for k = 2) to extreme overload (average arrival load of 180 in the “ON” state for k = 40),
which enables us to validate the performance of our algorithms in various traffic scenarios.

Figure 2 shows the results of our simulations. The vertical axis in all figures represents the ratio between
the algorithm’s performance and OPT ∗ performance given the arrival sequence (so the red line correspond-
ing to OPT∗ is always horizontal at 1).

We conduct three sets of simulations: the first one is targeted at a better understanding of the dependence
on the number of processing cycles, the second evaluates dependency of performance from buffer size, and
the third aims to evaluate the power of having multiple cores.

We note that the standard deviation throughout our simulation study never exceeds 0.05 (deviation bars
are omitted from the figures for readability). For every choice of parameters, we conducted 200,000 rounds
(time slots) of simulation.

4.1 Variable Maximum Number of Required Processing Cycles
In these simulations, we restricted our attention to the single core case (C = 1). The top row of graphs on
Fig. 2 shows that OPT∗ keeps outperforming LPO and NPO more and more as k grows. In these settings,
the difference in the order of processing between OPT ∗ and PO is small. The performance of LPO versus
NPO degrades moderately since LPO is a push-out algorithm. This behaviour is of course as expected.
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Fig. 2. Competitive ratio as a function of parameters: top row, of k; middle row, of B; bottom row, of C.

4.2 Variable Buffer Size

In this set of simulations we evaluated the performance of our algorithms for variable values of B in the
range [1,40]. Throughout our simulations we again assumed a single core (C = 1) and evaluated different
values of k. The middle row on Fig. 2 presents our results. Unsurprisingly, the performance of all algorithms
significantly improves as the buffer size increases; the difference between OPT∗ and two other push-out
algorithms visibly reduces, but, of course, it would take a huge buffer for NPO to catch up (one would need
to virtually remove the possibility of congestion).

4.3 Variable Number of Cores

In this set of simulations we evaluated the performance of our algorithms for variable values ofC in the range
[1,10]. The bottom row of Fig. 2 presents our results; the performance of all algorithms, naturally, improves
drastically as the number of cores increases. There is an interesting phenomenon here: push-out capability
becomes less important since buffers are congested less often, but LPO keeps paying for its “laziness”; so as
C grows, eventually NPO outperforms LPO. The increase in the number of cores essentially provides the
network processor (NP) with a speedup proportional to the number of cores (assuming the average arrival
rate remains constant).

5 Conclusion

The increasingly heterogeneous needs of NP traffic processing pose novel design challenges for NP archi-
tects. In this paper, we provide performance guarantees for NP buffer scheduling algorithms with FIFO
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queueing for packets with heterogeneous required processing. The objective is to maximize the number of
transmitted packets under various settings such as push-out and non-push-out buffers. We validate our results
by simulations. As future work, it will be interesting to show an upper bound for the PO algorithm and try
to close the gaps between lower and upper bounds of the proposed on-line algorithms.
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Appendix

Proof (of Theorem 2). (1) Lower bound. Assume for simplicity that B/C is an integer. Consider the fol-
lowing set of arrivals. During the first time slot arrive B − C packets with maximal number of passes k.
From the same time slot an iteration is started. During each iteration C packets with k processing cycles
arrive. Since NPO is greedy it accepts all of them and its buffer is full. OPT does not accept these packets.
During the arrival phase of the next kC time slots the buffer of NPO is full since it is non-push-out and
implements FIFO order. During this time interval arrive C packets with a single processing cycle each time
slot. During each iteration OPT transmits kC packets but NPO transmits only C packets. In contrast to the
other iterations during the last time slot of the last iteration a burst of B packets arrives. So at the end of the
arrival sequence both buffers are full. Thus, the competitiveness of NPO is at least ikC+B

iC+B , i ≥ 1. Therefore,
for sufficiently big value of k, NPO is at least k-competitive.

(2) Upper bound. Observe that NPO must fill up its buffer before it drops any packets. Moreover, so
long as the NPO buffer is not empty then after at most k time steps NPO must transmit its HOL packet.
This means that NPO is transmitting at a rate of at least one packet every k time steps, while OPT in the
same time interval transmitted at most k packets. Hence, the number of transmitted packets at time t for
NPO is at least bt/kc while OPT transmitted at most t packets for a competitive ratio of k so long as the
NPO buffer did not become empty before OPT’s did.

If, on the other hand, NPO empties its buffer first, this means there were no packet arrivals since the
NPO buffer went below the B − 1 threshold at a time t. From that moment on NPO empties its buffer
transmitting thus at least B − 1 packets, while OPT transmitted at most B packets.

So in total the number of packets transmitted by NPO is at least
⌊
t
k

⌋
+B − 1 while the total number of

packets transmitted by OPT is t+B. Thus, for sufficiently long input sequences NPO is k-competitive. ut

Proof (of Theorem 3). Case 1. k ≥ B. In this case, the same hard instance works for both PO and LPO.
Consider the following sequence of arriving packets: on step 1, there arrives a packet with B required work
followed by a packet with a single required cycle; on steps 2..B − 2, B − 2 more packets with a single
required processing cycle; on stepB−1,B packets with a single processing cycle, and then no packets until
step 2B − 1, when the sequence is repeated. Under this sequence of inputs, the queues will work as follows
(#ALG denotes the number of packets processed by ALG).

t Arriving IB
{PO ,LPO}
t # {PO ,LPO} IBOPT

t # OPT

1 1 B 1 B 0 1 1

2 1 1 1 B-1 0 1 2

3 1 1 1 1 B-2 0 1 3
. . . . . . . . .

B − 2 1 1 . . . 1 2 0 1 B − 2

B − 1 1 ×B 1 . . . 1 1 1 1 . . . 1 1 B − 1
. . . . . . . . .

2B − 1 B 2B − 2
Thus, at the end of this sequence PO has processed B packets, while OPT has processed 2B − 2, and

the sequence repeats itself, making this ratio asymptotic.
Case 2.1. k < B, algorithm PO. In this case, we need to refine the previous construction; for simplicity,

assume that k � B →∞, and everything divides everything.

1. On step 1, there arrive (1 − α)B packets of required work k followed by αB packets with required
work 1 (α is a constant to be determined later). PO accepts all packets, while OPT rejects packets with
required work k and only accepts packets with required work 1.
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2. On step αB, OPT’s queue becomes empty, while PO has processed αB
k packets, so it has αB

k free
spaces in the queue. Thus, there arrive αB

k new packets of required work 1.
3. On step αB(1 + 1

k ), OPT’s queue is empty again, and there arrive αB
k2 new packets of required work 1.

4. ...
5. When PO is out of packets with k processing cycles, its queue is full of packets with 1 processing cycle,

and OPT’s queue is empty. At this point, there arrive B new packets with a single processing cycle,
they are processed, and the entire sequence is repeated.

In order for this sequence to work, we need to have

αB

(
1 +

1

k
+

1

k2
+ . . .

)
= k (1− α)B.

Solving for α, we get α = 1− 1
k . During the sequence, OPT has processed αB

(
1 + 1

k + 1
k2 + . . .

)
+B =

2B packets, while PO has processed (1− α)B +B =
(
1 + 1

k

)
B packets, so the competitive ratio is 2

1+ 1
k

.

Note that the two competitive ratios, 2
1+ 1

k

and 2
(
1− 1

B

)
, match when k = B − 1.

Case 2.2. k < B, algorithm LPO. In this case, we can use an example similar to the previous one, but
simpler since there is no extra profit to be had from an iterative construction.

1. On step 1, there arrive (1−α)B packets with k processing cycles followed by αB packets with a single
processing cycle (α is a constant to be determined later). LPO accepts all packets, while OPT rejects
packets with required work of k and only accepts packets with a single processing cycle.

2. On step αB, OPT’s queue becomes empty, while PO has processed αB
k packets, so it has αB

k free
spaces in the queue. There arrive βB new packets of required work 1.

3. On step (α+ β)B, OPT’s queue is empty again, and LPO’s queue consists of B packets with required
work 1. At this point, there arriveB new packets with required work 1, they are processed, and the entire
sequence is repeated.

In order for this sequence to work, we need to have(
β +

α+ β

k − 1

)
B = (1− α)B,

and OPT has processed (α+β)B extra packets, and from this equation we get α+β =
(
1 + 1

k−1

)−1
. Dur-

ing the sequence, OPT has processed B
(
1 +

(
1 + 1

k−1

)−1)
packets, and LPO has processed B packets,

yielding the necessary bound. ut

Proof (of Theorem 4). We proceed by induction on B. For the induction base, we begin with the basic
construction that works for k = Ω(B2).

Lemma 3. For k ≥ (B− 1)(B− 2), the competitive ratio of PO is at least 3B
B+1 ; for LPO, the competitive

ratio is at least exactly 3.

Proof. This time, we begin with the following buffer state:

1 2 3 4 . . . B-1 (B-1)(B-2) .
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Over the next (B− 1)(B− 2) steps, PO (LPO) keeps processing the first packet, while OPT, dropping the
first packet, processes all the rest (their sizes sum up to the size of the first one). Thus, after (B − 1)(B − 2)
steps OPT’s queue is empty, and PO’s (LPO’s) queue looks like

1 2 3 . . . B-1 .

Over the next B steps, B packets of size 1 arrive in the system. On each step, PO (LPO) drops the packet
from the head of the queue since it is the largest one, while OPT keeps processing packets as they arrive.

Thus, at the end of (B−1)(B−2)+B steps, PO (LPO) has a queue full of 1 ’s and OPT has an empty
queue; moreover, PO (LPO) has processed only one packet (zero packets), while OPT has processed 2B
packets. Now, for the case of unlimited size incoming burst we have B packets of size 1 arriving, and after
that they are processed and the sequence is repeated, so PO (LPO) processesB+1 packets (B packets) and
OPT processes 3B packets per iteration. ut

If k grows further, we can iterate upon this construction to get better bounds. For the induction step,
suppose that we have already proven a lower bound of n − O( 1

B ) , and the construction requires maximal
required work per packet less than S = Ω(Bn−1).

Let us now use the construction from Lemma 3, but add S to every packet’s required work and, conse-
quently, S(B − 1) to the first packet’s required work:

1+S 2+S 3+S 4+S . . . B-1+S (B-1)(B-2+S) .

At first (for the first (B − 1)(B − 2 + S) steps), this works exactly like the previous construction: OPT
processes all packets except the first while PO (LPO) is processing the first packet. After that, OPT’s queue
is empty, and PO’s (LPO’s) queue is

1+S 2+S 3+S . . . B-1+S .

Now we can add packets from the previous construction (one by one in the unit-size burst case or all at
once), and OPT will just take them into its queue, while PO (LPO) will replace all existing packets from
its queue with new ones. Thus, we arrive at the beginning of the previous construction, but this time, PO
(LPO) has already processed one packet and OPT has already processed B − 1 packets.

This completes the proof of Theorem 4. ut
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