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Motivic decomposition of anisotropic varieties of type F4 into
generalized Rost motives
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Abstract

We prove that the Chow motive of an anisotropic projective homogeneous
variety of type F4 is isomorphic to the direct sum of twisted copies of a
generalized Rost motive. In particular, we provide an explicit construction
of a generalized Rost motive for a generically splitting variety for a symbol in
KM

3 .k/=3. We also establish a motivic isomorphism between two anisotropic
non-isomorphic projective homogeneous varieties of type F4. All our results
hold for Chow motives with integral coefficients.
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1. Introduction

The subject of the present paper begins with the celebrated result of M. Rost [Ro98]
devoted to the motivic decomposition of a norm quadric. The existence of such
a decomposition became one of the main ingredients in the proof of the Milnor
conjecture by V. Voevodsky. The generalization of this conjecture to other primes
p > 2, known as the Bloch-Kato conjecture, was proven recently by M. Rost and
V. Voevodsky. One of the ingredients of the proof is the fact that the motive with
Z=pZ-coefficients of a splitting (norm) variety X contains as a direct summand a
certain geometric motive Mp�1 called generalized Rost motive [Vo03, Sect. 5]. This
motive is indecomposable and splits as a direct sum of twisted Lefschetz motives
over the separable closure of the base field.

Note that Voevodsky’s construction of Mp�1 relies heavily on the language of
triangulated category of motives. The main goal of the present paper is to provide
an explicit and shortened construction of the motive M2 (p D 3) working only
within the classical category of Chow motives. More precisely, we provide such a
construction for an exceptional projective homogeneous variety of type F4 which
splits the symbol (in KM

3 .k/=3) given by the Rost-Serre invariant g3 (see 4.5).

�Supported partially by DAAD, INTAS 00-566, Alexander von Humboldt foundation, RTN-
Network HPRN-CT-2002-00287.
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Note that if X is generically cellular and splits a pure symbol, it is expected that
the motive of X is isomorphic to the direct sum of twisted copies of the motive
Mp�1. The motivic decomposition that we obtain confirms these expectations.
Namely, we prove the following

1.1 Theorem Let X be an anisotropic variety over a field k such that over a cubic
field extension k0 of k it becomes isomorphic to the projective homogeneous variety
G=P , where G is a split simple group of type F4 and P its maximal parabolic
subgroup corresponding to the last or the first three vertices of the Dynkin diagram
4.1.

Then the Chow motive of X (with integral coefficients) is isomorphic to the
direct sum of twisted copies of an indecomposable motive R

M.X/ Š
7M

iD0

R.i/ (1)

which has the property that over k0 it becomes isomorphic to the direct sum of
twisted Lefschetz motives Z ˚ Z.4/ ˚ Z.8/.

The next result provides the first known “purely exceptional” example of two
different anisotropic varieties with isomorphic motives. Recall that the similar result
for groups of type G2 obtained in [Bo03] provides a motivic isomorphism between
quadric and an exceptional Fano variety.

1.2 Theorem Let G be an anisotropic algebraic group over k such that over a
cubic field extension k0 of k it becomes isomorphic to a split simple group G of
type F4. Let X1 and X4 be two projective G-homogeneous varieties which over k0
become isomorphic to G=P1 and G=P4 respectively, where P1 (resp. P4) is the
maximal parabolic subgroup corresponding to the last (resp. first) three vertices of
the Dynkin diagram 4.1.

Then the motives of X1 and X4 are isomorphic.

The main motivation for our work was the result of N. Karpenko where he gave
a shortened construction of a Rost motive for a norm quadric [Ka98]. The key
idea is to produce enough idempotents in the ring CH.X � X/ considered over the
separable closure of k and then lift them to k using the Rost Nilpotence Theorem
(see [CGM]). Contrary to the techniques used by Voevodsky, the proof of Theorem
1.1 is based on well-known and elementary facts about linear algebraic groups,
projective homogeneous varieties, and Chow groups.

We expect that similar methods can be applied to other projective homogeneous
varieties, thus providing analogous motivic decompositions. In particular, applying
our arguments to a Pfister quadric one obtains the celebrated decomposition into
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Rost motives (see [KM02, Example 7.3]). For exceptional groups of type G2 one
immediately obtains the motivic decomposition of the Fano variety together with
the motivic isomorphism constructed in [Bo03].

The paper is organized as follows. In Section 2 we provide background
information on Chow motives and rational cycles. Section 3 is devoted to
computational matters of Chow rings. Namely, we introduce Pieri and Giambelli
formulae and discuss their relationships with Hasse diagrams. In Section 4 we apply
the formulae introduced in Section 3 to projective homogeneous varieties X1 and X4

of type F4. In Section 5 we prove Theorems 1.1 and 1.2. Finally, in the Appendix
we explain the intermediate technical steps of computations used in the proofs.

2. Motives and rational cycles

In the present section we introduce the category of Chow motives over a field k

following [Ma68] and [Ka01]. We remind the notion of a rational cycle and state
the Rost Nilpotence Theorem for idempotents following [CGM].

2.1 Let k be a field and Vark be a category of smooth projective varieties
over k. First, we define the category of correspondences (over k) denoted by
Cork . Its objects are smooth projective varieties over k. For morphisms, called
correspondences, we set Mor.X;Y / WD`n

lD1CHdl
.Xl �Y /, where X1;:::;Xn are the

irreducible components of X of dimensions d1;:::;dn. For any two correspondences
˛ 2 CH.X �Y / and ˇ 2 CH.Y �Z/ we define their composition ˇı˛ 2 CH.X �Z/

as

ˇ ı ˛ D pr13�.pr�
12.˛/ � pr�

23.ˇ//; (2)

where prij denotes the projection on the i-th and j -th factors of X � Y � Z

respectively and prij �, pr�
ij denote the induced push-forwards and pull-backs for

Chow groups.
The pseudo-abelian completion of Cork is called the category of Chow motives

and is denoted by Mk . The objects of Mk are pairs .X;p/, where X is a smooth
projective variety and p is an idempotent, that is, p ı p D p. The morphisms
between two objects .X;p/ and .Y;q/ are the compositions q ı Mor.X;Y / ı p. The
motive .X;id/ will be denoted by M.X/ and called the Chow motive of X .

2.2 By construction, Mk is a tensor additive category, where the tensor product is
given by the usual product .X;p/ ˝ .Y;q/ D .X � Y;p � q/. For any cycle ˛ we
denote as ˛t the corresponding transposed cycle.

Moreover, the covariant Chow functor CHWVark ! Z-Ab (to the category of Z-
graded abelian groups) factors through Mk , that is, one has a commutative diagram
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of functors
Vark

CH ��

� ���������� Z-Ab

Mk

CH

�����������

where �Wf 7! �f is the graph functor and CH W.X;p/ 7! Im.p?/ is the realization.

2.3 Observe that the composition product ı induces the ring structure on the abelian
group CHdimX .X �X/. The unit element of this ring is the class of the diagonal map
�X , which is defined by �X ı ˛ D ˛ ı �X D ˛ for all ˛ 2 CHdimX .X � X/.

2.4 Consider the morphism .e;id/Wfptg � P 1 ! P 1 � P 1. The image by means
of the induced push-forward .e;id/�.1/ does not depend on the choice of the point
eWfptg ! P 1 and defines the projector in CH1.P 1 �P 1/ denoted by p1. The motive
Z.1/ D .P 1;p1/ is called Lefschetz motive. For a motive M and a nonnegative
integer i we denote its twist by M.i/ D M ˝ Z.1/˝i .

2.5 Let G be a split simple linear algebraic group over k. Let X be a projective
G-homogeneous variety, that is, X ' G=P , where P is a parabolic subgroup of G.
The abelian group structure of CH.X/, as well as its ring structure, is well-known.
Namely, X has a cellular filtration and the generators of Chow groups of the bases
of this filtration correspond to the free additive generators of CH.X/. Note that the
product of two projective homogeneous varieties X � Y has a cellular filtration as
well, and CH�.X � Y / Š CH�.X/ ˝ CH�.Y / as graded rings. The correspondence
product of two cycles ˛ D f˛ � g˛ 2 CH.X � Y / and ˇ D fˇ � gˇ 2 CH.Y � X/ is
given by (cf. [Bo03, Lemma 5])

.fˇ � gˇ / ı .f˛ � g˛/ D deg.g˛ � fˇ /.f˛ � gˇ /; (3)

where degWCH.Y / ! CH.fptg/ D Z is the degree map.

2.6 Let X be a projective variety of dimension n over a field k. Let k0 be a field
extension of k and X 0 D X �k k0. We say a cycle J 2 CH.X 0/ is rational if it lies
in the image of the natural homomorphism CH.X/ ! CH.X 0/. For instance, there
is an obvious rational cycle �X 0 on CHn.X 0 � X 0/ that is given by the diagonal
class. Clearly, all linear combinations, intersections and correspondence products
of rational cycles are rational.

2.7 Several techniques allow to produce rational cycles (cf. [Ka04, Prop. 3.3] for
the case of quadrics). We shall use the following:

(i) Consider a variety Y and a morphism X ! Y such that X 0 D Y 0 �Y X , where
Y 0 D Y �k k0. Then any rational cycle on CH.Y 0/ gives rise to a rational cycle
on CH.X 0/ by the induced pull-back CH.Y 0/ ! CH.X 0/.
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(ii) Consider a variety Y and a projective morphism Y ! X such that Y 0 D X 0 �X

Y . Then any rational cycle on CH.Y 0/ gives rise to a rational cycle on CH.X 0/
by the induced push-forward CH.Y 0/ ! CH.X 0/.

(iii) Let X and Y be projective homogeneous varieties over k such that X splits
completely (i.e., the respective group splits) over the function field k.Y /.
Consider the following pull-back diagram

CHi .X � Y /

f

��

g �� CHi .X 0 � Y 0/

f 0

��

CHi .Xk.Y //
D �� CHi .X 0

k0.Y 0/
/

where the vertical arrows are surjective by [IK00, §5]. Now take any cycle
˛ 2 CHi .X 0 � Y 0/, i � dimX . Let ˇ D g.f �1.f 0.˛///. Then f 0.ˇ/ D f 0.˛/

and ˇ is rational. Hence, ˇ D ˛ C J , where J 2 Kerf 0, and we conclude that
˛ C J 2 CHi .X 0 � Y 0/ is rational.

2.8 (Rost Nilpotence) Finally, we shall also use the following fact (see [CGM,
Cor. 8.3]) that follows from the Rost Nilpotence Theorem. Let X be a twisted flag
variety and p0 be a non-trivial rational idempotent on CHn.X 0�X 0/, i.e., p0ıp0 D p0.
Then there exists a non-trivial idempotent p on CHn.X �X/ such that p�k k0 D p0.
Hence, the existence of a non-trivial rational idempotent p0 on CHn.X 0 � X 0/ gives
rise to the decomposition of the Chow motive of X

M.X/ Š .X;p/ ˚ .X;idX � p/:

3. Hasse diagrams and Chow rings

To each projective homogeneous variety X we may associate an oriented labeled
graph H called Hasse diagram. It is known that the ring structure of CH.X/

is determined by H. In the present section we remind several facts concerning
relations between Hasse diagrams and Chow rings. For detailed explanations of
these relations see [De74], [Hi82a] and [Ko91].

3.1 Let G be a split simple algebraic group defined over a field k. We fix a maximal
split torus T in G and a Borel subgroup B of G containing T and defined over k. We
denote by ˆ the root system of G, by … the set of simple roots of ˆ corresponding to
B , by W the Weyl group, and by S the corresponding set of fundamental reflections.

Let P D P‚ be a (standard) parabolic subgroup corresponding to a subset ‚ �
…, i.e., P D BW‚B , where W‚ D hs� ;� 2 ‚i. Denote

W ‚ D fw 2 W j 8s 2 ‚ l.ws/ D l.w/ C 1g;
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where l is the length function. The pairing

W ‚ � W‚ ! W .w;v/ 7! wv

is a bijection and l.wv/ D l.w/ C l.v/. It is easy to see that W ‚ consists of all
representatives in the left cosets W=W‚ which have minimal length. Sometimes it
is also convenient to consider the set of all representatives of maximal length. We
shall denote this set as ‚W . Observe that there is a bijection W ‚ ! ‚W given
by v 7! vw� , where w� is the longest element of W‚. The longest element of W ‚

corresponds to the longest element w0 of the Weyl group.

3.2 To a subset ‚ of the finite set … we associate an oriented labeled graph, which
we call a Hasse diagram and denote by HW .‚/. This graph is constructed as
follows. The vertices of this graph are the elements of W ‚. There is an edge
from a vertex w to a vertex w0 labelled with i if and only if l.w/ < l.w0/ and
w0 D siw. A sample Hasse diagram is provided in 4.7. Observe that the diagram
HW .;/ coincides with the Cayley graph associated to the pair .W;S/.

3.3 Lemma The assignment HW W‚ 7! HW .‚/ is a contravariant functor from
the category of subsets of the finite set … (with embeddings as morphisms) to the
category of oriented graphs.

Proof: It is enough to embed the diagram HW .‚/ to the diagram HW .;/. We do
this as follows. We identify the vertices of HW .‚/ with the subset of vertices of
HW .;/ by means of the bijection W ‚ ! ‚W . Then the edge from w to w0 of
‚W � W has a label i if and only if l.w/ < l.w0/ and w0 D siw (as elements of
W ). Clearly, the obtained graph will coincide with HW .‚/.

3.4 Now consider the Chow ring of a projective homogeneous variety G=P‚. It is
well known that CH.G=P‚/ is a free abelian group with a basis given by varieties
ŒXw � that correspond to the vertices w of the Hasse diagram HW .‚/. The degree
of the basis element ŒXw � corresponds to the minimal number of edges needed
to connect the respective vertex w with w� (which is the longest word). The
multiplicative structure of CH.G=P‚/ depends only on the root system of G and
the diagram HW .‚/.

By definition one immediately obtains

3.5 Lemma The contravariant functor CHW‚ 7! CH.G=P‚/ factors through the
category of Hasse diagrams HW , i.e., the pull-back (ring inclusion)

CH.G=P‚0/ ,! CH.G=P‚/

arising from the embedding ‚ � ‚0 is induced by the embedding of the respective
Hasse diagrams HW .‚0/ � HW .‚/.
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3.6 Corollary Let B be a Borel subgroup of G and P its (standard) parabolic
subgroup. Then CH.G=P / is a subring of CH.G=B/. The generators of CH.G=P /

are ŒXw �, where w 2 ‚W � W . The cycle ŒXw � in CH.G=P / has the codimension
l.w0/ � l.w/.

Proof: Apply the lemma to the case B D P; and P D P‚0 .
Hence, in order to compute CH.G=P / it is enough to compute CH.X/, where

X D G=B is the variety of complete flags. The following results provide tools to
perform such computations.

3.7 In order to multiply two basis elements h and g of CH.G=P / such that degh C
degg D dimG=P we use the following formula (see [Ko91, 1.4]):

ŒXw � � ŒXw 0 � D ıw;w0w 0w�
� Œpt �:

3.8 (Pieri formula) In order to multiply two basis elements of CH.X/ one of which
is of codimension 1 we use the following formula (see [De74, Cor. 2 of 4.4]):

ŒXw0s˛
�ŒXw � D

X
ˇ2ˆC;l.wsˇ/Dl.w/�1

hˇ_;!˛iŒXwsˇ
�;

where the sum runs through the set of positive roots ˇ 2 ˆC, s˛ denotes the simple
reflection corresponding to ˛ and N!˛ is the fundamental weight corresponding to ˛.
Here ŒXw0s˛

� is the element of codimension 1.

3.9 (Giambelli formula) Let P D P.ˆ/ be the weight space. We denote as N!1;::: N!l

the basis of P consisting of fundamental weights. The symmetric algebra S�.P /

is isomorphic to ZŒ N!1;::: N!l �. The Weyl group W acts on P , hence, on S�.P /.
Namely, for a simple root ˛i ,

w˛i
. N!j / D

(
N!i � ˛i ; i D j;

N!j ; otherwise:

We define a linear map cWS�.P / ! CH�.G=B/ as follows. For a homogeneous
u 2 ZŒ N!1;:::; N!l �

c.u/ D
X

w2W;l.w/Ddeg.u/

�w.u/ŒXw0w �;

where for w D w˛1
:::w˛k

we denote by �w the composition of derivations �˛1
ı:::ı

�˛k
and the derivation �˛i

WS�.P / ! S��1.P / is defined by �˛i
.u/ D u�w˛i

.u/

˛i
.

Then (see [Hi82a, ch. IV, 2.4])

ŒXw � D c.�w�1.
d

jW j //;
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where d is the product of all positive roots in S�.P /. In other words, the element
�w�1. d

jW j / 2 c�1.ŒXw �/.
Hence, in order to multiply two basis elements h;g 2 CH.X/ one may take

their preimages under the map c and multiply them in S�.P / ˝Z Q D QŒ N!1;::: N!l �,
finally applying c to the product.

4. Homogeneous varieties of type F4

In the present section we remind several well-known facts concerning Albert
algebras, groups of type F4 and respective projective homogeneous varieties (see
[PR94] and [Inv]). At the end we provide partial computations of Chow rings of
these varieties.

4.1 From now on let Xi be an anisotropic projective homogeneous variety over a
field k that over a cubic field extension k0 of k becomes isomorphic to the projective
homogeneous variety X 0

i D G=Pi , where G is a split group of type F4 and Pi D P�i

is a maximal parabolic subgroup of G corresponding to the subset �i D f1;2;3;4g n
fig of the Dynkin diagram

ı
1

ı
2

> ı
3

ı
4

4.2 Remark The variety Xi is a �G-variety over k, where �G is an algebraic group
over k that is the twisted form of a split group G of type F4 by means of a 1-cocycle
� 2 H 1.k;G.k0// (see [De77, Prop. 4]).

If the base field k has characteristic not 3 and �3 � k, then all such groups �G

are automorphism groups of Albert algebras coming from the first Tits construction.

The next two important properties of the varieties Xi will be extensively used in
the sequel.

4.3 Lemma The Picard group Pic.X 0
i / is a free abelian group of rank 1 with a

rational generator.

Proof: Since P is maximal, Pic.X 0
i / is a free abelian group of rank 1. Consider the

following exact sequence (see [Ar82] and [MT95, 2.3])

0 �! PicXi �! .PicX 0
i /

� ˛�! Br.k/;

where � D Gal.k0=k/ is the Galois group and Br.k/ the Brauer group of k. The map
˛ is explicitly described in [MT95] in terms of Tits classes. Since all groups of type
F4 are simply-connected and adjoint their Tits classes are trivial and so is ˛. Since
� acts trivially on Pic.X 0

i / and the image of ˛ is trivial, we have Pic.Xi / ' Pic.X 0
i /.
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4.4 Lemma For any i;j 2 f1;2;3;4g, the variety Xi splits completely over the
function field k.Xj /.

Proof: The following arguments belong to S. Garibaldi.

It is equivalent to show that the function field K D k.Xj / splits the group eG D
�G. First, observe that if eG is isotropic then it is split. Indeed, by Tits classification
[Ti66, p. 60], the only other possibility is that eG has a maximal parabolic P4 defined
over k, but no others. That is, the semisimple anisotropic kernel H of G is of type
B3. Since eG is split by a cubic field extension, the same is true for H . But this is
impossible for an anisotropic group of type B3 by Springer’s Theorem on quadratic
forms and odd-degree extensions.

Now let k0 be a cubic extension of k that splits eG. Since K is a regular extension
of k, the tensor product K 0 D K ˝k k0 is a field and has dimension 1 or 3 over K.
Hence, eG ˝k K is isotropic and is split by the extension K 0. By previous argumentseG ˝k K is split.

4.5 Remark To any Albert algebra A one can associate a symbol fa1;a2;a3g in
KM

3 .k/=3 given by Rost-Serre’s invariant g3. If A is obtained by the first Tits
construction, then g3 D 0 iff A is split, and the variety Xj corresponding to A

provides an example of a generically splitting variety for the symbol given by g3

(see [Su05, Def. 1.8]). Observe that Xj is not exactly a norm (�n-)variety in the
sense of [Vo03, Sect. 4], since it has the wrong dimension, but rather a “Pfister
quadric” version of it.

4.6 From now on we consider only two anisotropic varieties X1 and X4. Recall
that over a cubic field extension k0 they become isomorphic to X 0

1 D G=P1 and
X 0

4 D G=P4 respectively (see 4.1). Varieties X 0
1 and X 0

4 are not isomorphic (their
Chow rings are different) and have the dimension 15. Observe that the variety
X4 is a twisted form of a hyperplane section of the Cayley plane OP 2 which was
extensively studied in [IM05].

4.7 The Hasse diagram (see 3.2) for X 0
1 looks as follows

ı 1 ��ı 2���
�

ı
���

� ı
���

�

2 ���� ı
���

� ı
���

�

ı
1

ı
2

ı
3

ı
����

2
���

� ı
����
���

� ı
2

��ı
����

3
���

� ı
����
���

� ı
3

ı
2

ı
1

ı
ı

����

1
���

� ı 3

���� ı
����

4
���

� ı 2

����

ı 4

���� ı 1

����



94 S. NIKOLENKO, N. SEMENOV & K. ZAINOULLINE

and for X 0
4

ı 4 ��ı 3���
�

ı
���

� ı
���

�

3 ���� ı
���

� ı
���

�

ı
4

ı
3

ı
2

ı
����

3
���

� ı
����
���

� ı
3

��ı
����

2
���

� ı
����
���

� ı
2

ı
3

ı
4

ı
ı

����

4
���

� ı 2

���� ı
����

1
���

� ı 3

����

ı 1

���� ı 4

����

We draw the diagrams in such a way that the labels on opposite sides of a
parallelogram are equal, and in that case we omit all labels but one. Recall that
(see 3.4) the vertices of this graph correspond to the basis elements of the Chow
group. The rightmost vertex is the unit class and the leftmost one is the class of a
0-cycle of degree 1.

4.8 We denote the basis elements of the respective Chow groups as follows

CHi .X 0
1/ D

(
hhi

1i; i D 0;:::;3;12;:::;15;

hhi
1;hi

2i; i D 4;:::;11:

CHi .X 0
4/ D

(
hgi

1i; i D 0;:::;3;12;:::;15;

hgi
1;gi

2i; i D 4;:::;11:

The generators with lower index 1 correspond to the lower vertices of the
respective Hasse diagrams, and with index 2 to the upper ones (if there are two
generators).

4.9 Applying 3.7 we immediately obtain the following partial multiplication table:

hs
i h15�s

j D ıij h15
1 ; gs

i g15�s
j D ıij g15

1 ;

where ıij D 1 if i D j and 0 otherwise.

4.10 By Pieri formula 3.8 we obtain the following partial multiplication tables for
CH.X 0

1/:

h1
1h1

1 D h2
1; h1

1h2
1 D 2h3

1; h1
1h3

1 D 2h4
2 C h4

1; h1h4
2 D h5

2;

h1
1h4

1 D 2h5
2 C h5

1; h1
1h5

2 D 2h6
2 C h6

1; h1
1h5

1 D 2h6
1; h1

1h6
2 D h7

2 C h7
1;

h1
1h6

1 D 2h7
1; h1

1h7
2 D 2h8

2 C h8
1; h1

1h7
1 D h8

2 C 2h8
1; h1

1h8
2 D h9

2;

h1
1h8

1 D h9
2 C 2h9

1; h1
1h9

2 D 2h10
2 ; h1

1h9
1 D h10

2 C 2h10
1 ; h1

1h10
2 D h11

2 C 2h11
1 ;

h1
1h10

1 D h11
1 ; h1

1h11
2 D 2h12

1 ; h1
1h11

1 D h12
1 ; h1

1h12
1 D 2h13

1 ;

h1
1h13

1 D h14
1 ; h1

1h14
1 D h15

1 :
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for CH.X 0
4/:

g1
1g1

1 D g2
1 ; g1

1g2
1 D g3

1 ; g1
1g3

1 D g4
1 C g4

2 ; g1
1g4

2 D g5
2 ;

g1
1g4

1 D g5
1 C g5

2 ; g1
1g5

2 D g6
1 C g6

2 ; g1
1g5

1 D g6
1 ; g1

1g6
2 D g7

1 C g7
2 ;

g1
1g6

1 D g7
1 ; g1

1g7
1 D 2g8

1 C g8
2 ; g1

1g7
2 D g8

1 C 2g8
2 ; g1

1g8
2 D g9

2 ;

g1
1g8

1 D g9
1 C g9

2 ; g1
1g9

2 D g10
2 ; g1

1g9
1 D g10

1 C g10
2 ; g1

1g10
2 D g11

1 C g11
2 ;

g1
1g10

1 D g11
1 ; g1

1g11
2 D g12

1 ; g1
1g11

1 D g12
1 ; g1

1g12
1 D g13

1 ;

g1
1g13

1 D g14
1 ; g1

1g14
1 D g15

1 :

4.11 Observe that the multiplication tables 4.10 can be visualized by means of
slightly modified Hasse diagrams. Namely, for the variety X 0

1 consider the following
graph which is obtained from the respective Hasse diagram by adding a few more
edges and erasing all the labels:
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and for X 0
4:
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Then the multiplication rules can be restored as follows: for a vertex u (that
corresponds to a basis element of the Chow group) we set

H � u D
X
u!v

v;

where H denotes either h1
1 or g1

1 and the sum runs through all the edges going from
u one step to the left (cf. [Hi82b, Cor. 3.3]).

4.12 Applying Giambelli formula 3.9 we obtain the following products (for details
see Appendix):

h4
1h4

1 D 8h8
1 C 6h8

2; g4
1g4

1 D 4g8
1 C 3g8

2 :
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5. Construction of rational idempotents

The goal of the present section is to prove Theorems 1.1 and 1.2. The proof consists
of several steps. First, using properties 4.3 and 4.4 we provide several important
cycles 	i and prove their rationality. Multiplying and composing them, we obtain a
set of pairwise orthogonal idempotents p0

i and q0
i . Then, using the Rost Nilpotence

Theorem (see 2.8) we obtain the desired motivic decomposition and, hence, finish
the proof of 1.1. At the end we construct an explicit cycle which provides a motivic
isomorphism of Theorem 1.2.

5.0.0.1 Proof of Theorem 1.1: Let X1 and X4 be the varieties corresponding to
the last (resp. first) three roots of the Dynkin diagram (see 4.6). By the hypothesis
of Theorem 1.1 the variety X is isomorphic either to X1 or X4 over k. As in 4.6 let
k0 denote the cubic field extension and let X 0

1 and X 0
4 be the respective base change.

We start with the following obvious observation.

5.1 Since the variety X of Theorem 1.1 splits by a cubic field extension, transfer
arguments show that any cycle of the kind 3z 2 CH.X 0/ is rational. Hence, to prove
that a cycle in CH.X 0/ is rational it is enough to prove this modulo 3. We shall write
x � y if x � y D 3z for some cycle z.

5.2 The rational cycles to start with one obtains by Lemma 4.3. Namely, those are
the classes of rational generators of the Picard groups h1

1 and g1
1 (see 4.8). Clearly,

their powers .h1
1/i and .g1

1/i , i D 2;:::;7 are rational as well.

5.3 Apply the arguments of 2.7(iii) to CH4.X 0
1 � X 0

4/ (this can be done because of
Lemma 4.4). There exists a rational cycle ˛1 2 CH4.X 0

1 � X 0
4/ such that f 0.˛1/ D

h4
1 � 1. This cycle must have the following form:

˛1 D h4
1 � 1 C a1h3

1 � g1
1 C a2h2

1 � g2
1 C a3h1

1 � g3
1 C a41 � g4

2 C a01 � g4
1;

where ai ;a
0 2 f�1;0;1g. We may reduce ˛1 by adding cycles that are known to be

rational by 5.2 to
˛1 D .h4

1 � 1/ C a.1 � g4
1/;

where a 2 f�1;0;1g. Repeating the same procedure for a rational cycle ˛2 2
CH4.X 0

1 � X 0
4/ such that f 0.˛2/ D 1 � g4

1 and reducing it we obtain the rational
cycle

˛2 D b.h4
1 � 1/ C .1 � g4

1/;

where b 2 f�1;0;1g. Hence, there is a rational cycle of the form

r D h4
1 � 1 C " � .1 � g4

1/;

where the (indefinite) coefficient " is either 1 or �1.
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Now combining 5.2 and 5.3 together we obtain

5.4 Lemma For all i D 0;:::;7 the cycles

	i D r2 � ..h1
1/i � .g1

1/7�i / 2 CH15.X 0
1 � X 0

4/

are rational.

5.5 By the previous lemma all cycles

	t
7�i ı 	i 2 CH15.X 0

1 � X 0
1/ and 	i ı 	t

7�i 2 CH15.X 0
4 � X 0

4/

where i D 0;:::;3 are rational. Direct computations (see Appendix) show that these
cycles are congruent modulo 3 to the following cycles in CH15.X 0

1 � X 0
1/:

	t
7 ı 	0 � 1 � h15

1 C h4
1 � .h11

1 C h11
2 / C h8

1 � .h7
1 C h7

2/;

	t
6 ı 	1 � h1

1 � h14
1 C .2h5

2 C h5
1/ � .h10

2 � h10
1 / C .h9

2 � h9
1/ � h6

2;

	t
5 ı 	2 � h2

1 � h13
1 C .h6

1 C h6
2/ � h9

1 C .2h10
1 � h10

2 / � .h5
1 C h5

2/;

	t
4 ı 	3 � h3

1 � h12
1 C h7

2 � .h8
2 � h8

1/ C h11
2 � .h4

2 � h4
1/

and in CH15.X 0
4 � X 0

4/:

	0 ı 	t
7 � 1 � g15

1 C g4
1 � .g11

1 � g11
2 / C g8

1 � .g7
1 C g7

2/;

	1 ı 	t
6 � g1

1 � g14
1 C .2g5

1 � g5
2/ � .g10

1 C g10
2 / C .g9

1 C g9
2/ � g6

2;

	2 ı 	t
5 � g2

1 � g13
1 C .g6

1 � g6
2/ � g9

1 C .g10
1 C 2g10

2 / � .g5
2 � g5

1/;

	3 ı 	t
4 � g3

1 � g12
1 C g7

2 � .g8
2 � g8

1/ C g11
2 � .g4

1 C g4
2/

respectively, which turn to be idempotents. Denote them by p0
0, p0

1, p0
2, p0

3 and q0
0,

q0
1, q0

2, q0
4 respectively. Since they are congruent to rational cycles, they are rational.

To complete the picture observe that the transposed cycles .p0
i /

t and .q0
i /

t , i D
0;:::;3, are rational idempotents as well. Hence, we have produced eight rational
idempotents in each Chow ring.

5.6 Now easy computations show that these idempotents are orthogonal to each
other, and their sum is equal to the respective diagonal cycle

�X 0
1

D
X
i;j;s

ıij hs
i � h15�s

j D
3X

lD0

p0
l C .p0

l/
t 2 CH15.X 0

1 � X 0
1/;

�X 0
4

D
X
i;j;s

ıij gs
i � g15�s

j D
3X

lD0

q0
l C .q0

l/
t 2 CH15.X 0

4 � X 0
4/:
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Hence, by 2.8 we obtain decompositions of the motives of X1 and X4

M.X1/ D
3M

iD0

.X1;pi / ˚ .X1;pt
i /;

M.X4/ D
3M

iD0

.X4;qi / ˚ .X4;qt
i /;

where pi �k k0 D p0
i and qi �k k0 D q0

i are pairwise orthogonal idempotents (over
k).

5.7 By a straightforward computation using the definition of the idempotents p0
i

and q0
i given in 5.5 we immediately obtain that

	 there are isomorphisms of motives

.X1;pi / ' .X1;p0/.i/; .X1;pt
i / ' .X1;pi /.7 � i/;

.X4;qi / ' .X4;q0/.i/; .X4;qt
i / ' .X4;qi /.7 � i/;

	 over the cubic extension k0 the motives .X1;p0/ and .X4;q0/ split as direct
sums of Lefschetz motives Z ˚ Z.4/ ˚ Z.8/, where the shifts correspond to
the codimensions of the first factors of p0 and q0.

5.8 To finish the proof of Theorem 1.1 we have to prove that the motives
.X1;p0/ and .X4;q0/ are indecomposable. To see this observe that the group of
endomorphisms End.X 0

1;p0
0/ is a free abelian group with the basis

h1 � h15
1 ;h4

1 � .h11
1 C h11

2 /;h8
1 � .h7

1 C h7
2/i (4)

Assume that .X1;p0/ is decomposable, then the motive .X 0
1;p0

0/ is decomposable
as well. The latter means that there exists a non-trivial rational idempotent in
End.X 0

1;p0
0/. In this case easy computations show that one of the elements of the

basis (4) must be rational. For instance, assume 1 � h15
1 is rational. Then the cycle

.1 � h15
1 / � .h15

1 � 1/ D h15
1 � h15

1 is rational and so is its image h15
1 by means of

the push-forward CH0.X 0
1 � X 0

1/ ! CH0.X 0
1/ induced by a projection. Hence, we

obtain a cycle of degree 1 on X1, i.e., the variety X1 must have a rational point
[PR94, Cor. p. 205]. We have arrived to a contradiction.

5.9 Remark The following picture demonstrates how the realizations of motives
.X 0

1;p0
i /, i D 0;1;2;3, are supported by the generators of the Hasse diagram (the
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numbers i drawn inside the rectangulars correspond to the motives .X 0
1;p0

i /).
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A similar picture for the motives .X 0
1;pt

i / corresponding to transposed idempotents
is obtained by the reflection along the vertical dashed line of the diagram.

Proof of Theorem 1.2: We use the notation of the proof of 1.1. Easy computations
(see Appendix) show that

.	0 C 	1 C "	2 C "	3/ C .	0 C 	1 C "	2 C "	3/t �
X
i;j;s

˙ıij hs
i � g15�s

j :

Denote the right hand side by J . We have J t ı J D �X 0
1

and J ı J t D �X 0
4
, i.e., J

and J t are two mutually inverse rational correspondences and the cycle J provides
a rational motivic isomorphism between the motives of X 0

1 and X 0
4. By the Rost

Nilpotence Theorem, J can be lifted to a motivic isomorphism between the motives
of twisted forms X1 and X4. This completes the proof of Theorem 1.2.

Appendix

Most of the computations of the present section were performed and checked using
the Maple package by J. Stembridge [St04].

5.10 In the present paragraph we list the intermediate results of the computations
of 5.5. First, using 4.12 we obtain

r2 � �h8
1 � 1 � "h4

1 � g4
1 C 1 � g8

1 :
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Then, using 4.10 we obtain the following congruences for the cycles 	i

	0 � �1 � g15
1 C "h4

1 � .g11
1 � g11

2 / C h8
1 � .g7

1 C g7
2/

	1 � �h1
1 � g14

1 C ".h5
2 � h5

1/ � .g10
1 C g10

2 / C .h9
2 � h9

1/ � g6
2

	2 � �h2
1 � g13

1 � ".h6
1 C h6

2/ � g9
1 C .h10

1 C h10
2 / � .g5

2 � g5
1/

	3 � h3
1 � g12

1 C "h7
2 � .g8

2 � g8
1/ � h11

2 � .g4
1 C g4

2/

	4 � .h4
1 � h4

2/ � g11
2 C ".h8

2 � h8
1/ � g7

2 C h12
1 � g3

1

	5 � .h5
1 C h5

2/ � .g10
2 � g10

1 / C "h9
1 � .g6

2 � g6
1/ � h13

1 � g2
1

	6 � h6
2 � .g9

1 C g9
2/ C ".h10

2 � h10
1 / � .g5

1 C g5
2/ � h14

1 � g1
1

	7 � .h7
1 C h7

2/ � g8
1 C ".h11

1 C h11
2 / � g4

1 � h15
1 � 1

5.11 The root enumeration follows Bourbaki [Bou]. To obtain the products of 4.12
we apply the Giambelli formula 3.9. Let N!i , i D 1;:::;4, be the fundamental
weights. Then, the preimages of h4

1 and g4
1 in S�.P / can be expressed as

polynomials in fundamental weights as follows

h4
1 D c.

11

6
N!2

1 N!2
4 C 3

4
N!2

1 N!2
2 � 4

3
N!1 N!2 N!2

3 C 11

6
N!2

1 N!2
3 � 2

3
N!1 N!2 N!3 N!4 C 11

12
N!4

1C
1

6
N!4

2 � 4

3
N!2 N!2

3 N!4 C 4

3
N!2 N!3 N!2

4 C 2

3
N!2

2 N!3 N!4 C 2

3
N!1 N!2 N!2

4 � 11

6
N!2

1 N!3 N!4C

2 N!1 N!2
3 N!4 � 2 N!1 N!3 N!2

4 � 7

12
N!3

1 N!2 � 11

6
N!2

1 N!2 N!3 C 4

3
N!1 N!2

2 N!3 C 2

3
N!2

2 N!2
3�

2

3
N!3

2 N!3 � 1

3
N!1 N!3

2 � 2

3
N!2

2 N!2
4/;

g4
1 Dc.

11

6
N!4

4 � 7

6
N!3 N!3

4 C 11

12
N!2

1 N!2
4 C 3

2
N!2

3 N!2
4 � 11

6
N!2 N!3 N!2

4 C 11

12
N!2

2 N!2
4�

11

12
N!1 N!2 N!2

4 � 2

3
N!3

3 N!4 � 1

2
N!2

1 N!2 N!4 C 1

3
N!2

1 N!3 N!4 C 4

3
N!2 N!2

3 N!4 C 1

2
N!1 N!2

2 N!4�
2

3
N!2

2 N!3 N!4 � 1

3
N!1 N!2 N!3 N!4 C 1

3
N!4

3 � 1

3
N!1 N!2

2 N!3 C 1

3
N!1 N!2 N!2

3 � 1

3
N!2

1 N!2
3C

1

3
N!2

1 N!2 N!3 C 1

3
N!2

2 N!2
3 � 2

3
N!2 N!3

3/:

Multiplying the respective polynomials and taking the c function, we find the
products.
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