
0

Provably Secure Cryptographic Constructions

Sergey I. Nikolenko
Steklov Mathematical Institute, St. Petersburg

Russia

1. Introduction

1.1 Cryptography: treading uncertain paths

Modern cryptography has virtually no provably secure constructions. Starting from the first
Diffie–Hellman key agreement protocol (Diffie & Hellman, 1976) and the first public key
cryptosystem RSA (Rivest et al., 1978), not a single public key cryptographic protocol has been
proven secure. Note, however, that there exist secure secret key protocols, e.g., the one-time
pad scheme (Shannon, 1949; Vernam, 1926); they can even achieve information–theoretic
security, but only if the secret key carries at least as much information as the message.

An unconditional proof of security for a public key protocol would be indeed hard to find,
since it would necessarily imply that P �= NP. Consider, for instance, a one-way function,
i.e., a function such that it is easy to compute but hard to invert. One-way functions are
basic cryptographic primitives; if there are no one-way functions, there is no public key
cryptography. The usual cryptographic definition requires that a one-way function can be
computed in polynomial time. Therefore, if we are given a preimage y ∈ f−1(x), we can, by
definition, verify in polynomial time that f (y) = x, so the inversion problem is actually in NP.
This means that in order to prove that a function is one-way, we have to prove that P �=NP,
a rather daring feat to accomplish. A similar argument can be made for cryptosystems and
other cryptographic primitives; for example, the definition of a trapdoor function (Goldreich,
2001) explicitly requires an inversion witness to exist.

But the situation is worse: there are also no conditional proofs that might establish a connection
between natural structural assumptions (like P �=NP or BPP �=NP) and cryptographic
security. Recent developments in lattice-based cryptosystems relate cryptographic security
to worst-case complexity, but they deal with problems unlikely to be NP-complete (Ajtai &
Dwork, 1997; Dwork, 1997; Regev, 2005; 2006).

An excellent summary of the state of our knowledge regarding these matters was given by
Impagliazzo (1995); although this paper is now more than 15 years old, we have not advanced
much in these basic questions. Impagliazzo describes five possible worlds – we live in exactly
one of them but do not know which one. He shows, in particular, that it may happen that
NP problems are hard even on average, but cryptography does not exist (Pessiland) or that
one-way functions exist but not public key cryptosystems (Minicrypt). 1

1 To learn the current state of affairs, we recommend to watch Impagliazzo’s lecture at the 2009 workshop
“Complexity and Cryptography: Status of Impagliazzo’s Worlds”; video is available on the web.

1

2 Will-be-set-by-IN-TECH

Another angle that might yield an approach to cryptography relates to complete cryptographic
primitives. In regular complexity theory, much can be learned about complexity classes by
studying their complete representatives; for instance, one can study any of the numerous
well-defined combinatorial NP-complete problems, and any insight such as a fast algorithm
for solving any of them is likely to be easily transferrable to all other problems from the
class NP. In cryptography, however, the situation is worse. There exist known complete
cryptographic constructions, both one-way functions (Kojevnikov & Nikolenko, 2008; 2009;
Levin, 1986) and public key cryptosystems (Grigoriev et al., 2009; Harnik et al., 2005).
However, they are still mostly useless in that they are not really combinatorial (their hardness
relies on enumerating Turing machines) and they do not let us relate cryptographic security to
key assumptions of classical complexity theory. In short, it seems that modern cryptography
still has a very long way to go to provably secure constructions.

1.2 Asymptotics and hard bounds

Moreover, the asymptotic nature of cryptographic definitions (and definitions of complexity
theory in general) does not let us say anything about how hard it is to break a given
cryptographic protocol for keys of a certain fixed length. And this is exactly what
cryptography means in practice. For real life, it makes little sense to say that something is
asymptotically hard. Such a result may (and does) provide some intuition towards the fact
that an adversary will not be able to solve the problem, but no real guarantees are made:
why is RSA secure for 2048-bit numbers? Why cannot someone come up with a device that
breaks into all credit cards that use the same protocol with keys of the same length? There are
no theoretical obstacles here. In essence, asymptotic complexity is not something one really
wants to get out of cryptographic constructions. Ultimately, I do not care whether my credit
card’s protocol can or cannot be broken in the limit; I would be very happy if breaking my
specific issue of credit cards required constant time, but this constant was larger than the size
of the known Universe.

The proper computational model to prove this kind of properties is general circuit complexity
(see Section 2). This is the only computational model that can deal with specific bounds for
specific key lengths; for instance, different implementations of Turing machines may differ by
as much as a quadratic factor. Basic results in classical circuit complexity came in the 1980s
and earlier, many of them provided by Soviet mathematicians (Blum, 1984; Khrapchenko,
1971; Lupanov, 1965; Markov, 1964; Nechiporuk, 1966; Paul, 1977; Razborov, 1985; 1990;
Sholomov, 1969; Stockmeyer, 1977; 1987; Subbotovskaya, 1961; 1963; Yablonskii, 1957). Over
the last two decades, efforts in circuit complexity have been relocated mostly towards results
related to circuits with bounded depth and/or restricted set of functions computed in a node
(Ajtai, 1983; Cai, 1989; Furst et al., 1984; Håstad, 1987; Immerman, 1987; Razborov, 1987; 1995;
Smolensky, 1987; Yao, 1985; 1990). However, we need classical results for cryptographic
purposes because the bounds we want to prove in cryptography should hold in the most
general B2,1 basis. It would be a very bold move to advertise a credit card as “secure against
adversaries who cannot use circuits of depth more than 3”.

1.3 Feebly secure cryptographic primitives

We cannot, at present, hope to prove security either in the “hard” sense of circuit complexity
or in the sense of classical cryptographic definitions (Goldreich, 2001; 2004; Goldwasser &
Bellare, 2001). However, if we are unable to prove a superpolynomial gap between the

4 Cryptography and Security in Computing

Provably Secure Cryptographic Constructions 3

complexities of honest parties and adversaries, maybe we can prove at least some gap? Alain
Hiltgen (1992) managed to present a function that is twice (2− o(1) times) harder to invert than
to compute. His example is a linear function over GF(2) with a matrix that has few non-zero
entries while the inverse matrix has many non-zero entries; the complexity gap follows
by a simple argument of Lamagna and Savage (Lamagna & Savage, 1973; Savage, 1976):
every bit of the output depends non-idly on many variables and all these bits correspond
to different functions, hence a lower bound on the complexity of computing them all together
(see Section 3.2). The model of computation here is the most general one: the number of gates
in a Boolean circuit that uses arbitrary binary Boolean gates. We have already noted that little
more could be expected for this model at present. For example, the best known lower bound
for general circuit complexity of a specific Boolean function is 3n − o(n) (Blum, 1984) even
though a simple counting argument proves that there exist plenty of Boolean functions with
circuit complexity ≥ 1

n 2n (Wegener, 1987).

In this chapter, we briefly recount feebly one-way functions but primarily deal with another
feebly secure cryptographic primitive: namely, we present constructions of feebly trapdoor
functions. Of course, in order to obtain the result, we have to prove a lower bound on the circuit
complexity of a certain function. To do so, we use the gate elimination technique which dates
back to the 1970s and which has been used in proving virtually every single known bound in
general circuit complexity (Blum, 1984; Paul, 1977; Stockmeyer, 1977). New methods would
be of great interest; alas, there has been little progress in general circuit complexity since
Blum’s result of 3n− o(n). A much simpler proof has been recently presented by Demenkov
& Kulikov (2011), but no improvement has been found yet.

We begin with linear constructions; in the linear case, we can actually nail gate elimination
down to several well-defined techniques that we present in Section 3.3. These techniques let
us present linear feebly trapdoor functions; the linear part of this chapter is based mostly on
(Davydow & Nikolenko, 2011; Hirsch & Nikolenko, 2008; 2009). For the nonlinear case, we
make use of a specific nonlinear feebly one-way function presented in (Hirsch et al., 2011;
Melanich, 2009).

2. Basic definitions

2.1 Boolean circuits

Boolean circuits (see, e.g., (Wegener, 1987)) represent one of the few computational models
that allow for proving specific rather than asymptotic lower bounds on the complexity. In
this model, a function’s complexity is defined as the minimal size of a circuit computing this
function. Circuits consist of gates, and gates can implement various Boolean functions.

We denote by Bn,m the set of all 2m2n
functions f : Bn → Bm, where B = {0, 1} is the field

with two elements.

Definition 1. Let Ω be a set of Boolean functions f : Bm → B (m may differ for different f). Then
an Ω-circuit is a directed acyclic labeled graph with vertices of two kinds:

• vertices of indegree 0 (vertices that no edges enter) labeled by one of the variables x1, . . . , xn,

• and vertices labeled by a function f ∈ Ω with indegree equal to the arity of f .

Vertices of the first kind are called inputs or input variables; vertices of the second kind, gates. The
size of a circuit is the number of gates in it.

5Provably Secure Cryptographic Constructions

4 Will-be-set-by-IN-TECH

x1 x2

⊕

y = x1 ⊕ x2

x1 x2 x3

⊕

⊕

y = x1 ⊕ x2 ⊕ x3

x1 x2 x3

∧ ∧

∨

y = x2 ∧ (x1 ∨ x3)

x1x2 x3

∨

∧

y = x2 ∧ (x1 ∨ x3)

(a) (b) (c) (d)

Fig. 1. Simple circuits: (a) y = x1 ⊕ x2; (b) y = x1 ⊕ x2 ⊕ x3; (c) a suboptimal circuit for
y = x2 ∧ (x1 ∨ x3); (d) an optimal one.

We usually speak of outputs of a circuit and draw them on pictures, but in theory, every gate
of an Ω-circuit computes some Boolean function and can be considered as an output of the
circuit. The circuit complexity of a function f : Bn → Bm in the basis Ω is denoted by CΩ(f)
and is defined as the minimal size of an Ω-circuit that computes f (that has m gates which
compute the result of applying function f to input bits).

In order to get rid of unary gates, we will assume that a gate computes both its corresponding
function and its negation (the same applies to the inputs, too). Our model of computation
is given by Boolean circuits with arbitrary binary gates (this is known as general circuit
complexity); in other words, each gate of a circuit is labeled by one of 16 Boolean functions
from B2,1. Several simple examples of such circuits are shown on Fig. 1.

In what follows, we denote by C(f) the circuit complexity of f in the B2,1 basis that consists of
all binary Boolean functions. We assume that each gate in this circuit depends of both inputs,
i.e., there are no gates marked by constants and unary functions Id and ¬. This can be done
without loss of generality because such gates are easy to exclude from a nontrivial circuit
without any increase in its size.

2.2 Feebly secure one-way functions

We want the size of circuits breaking our family of trapdoor functions to be larger than the
size of circuits that perform encoding. Following Hiltgen (1992; 1994; 1998), for every injective
function of n variables fn ∈ Bn,m we can define its measure of one-wayness as

MF(fn) =
C(f−1

n)

C(fn)
. (1)

The problem now becomes to find sequences of functions f = { fn}∞
n=1 with a large asymptotic

constant lim infn→∞ MF(fn), which Hiltgen calls f ’s order of one-wayness.

Hiltgen (1992; 1994; 1998) presented several constructions of feebly secure one-way functions.
To give a flavour of his results, we recall a sample one-way function. Consider a function
f : Bn → Bn given by the following matrix:

f (x1, . . . , xn) =

⎛
⎜⎝

1 1 0 ··· 0 ··· 0 0
0 1 1 ··· 0 ··· 0 0
...

...
...

...
...

...
1 0 0 ··· 0 ··· 1 1
1 0 0 ··· 1 ··· 0 1

⎞
⎟⎠

⎛
⎜⎝

x1
x2

...
xn−1
xn

⎞
⎟⎠ , (2)

6 Cryptography and Security in Computing

Provably Secure Cryptographic Constructions 5

x1 x2 x3 . . . x n
2

. . . xn−2 xn−1 xn

⊕

y1

⊕

y2

⊕

y3

⊕

y n
2−1

⊕

y n
2

⊕

yn−3

⊕

yn−2

⊕

yn−1

⊕ ⊕
yn.

Fig. 2. Hiltgen’s feebly one-way function of order 3
2 : a circuit for f .

that is (we assume for simplicity that n is even),

f j(x1, . . . , xn) =

{
xj ⊕ xj+1, j = 1, . . . , n− 1,
x1 ⊕ x n

2
⊕ xn, j = n.

(3)

Straighforward computations show that f is invertible, and its inverse is given by

f−1(y1, . . . , yn) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 ... 0 1 1 ... 1 1
1 0 ... 0 1 1 ... 1 1
1 1 ... 0 1 1 ... 1 1
...

...
...

...
...

...
...

1 1 ... 0 1 1 ... 1 1
1 1 ... 1 1 1 ... 1 1
1 1 ... 1 0 1 ... 1 1
...

...
...

...
...

...
...

1 1 ... 1 0 0 ... 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1
y2
y3

...
y	 n

2

y n

2 +1
y n

2 +2

...
yn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4)

that is,

f−1
j (y1, . . . , yn) =

⎧⎨
⎩
(

y1 ⊕ . . .⊕ yj−1

)
⊕

(
y n

2 +1 ⊕ . . .⊕ yn

)
, j = 1, . . . , n

2 ,(
y1 ⊕ . . .⊕ y n

2

)
⊕

(
yj−1 ⊕ . . .⊕ yn

)
, j = n

2 + 1, . . . , n.
(5)

It remains to invoke Proposition 6 (see below) to show that f−1 requires at least 	 3n
2
 − 1

gates to compute, while f can be obviously computed in n + 1 gates. Fig. 2 shows a circuit
that computes f in n + 1 gates; Fig. 3, one of the optimal circuits for f−1. Therefore, f is
a feebly one-way function with order of security 3

2 . For this particular function, inversion
becomes strictly harder than evaluation at n = 7 (eight gates to compute, nine to invert).

2.3 Feebly trapdoor candidates

In the context of feebly secure primitives, we have to give a more detailed definition of a
trapdoor function than the regular cryptographic definition (Goldreich, 2001): since we are
interested in constants here, we must pay attention to all the details. The following definition
does not say anything about the complexity and hardness of inversion, but merely sets up the
dimensions.

Definition 2. For given functions pi, ti, m, c : N → N, a feebly trapdoor candidate is a sequence
of triples of circuits

C = {(Seedn, Evaln, Invn)}∞
n=1 , where: (6)

7Provably Secure Cryptographic Constructions

6 Will-be-set-by-IN-TECH

y1 y2 y3 . . . y n
2−1 y n

2
y n

2 +1 y n
2 +2 . . . yn−1 yn

⊕
⊕

⊕
. . .

⊕

⊕
⊕

⊕

⊕
. . .

⊕
⊕

⊕

⊕
. . .

x1x2 x3 x4 . . . x n
2

x n
2 +1 x n

2 +2 x n
2 +3 . . . xn

Fig. 3. Hiltgen’s feebly one-way function of order 3
2 : a circuit for f−1.

• {Seedn}∞
n=1 is a family of sampling circuits Seedn : Bn → Bpi(n) ×Bti(n),

• {Evaln}∞
n=1 is a family of evaluation circuits Evaln : Bpi(n) ×Bm(n) → Bc(n), and

• {Invn}∞
n=1 is a family of inversion circuits Invn : Bti(n) ×Bc(n) → Bm(n)

such that for every security parameter n, every seed s ∈ Bn, and every input m ∈ Bm(n),

Invn(Seedn,2(s), Evaln(Seedn,1(s), m)) = m, (7)

where Seedn,1(s) and Seedn,2(s) are the first pi(n) bits (“public information”) and the last ti(n) bits
(“trapdoor information”) of Seedn(s), respectively.

Informally speaking, n is the security parameter (the length of the random seed), m(n) is
the length of the input to the function, c(n) is the length of the function’s output, and pi(n)
and ti(n) are lengths of the public and trapdoor information, respectively. We call these
functions “candidates” because Definition 2 does not imply any security, it merely sets up
the dimensions and provides correct inversion. In our constructions, m(n) = c(n) and
pi(n) = ti(n).

To find how secure a function is, one needs to know the size of the minimal circuit that could
invert the function without knowing the trapdoor information. In addition to the worst-case
complexity C(f), we introduce a stronger notion that we will use in this case.

Definition 3. We denote by Cα(f) the minimal size of a circuit that correctly computes a function
f ∈ Bn,m on more than α fraction of its inputs (of length n). Obviously, Cα(f) ≤ C(f) for all f and
0 ≤ α ≤ 1.

Definition 4. A circuit N breaks a feebly trapdoor candidate C = {Seedn, Evaln, Invn} on seed
length n with probability α if, for uniformly chosen seeds s ∈ Bn and inputs m ∈ Bm(n),

Pr
(s,m)∈U

[
N(Seedn,1(s), Evaln(Seedn,1(s), m)) = m

]
> α. (8)

8 Cryptography and Security in Computing

Provably Secure Cryptographic Constructions 7

A size s circuit that breaks a feebly trapdoor candidate C = {Seedn, Evaln, Invn} on seed
length n in the sense of Definition 4 provides a counterexample for the statement Cα(Invn) >
s.

In fact, in what follows we prove a stronger result: we prove that no circuit (of a certain size)
can break our candidate for any random seed s, that is, for every seed s, every adversary fails.
For a trapdoor function to be secure, circuits that break the function should be larger than the
circuits computing it. In fact, in our results we can require that every such adversary fails with
probability at least 1

4 .

Definition 5. We say that a feebly trapdoor candidate C = {(Seedn, Evaln, Invn)}∞
n=1 has order of

security k with probability α if

lim inf
n→∞

min

{
Cα(fpi(n)+c(n))

C(Seedn)
,

Cα(fpi(n)+c(n))

C(Evaln)
,

Cα(fpi(n)+c(n))

C(Invn)

}
≥ k, (9)

where the function fpi(n)+c(n) ∈ Bpi(n)+c(n),m(n) maps

(Seedn,1(s), Evaln(Seedn,1(s), m)) �→ m. (10)

We say that a feebly trapdoor candidate has order of security k if it has order of security k with
probability α = 3

4 .

Let us first give a few simple examples. If there is no secret key at all, that is, pi(n) = 0, then
each feebly trapdoor candidate {(Seedn, Evaln, Invn)}∞

n=1 has order of security 1, since the
sequence of circuits {Invn}∞

n=1 successfully inverts it. If {(Seedn, Evaln, Invn)}∞
n=1 implement

a trapdoor function in the usual cryptographic sense then k = ∞. Moreover, k = ∞
even if the bounds on the size of adversary are merely superlinear, e.g., if every adversary
requires Ω(n log n) gates. Our definitions are not designed to distinguish between these
(very different) cases, because, unfortunately, any nonlinear lower bound on general circuit
complexity of a specific function appears very far away from the current state of knowledge.

One could also consider key generation as a separate process and omit its complexity from
the definition of the order of security. However, we prove our results for the definition stated
above as it makes them stronger.

In closing, let us note explicitly that we are talking about one-time security. An adversary
can amortize his circuit complexity on inverting a feebly trapdoor candidate for the second
time for the same seed, for example, by computing the trapdoor information and successfully
reusing it. Thus, in our setting one has to pick a new seed for every input.

3. Gate elimination techniques

3.1 Classical gate elimination

In this section, we first briefly cover classical gate elimination and then introduce a few new
ideas related to gate elimination that have recently been presented by Davydow & Nikolenko
(2011). Gate elimination is the primary (and, to be honest, virtually the only) technique we
have to prove lower bounds in general circuit complexity; so far, it has been used for every
single lower bound (Blum, 1984; Paul, 1977; Stockmeyer, 1977; Wegener, 1987). The basic idea
of this method lies in the following inductive argument. Consider a function f and a circuit

9Provably Secure Cryptographic Constructions

8 Will-be-set-by-IN-TECH

of minimal size C that computes it. Now substitute some value c for some variable x thus
obtaining a circuit for the function f |x=c. The original circuit C can now be simplified, because
the gates that had this variable as inputs become either unary (recall that negation can be
embedded into subsequent gates) or constant (in this case we can even proceed to eliminating
subsequent gates). After figuring out how many gates one can eliminate on every step, one
proceeds by induction as long as it is possible to find a suitable variable that eliminates enough
gates. Evidently, the number of eliminated gates is a lower bound on the complexity of f .

Usually, the important case here is when a gate is nonlinear, such as an AND or an OR gate.
In that case, it is always possible to choose a value for an input of such a gate so that this
gate becomes a constant and, therefore, its immediate descendants can also be eliminated.
However, for linear functions this kind of reasoning also works, and in Section 3.3 we distill it
to two relatively simple ideas.

To give the reader a flavour of classical gate elimination, we briefly recall the proof of the

2n− 3 lower bound for the functions of the form f (n)
3,c : Bn → B defined by

f (n)
3,c (x1, . . . , xn) = ((x1 + . . . + xn + c) mod 3) mod 2) . (11)

This proof can be found in many sources, including (Wegener, 1987). Note that every function

f (n)
3,c has the following property: for every pair of variables xj and xk, f (n)

3,c has at least three
different restrictions out of four possible assignments of values to xj and xk; this is easy to
see since different assignments of xj and xk give three different values of xj + xk, resulting

in functions with three different constants: f (n−2)
3,0 , f (n−2)

3,1 , and f (n−2)
3,2 . Now consider the

topmost gate in some topological order on the optimal circuit computing f (n)
3,c . Since it is

topmost, there are two variables, say xj and xk, that come to this gate as inputs. At least one

of these variables enters at least one other gate because otherwise, f (n)
3,c would depend only on

xj ⊕ xk and not on xj and xk separately, giving rise to only two possible subfunctions among
four restrictions. Therefore, there exists a variable that enters at least two gates; therefore, by
setting this variable to a constant we eliminate at least two gates from the circuit. It remains

to note that setting a variable to a constant transforms f (n)
3,c into f (n−1)

3,c′ , and we can invoke the
induction hypothesis.

3.2 Gate elimination for feebly secure one-way functions

The following very simple argument is due to Lamagna and Savage; this argument actually
suffices for all Hiltgen’s linear examples.

Proposition 6 ((Lamagna & Savage, 1973; Savage, 1976); (Hiltgen, 1992, Theorems 3 and 4)).

1. Suppose that f : Bn → B depends non-idly on each of its n variables, that is, for every i there exist
values a1, . . . , ai−1, ai+1, . . . , an ∈ B such that

f (a1, . . . , ai−1, 0, ai+1, . . . , an) �= f (a1, . . . , ai−1, 1, ai+1, . . . , an). (12)

Then C(f) ≥ n− 1.

2. Let f = (f (1), . . . , f (m)) : Bn → Bm, where f (k) is the kth component of f . If the m component
functions f (i) are pairwise different and each of them satisfies C(f (i)) ≥ c ≥ 1 then C(f) ≥
c + m− 1.

10 Cryptography and Security in Computing

Provably Secure Cryptographic Constructions 9

Proof. 1. Consider the minimal circuit of size s computing f . Since f depends (here and in
what follows we say “depends” meaning “depends nontrivially”) on all n of its variables,
each input gate must have at least one outgoing edge. Since the circuit is minimal, each
of the other gates, except possibly the output, also must have at least one outgoing edge.
Therefore, the circuit has at least s + n− 1 edges. On the other hand, a circuit with s binary
gates cannot have more than 2s edges. Therefore, 2s ≥ s + n− 1.

2. Consider a circuit computing f . Note that it has at least c− 1 gates that do not compute any
function of circuit complexity c or more (they are the first c− 1 gates in some topological
order). However, to compute any component function f (i) we have to add at least one
more gate, and we have to add at least one gate for each component, since every new gate
adds only one new function. Thus, we get the necessary bound of c + m− 1 gates.

Hiltgen counted the minimal complexity of computing one bit of the input (e.g., since each
row of A−1 has at least n

2 nonzero entries, the minimal complexity of each component of
A−1�y is n

2) and thus produced lower bounds on the complexity of inverting the function (e.g.
the complexity of computing A−1�y is n

2 + n− 2 = 3n
2 − 2).

Besides, in cryptography it is generally desirable to prove not only worst-case bounds, but
also that an adversary is unable to invert the function on a substantial fraction of inputs.
In Hiltgen’s works, this fact followed from a very simple observation (which was not even
explicitly stated).

Lemma 7. Consider a function f =
⊕n

i=1 xi. For any g that depends on only m < n of these variables,

Prx1,...,xn

[
f (x1, . . . , xn) = g(xi1 , . . . , xim)

]
=

1
2

. (13)

Proof. Since m < n, there exists an index j ∈ 1..n such that g does not depend on xj. This
means that for every set of values of the other variables, whatever the value of g is, for one of
the values of xj f coincides with g, and on the other value f differs from g. This means that f
differs from g on precisely 1

2 of the inputs.

This argument suffices for Hiltgen’s feebly one-wayness result for the square matrix A−1: first
we apply the first part of Proposition 6 and see that every output has complexity at least n

2 − 1,
and then the second part of Proposition 6 yields the necessary bound of 3n

2 − 1. Moreover, if
a circuit has less than the necessary number of gates, one of its outputs inevitably depends on
less than the necessary number of input variables, which, by Lemma 7, gives the necessary 1

2
error rate.

3.3 Gate elimination for linear functions

In this section, we deal with gate elimination for linear functions. We do not know how to
prove that one cannot, in general, produce a smaller circuit for a linear function with nonlinear
gates, but it is evident that we cannot assume any gates to be nonlinear in this setting. Thus,
gate elimination distills to two very simple ideas. Idea 1 is trivial and has been noted many
times before, while Idea 2 will allow us to devise feebly secure constructions in Section 4.

11Provably Secure Cryptographic Constructions

10 Will-be-set-by-IN-TECH

Since we are dealing with linear functions, we will, for convenience, state our results in terms
of matrices over F2; the circuit complexity of a matrix Cα(A) is the circuit complexity of the
corresponding linear function. By A−i we denote the matrix A without its ith column; note
that if A corresponds to f then A−i corresponds to f |xi=0. If a matrix A has a zero column Ai,
it means that the corresponding function does not depend on the input xi; in what follows, we
will always assume that functions depend nontrivially on all their inputs and thus the matrices
do not have zero columns; we call such matrices nontrivial. Note that if A is a submatrix of B
then Cα(A) ≤ Cα(B) for all α ∈ [0, 1].

Idea 1. Suppose that for n steps, there is at least one gate to eliminate. Then C(f) ≥ n.

Theorem 8. Fix a real number α ∈ [0, 1]. Suppose that P = {Pn}∞
n=1 is a series of predicates defined

on matrices over F2 with the following properties:

• if P1(A) holds then Cα(A) ≥ 1;

• if Pn(A) holds then Pm(A) holds for every 1 ≤ m ≤ n;

• if Pn(A) holds then, for every index i, Pn−1(A−i) holds.

Then, for every matrix A with ≥ n + 1 columns, if Pn(A) holds then Cα(A) ≥ n.

Proof. The proof goes by straightforward induction on the index of Pi; the first property of
P provides the base, and other properties takes care of the induction step. For the induction
step, consider the first gate of an optimal circuit C implementing A. By the monotonicity
property of P and the induction base, the circuit is nontrivial, so there is a first gate. Consider
a variable xi entering that gate. Note that if C computes f on fraction α of its inputs then for
some c, C |xi=c computes f |xi=c on fraction α of its inputs. If we substitute this value into this
variable, we get a circuit C |xi=c that has at most (size(C)− 1) gates and implements A−i on
at least α fraction of inputs.

Note that the first statement of Proposition 6 is a special case of Theorem 8 for Pn(A) =
“A has a row with n + 1 ones”. We also derive another corollary.

Corollary 9. If A is a matrix of rank n, and each column of A has at least two ones, then C(A) ≥
n− 2.

Proof. Take Pn(A) =“rank(A) ≥ n + 2 and each column of A has at least 2 ones”.

Idea 2. Suppose that for n steps, there exists an input in the circuit with two outgoing edges, and,
moreover, in m of these cases both of these edges go to a gate (rather than a gate and an output). Then
C(f) ≥ n + m.

Theorem 10. We call a nonzero entry unique if it is the only nonzero entry in its row. Fix a real
number α ∈ [0, 1]. Suppose that P = {Pn}∞

n=1 is a series of predicates defined on matrices over F2
with the following properties:

• if P1(A) holds then C(A) ≥ 1;

• if Pn(A) holds then Pm(A) holds for every 1 ≤ m ≤ n;

• if Pn(A) holds then, for every index i, if the ith column has no unique entries then Pn−2(A−i)
holds, otherwise Pn−1(A−i) holds.

12 Cryptography and Security in Computing

Provably Secure Cryptographic Constructions 11

Then, for every matrix A with ≥ n + 1 different columns, if Pn(A) holds for some n then C(A) ≥ n
and, moreover, C 3

4
(A) ≥ n.

Proof. We argue by induction on n; for n = 1 the statement is obvious.

Consider the first gate g in the optimal circuit implementing A. Since g is first, its incoming
edges come from the inputs of the circuit; we denote them by xi and xj. There are three
possible cases.

1. One of the input variables of g, say xi, goes directly to an output yk. Then by setting xi to
a constant we can eliminate one gate. however, in this case yk corresponds to a row with only
one nonzero element, so ith colum has a unique element, so Pn−1(A−i) hold. Therefore, we
invoke the induction hypothesis as C(A−i) ≥ n− 1 and get the necessary bound.

2. One of the input variables of g, say xi , goes to another gate. Then by setting xi to a
constant we can eliminate two gates, and by properties of Pn Pn−2(A−i) holds, so we invoke
the induction hypothesis as C(A−i) ≥ n− 2.

3. Neither xi nor xj enters any other gate or output. In this case, A is a function of neither
xi nor xj but only g(xi, xj); we show that this cannot be the case for a function computing
A on more than 3

4 of the inputs. A itself depends on xi and xj separately because all of its
columns are different; in particular, for one of these variables, say xi, there exists an output yk
that depends only on xi: yk = xi ⊕

⊕
x∈X x, where xj /∈ X. On the other hand, since every

gate in an optimal circuit nontrivially depends on both inputs, there exist values a and b such
that g(0, a) = g(1, b). Thus, for every assignment of the remaining variables, either on input
strings with (xi = 0, xj = a) or on input strings with (xi = 1, xj = b) the circuit makes a
mistake, which makes it wrong on at least 1

4 of all inputs.

Note that Theorem 10 directly generalizes and strengthens Theorem 8.

Corollary 11. Fix a real number α ∈ [0, 1]. Suppose that R = {Rn}∞
n=1 and Q = {Qm}∞

m=1 are
two series of predicates defined on matrices over F2 with the following properties:

• if R1(A) holds then C(A) ≥ 1;

• if Rn(A) holds then Rk(A) holds for every 1 ≤ k ≤ n;

• if Rn(A) holds then, for every i, Rn−1(A−i) holds;

• if Q1(A) holds then C(A) ≥ 1;

• if Qm(A) holds then Qk(A) holds for every 1 ≤ k ≤ n;

• if Qm(A) holds then, for every i, Qm−1(A−i) holds;

• if Qm(A) holds and A−i has more zero rows than A (i.e., removing the ith column has removed the
last nonzero element from at least one row) then Qm(A−i) holds.

Then, for every matrix A with ≥ n + 1 columns all of which are different, if Rn(A) and Qm(A) hold
for some n ≥ m then C(A) ≥ n + m and, moreover, C 3

4
(A) ≥ n + m.

Proof. Immediately follows from Theorem 10 for Pn(A) = ∃kRk(A) ∧ Qn−k(A).

13Provably Secure Cryptographic Constructions

12 Will-be-set-by-IN-TECH

Theorem 10 and Corollary 11 generalize several results that have been proven independently.
For example, here is the “master lemma” of the original paper on feebly trapdoor functions.

Corollary 12 ((Hirsch & Nikolenko, 2009, Lemma 5)). Let t, u ≥ 1. Assume that χ is a linear
function with matrix A over F2. Assume also that all columns of A are different, every row of A has
at least u nonzero entries, and after removing any t columns of A, the matrix still has at least one row
containing at least two nonzero entries. Then C(χ) ≥ u + t and, moreover, C3/4(χ) ≥ u + t.

Proof. Take Pn(A) =“After removing any n columns of A, it still has at least one nonzero
row”, Q0(A) =“true”, and Qm(A) =“Every row of A has at least m + 1 ones” for m > 0. Then
Pt+1(A) and Qu−1(A) hold, and P and Q satisfy the conditions of Corollary 11, which gives
the desired bound. Note that in this case, Qm for m > 0 cannot hold for a matrix where a row
has only a single one, so in the gate elimination proof, for the first u− 1 steps two gates will
be eliminated, and then for t− u + 2 steps, one gate will be eliminated.

We also derive another, even stronger corollary that will be important for new feebly secure
constructions.

Corollary 13. Let t ≥ u ≥ 2. Assume that A is a u × t matrix with different columns, and each
column of A has at least two nonzero elements (ones). Then C(A) ≥ 2t− u and, moreover, C 3

4
(A) ≥

2t− u.

Proof. Take Pn(A) =“twice the number of nonzero columns in A less the number of nonzero
rows in A is at least n”. Then P2t−u(A) holds, and Pn satisfy the conditions of Theorem 10.

Naturally, we could prove Corollaries 9 and 13 directly. We have chosen the path of
generalization for two reasons: one, to make Theorem 14 more precise and more general,
and two, to show the limits of gate elimination for linear functions. As we have already
mentioned, for linear functions we cannot count on nonlinear gates that could eliminate their
descendants. In Theorems 8 and 10, we have considered two basic cases: when there is only
one edge outgoing from a variable and when there are two edges (going either to two gates
or to a gate and an output). It appears that we can hardly expect anything more from classical
gate elimination in the linear case.

3.4 Extension to block diagonal matrices

We finish this section with an extension of these results to block diagonal matrices. In general,
we cannot prove that the direct sum of several functions has circuit complexity equal to the
sum of the circuit complexities of these functions; counterexamples are known as “mass
production” (Wegener, 1987). However, for linear functions and gate elimination in the
flavours of Theorems 8 and 10, we can. The following theorem generalizes Lemma 6 of (Hirsch
& Nikolenko, 2009).

Theorem 14. Suppose that a linear function χ is given by a block diagonal matrix⎛
⎜⎝

A1 0 ··· 0
0 A2 ··· 0
...

...
...

0 0 ··· Ak

⎞
⎟⎠ , (14)

14 Cryptography and Security in Computing

Provably Secure Cryptographic Constructions 13

every Aj satisfies the conditions of Theorem 10 with predicates P j = {Pj
n}∞

n=1, and Pj
nj (Aj) hold for

every j. Then C(χ) ≥ k
∑

j=1
nj.

Proof. We invoke Theorem 10 with the predicate composed of original predicates:

Pn =
∨

i1+...+ik=n

P1
i1
∧ P2

i2
∧ . . . ∧ Pk

ik
. (15)

It is now straightforward to check that P = {Pn}∞
n=1 satisfies the conditions of Theorem 10

(since every deleted column affects only one block), and the block diagonal matrix satisfies
Pn1+...+nk .

4. Feebly secure trapdoor functions

4.1 Idea of the construction

Over this section, we will present two constructions of feebly secure trapdoor functions, a
linear construction and a nonlinear one. Both of them have the same rather peculiar structure.
It turns out that when we directly construct a feebly secure candidate trapdoor function such
that an adversary has to spend more time inverting it than honest participants, we will not be
able to make encoding (i.e., function evaluation) faster than inversion. In fact, evaluation will
take more time than even an adversary requires to invert our candidates.

To achieve a feebly secure trapdoor function, we will add another block as a direct sum to that
candidate. This block will represent a feebly secure one-way function, one of the constructions
presented by Hiltgen (1992; 1994; 1998). In this construction, honest inversion and break are
exactly the same since there is no secret key at all; nevertheless, both of them are harder than
evaluating the function. Thus, in the resulting block diagonal construction break remains
harder than honest inversion but they both gain in complexity over function evaluation. This
idea was first presented by Hirsch & Nikolenko (2009) and has been used since in every feebly
secure trapdoor function.

4.2 Linear feebly secure trapdoor functions

This section is based on (Davydow & Nikolenko, 2011). Let us first introduce some notation.
By Un we denote an upper triangular matrix of size n × n which is inverse to a bidiagonal
matrix:

Un =

⎛
⎝ 1 1 ··· 1

0 1 ··· 1
...

...
...

0 0 ··· 1

⎞
⎠ , U−1

n =

⎛
⎝ 1 1 0 ··· 0

0 1 1 ··· 0
...

...
...

...
0 0 0 ··· 1

⎞
⎠ ;

note that U2
n is an upper triangular matrix with zeros and ones chequered above the main

diagonal. We will often use matrices composed of smaller matrices as blocks; for instance,
(Un Un) is a matrix of size n× 2n composed of two upper triangular blocks.

Lemma 15. 1. C 3
4
(Un) = n− 1.

2. C 3
4
(U2

n) = n− 2.

3. C 3
4
(U−1

n) = n− 1.

15Provably Secure Cryptographic Constructions

14 Will-be-set-by-IN-TECH

4. C 3
4
((Un Un)) = 2n− 1.

5. 3n− 6 ≤ C 3
4
((U2

n Un)) ≤ C((U2
n Un)) ≤ 3n− 3.

6. 3n− 4 ≤ C 3
4
((Un U−1

n)) ≤ C((Un U−1
n)) ≤ 3n− 2.

Proof. Lower bounds in items 1–3 are obvious: the matrices have no identical rows, and
not a single input except one (two for item 2) is linked directly to an output. The lower
bound in item 4 follows by simple counting: the first row of the matrix contains 2n nonzero
elements, so at least 2n − 1 gates are needed to compute it. The lower bound from item 5
(respectively, 6) follows from Corollary 13: the matrix (U2

n Un) (respectively, (Un U−1
n)) satisfies

the assumptions of Corollary 13 for all except three (respectively, two) columns, and we can
use Corollary 13 for t = 2n− 3 (respectively, t = 2n− 2) and u = n.

To prove upper bounds, we give direct constructions. To compute the matrix from item 1,
note that each row differs from the previous one in only one position, so we can compute
the outputs as outi = outi+1 ⊕ ini. Moreover, outn = inn, so we do not need more gates to
compute it. The same idea works for item 2, but in this case, outn and outn−1 are computed
immediately, and outi = outi−2 ⊕ ini. To compute the matrix from item 3, we compute each
row directly. To compute item 4, we note that (Un Un) · (a

b) = Un · a⊕Un · b = Un · (a⊕ b).
Thus, we can use n gates to compute a⊕ b and then get the result with n− 1 more gates. To
compute 5 and 6 note that (A B) · (a

b) = A · a⊕ B · b. Thus, we have divided the computation
in two parts that can be done independently with previously shown circuits, and then we can
use n gates to XOR the results of these subcircuits.

We use the general idea outlined in Section 4.1. In the first construction, we assume that the
lengths of the public key pi, secret key ti, message m, and ciphertext c are the same and equal
n. Let ti = Un · pi, c = (U−1

n Un) ·
(m

pi
)
. In this case, an adversary will have to compute the

matrix (Un Un) · (c
ti) = (Un U2

n) ·
(c

pi
)
. Thus, breaking this trapdoor function is harder than

honest inversion, but the evaluation complexity is approximately equal to the complexity of
the break, so we cannot yet call this function a feebly secure trapdoor function.

To augment this construction, consider a weakly one-way linear function A and use it in the
following protocol (by In we denote the unit matrix of size n):

Seedn =
(

Un 0
0 In

)
· (s s) =

(
ti
pi

)
,

Evaln =
(

U−1
n Un 0
0 0 A

)
·
(

m1
pi
m2

)
= (c1

c2) ,

Invn =
(

Un Un 0
0 0 A−1

)
·
(c1

ti
c2

)
= (m1

m2) .

An adversary is now supposed to compute

Advn =
(

Un U2
n 0

0 0 A−1

)
·
(

c1
pi
c2

)
= (m1

m2) .

As a feebly one-way function A we take one of Hiltgen’s functions with order of security 2− ε
that have been constructed for every ε > 0 Hiltgen (1992); we take the matrix of this function
to have order λn, where λ will be chosen below. For such a matrix, C 3

4
(A) = λn + o(n), and

16 Cryptography and Security in Computing

Provably Secure Cryptographic Constructions 15

C 3
4
(A−1) = (2− ε)λn+ o(n). Now Lemma 15 and Theorem 14 yield the following complexity

bounds:

C 3
4
(Seedn) = n− 1,

C 3
4
(Evaln) = 3n + λn + o(n) = (3 + λ)n + o(n),

C 3
4
(Invn) = 2n + (2− ε)λn + o(n) = (2 + (2− ε)λ)n + o(n),

C 3
4
(Advn) = 3n + (2− ε)λn + o(n) = (3 + (2− ε)λ)n + o(n).

The order of security for this protocol is

lim
n→∞

(
min

(
C3/4(Advn)

C(Evaln)
,

C3/4(Advn)

C(Invn)
,

C3/4(Advn)

C(Seedn)

))
=

= min
(

3 + (2− ε)λ

3 + λ
,

3 + (2− ε)λ

2 + (2− ε)λ

)
.

This expression reaches maximum for λ = 1
1−ε , and this maximum equals 5−4ε

4−ε , which tends
to 5

4 as ε → 0. Thus, we have proven the following theorem.

Theorem 16. For every ε > 0, there exists a linear feebly secure trapdoor function with seed length
pi(n) = ti(n) = n, input and output length c(n) = m(n) = 2n, and order of security 5

4 − ε.

4.3 Nonlinear feebly secure trapdoor functions

Over the previous two sections, we have discussed linear feebly secure one-way functions.
However, a nonlinear approach can yield better constants. This section is based on (Hirsch
et al., 2011; Melanich, 2009).

Our nonlinear feebly trapdoor constructions are based on a feebly one-way function
resulting from uniting Hiltgen’s linear feebly one-way function with the first computationally
asymmetric function of four variables (Massey, 1996). Consider a sequence of functions
{ fn}∞

n=1 given by the following relations (we denote yj = f j(x1, . . . , xn)):

y1 = (x1 ⊕ x2)xn ⊕ xn−1,

y2 = (x1 ⊕ x2)xn ⊕ x2,

y3 = x1 ⊕ x3,

y4 = x3 ⊕ x4,

· · ·
yn−1 = xn−2 ⊕ xn−1,

yn = xn.

(16)

In order to get f−1
n , we sum up all rows except the last one:

y1 ⊕ . . .⊕ yn−1 = x1 ⊕ x2. (17)

17Provably Secure Cryptographic Constructions

16 Will-be-set-by-IN-TECH

Further, substituting yn instead of xn , we find x2 and xn−1. The other xk can be expressed via
xn−1 in turn, so the inverse function is given by

xn = yn,
x2 = (y1 ⊕ . . .⊕ yn−1)yn ⊕ y2,

xn−1 = (y1 ⊕ . . .⊕ yn−1)yn ⊕ y1,

xn−2 = (y1 ⊕ . . .⊕ yn−1)yn ⊕ y1 ⊕ yn−1,
xn−3 = (y1 ⊕ . . .⊕ yn−1)yn ⊕ y1 ⊕ yn−1 ⊕ yn−2,

· · ·
x3 = (y1 ⊕ . . .⊕ yn−1)yn ⊕ y1 ⊕ yn−1 ⊕ . . .⊕ y4,

x1 = (y1 ⊕ . . .⊕ yn−1)yn ⊕ y1 ⊕ yn−1 ⊕ . . .⊕ y3.

(18)

Lemma 17. The family of functions { fn}∞
n=1 is feebly one-way of order 2.

Proof. It is easy to see that fn can be computed in n+ 1 gates. Each component function of f−1
n ,

except for the last one, depends non-trivially of all n variables, and all component functions
are different. Therefore, to compute f−1

n we need at least (n − 1) + (n − 2) = 2n − 3 gates
(since fn is invertible, Proposition 6 is applicable to fn and f−1

n). Therefore,

MF(fn) ≥ 2n− 3
n + 1

. (19)

On the other hand, fn cannot be computed faster than in n− 1 gates because all component
functions fn are different, and only one of them is trivial (depends on only one variable). At
the same time, f−1

n can be computed in 2n − 2 gates: one computes (y1 ⊕ . . . ⊕ yn−1)yn in
n− 1 gates and spends one gate to compute each component function except the last one. We
get

2n− 3
n + 1

≤ MF(fn) ≤ 2n− 2
n− 1

, (20)

which is exactly what we need.

For the proof of the following theorem, we refer to (Hirsch et al., 2011; Melanich, 2009).

Theorem 18. C3/4(f−1
n) ≥ 2n− 4.

We can now apply the same direct sum idea to this nonlinear feebly one-way function. The
direct sum consists of two blocks. First, for f as above, we have:

Keyn(s) = (fn(s), s),
Evaln(pi, m) = f−1

n (pi)⊕m,
Invn(ti, c) = f−1

n (pi)⊕ c = ti⊕ c,
Advn(pi, c) = f−1

n (pi)⊕ c.

(21)

In this construction, evaluation is no easier than inversion without trapdoor.

For the second block we have
Evaln(m) = f (m),

Invn(c) = f−1(c),
Advn(c) = f−1(c).

(22)

18 Cryptography and Security in Computing

Provably Secure Cryptographic Constructions 17

Again, as above, it is not a trapdoor function at all because inversion is implemented with no
regard for the trapdoor. For a message m of length |m| = n the evaluation circuit has n + 1
gates, while inversion, by Theorem 18, can be performed only by circuits with at least 2n− 4
gates. Thus, in this construction evaluation is easy and inversion is hard, both for an honest
participant of the protocol and for an adversary.

We can now unite these two trapdoor candidates and get the following construction:

Keyn(s) = (fn(s), s),
Evaln(pi, m1, m2) = (f−1

n (pi)⊕m1, fαn(m2)),
Invn(ti, c1, c2) = (f−1

n (pi)⊕ c1, f−1
αn (c2)) = (ti⊕ c1, f−1

αn (c2)),
Advn(pi, c1, c2) = (f−1

n (pi)⊕ c1, f−1
αn (c2)),

(23)

The proofs of lower bounds on these constructions are rather involved; we refer to (Hirsch
et al., 2011; Melanich, 2009) for detailed proofs and simply give the results here.

Lemma 19. The following upper and lower bounds hold for the components of our nonlinear trapdoor
construction:

C(Keyn) ≤ n + 1,
C(Evaln) ≤ 2n− 2 + n + αn + 1 = 3n + αn− 1,
C(Invn) ≤ n + 2αn− 2,

C3/4(Advn) ≥ 3n + 2αn− 8.

(24)

To maximize the order of security of this trapdoor function (Definition 5), we have to find α
that maximizes

lim inf
i→∞

min
{

C3/4(Advn)

C(Keyn)
,

C3/4(Advn)

C(Evaln)
,

C3/4(Advn)

C(Invn)

}
=

= min
{

3 + 2α

1
,

3 + 2α

3 + α
,

3 + 2α

1 + 2α

}
= min

{
3 + 2α

3 + α
,

3 + 2α

1 + 2α

}
. (25)

It is easy to see that this expression is maximized for α = 2, and the optimal value of the order
of security is 7

5 . We summarize this in the following theorem.

Theorem 20. There exists a nonlinear feebly trapdoor function with seed length pi(n) = ti(n) = n,
input and output length c(n) = m(n) = 3n, and order of security 7

5 .

5. Conclusion

In this chapter, we have discussed recent developments in the field of feebly secure
cryptographic primitives. While these primitives can hardly be put to any practical use at
present, they are still important from the theoretical point of view. As sad as it sounds, this is
actually the frontier of provable, mathematically sound results on security; we do not know
how to prove anything stronger.

Further work in this direction is twofold. One can further develop the notions of feebly
secure primitives. Constants in the orders of security can probably be improved; perhaps,
other primitives (key agreement protocols, zero knowledge proofs etc.) can find their feebly
secure counterparts. This work can widen the scope of feebly secure methods, but the real
breakthrough can only come from one place.

19Provably Secure Cryptographic Constructions

18 Will-be-set-by-IN-TECH

It becomes clear that cryptographic needs call for further advances in general circuit
complexity. General circuit complexity has not had a breakthrough since the 1980s;
nonconstructive lower bounds are easy to prove by counting, but constructive lower bounds
remain elusive. The best bound we know is Blum’s lower bound of 3n− o(n) proven in 1984.
At present, we do not know how to rise to this challenge; none of the known methods seem to
work, so a general breakthrough is required for nonlinear lower bounds on circuit complexity.
The importance of such a breakthrough can hardly be overstated; in this chapter, we have seen
only one possible use of circuit lower bounds.

6. Acknowledgements

This work has been partially supported by the Russian Fund for Basic Research, grants no.
11-01-00760-a and 11-01-12135-ofi-m-2011, the Russian Presidential Grant Programme for
Leading Scientific Schools, grant no. NSh-3229.2012.1, and the Russian Presidential Grant
Programme for Young Ph.D.Šs, grant no. MK-6628.2012.1.

7. References

Ajtai, M. (1983). σ1
1 -formulae on finite structures, Annals of Pure and Applied Logic 24: 1–48.

Ajtai, M. & Dwork, C. (1997). A public-key cryptosystem with worst-case/average-case
equivalence, Proceedings of the 29th Annual ACM Symposium on Theory of Computing,
pp. 284–293.

Blum, N. (1984). A boolean function requiring 3n network size, Theoretical Computer Science
28: 337–345.

Cai, J. (1989). With probability 1, a random oracle separates PSPACE from the polynomial-time
hierarchy, Journal of Computer and System Sciences 38: 68–85.

Davydow, A. & Nikolenko, S. I. (2011). Gate elimination for linear functions and new feebly
secure constructions, Proceedings of the 6th Computer Science Symposium in Russia,
Lecture Notes in Computer Science, Vol. 6651, pp. 148–161.

Demenkov, E. & Kulikov, A. (2011). An elementary proof of a 3n-o(n) lower bound on the
circuit complexity of affine dispersers, Proceedings of the 36th International Symposium
on Mathematical Foundations of Computer Science, Lecture Notes in Computer Science, Vol.
6907, pp. 256–265.

Diffie, W. & Hellman, M. (1976). New directions in cryptography, IEEE Transactions on
Information Theory IT-22: 644–654.

Dwork, C. (1997). Positive applications of lattices to cryptography, Proceedings of the 22nd

International Symposium on Mathematical Foundations of Computer Science, Lecture Notes
in Computer Science, Vol. 1295, pp. 44–51.

Furst, M., Saxe, J. & Sipser, M. (1984). Parity, circuits, and the polynomial-time hierarchy,
Mathematical Systems Theory 17: 13–27.

Goldreich, O. (2001). Foundations of Cryptography. Basic Tools, Cambridge University Press.
Goldreich, O. (2004). Foundations of Cryptography II. Basic Applications, Cambridge University

Press.
Goldwasser, S. & Bellare, M. (2001). Lecture Notes on Cryptography, Summer course on

cryptography at MIT.
Grigoriev, D., Hirsch, E. A. & Pervyshev, K. (2009). A complete public-key cryptosystem,

Groups, Complexity, and Cryptology 1: 1–12.

20 Cryptography and Security in Computing

Provably Secure Cryptographic Constructions 19

Harnik, D., Kilian, J., Naor, M., Reingold, O. & Rosen, A. (2005). On robust combiners for
oblivious transfers and other primitives, Proceedings of EuroCrypt âĂŹ05, Lecture Notes
in Computer Science, Vol. 3494, pp. 96–113.

Håstad, J. (1987). Computational Limitations for Small Depth Circuits, MIT Press, Cambridge,
MA.

Hiltgen, A. P. (1992). Constructions of feebly-one-way families of permutations, Proc. of
AsiaCrypt ’92, pp. 422–434.

Hiltgen, A. P. (1994). Cryptographically relevant contributions to combinatorial complexity
theory, in J. L. Massey (ed.), ETH Series in Information Processing, Vol. 3, Konstanz:
Hartung-Gorre.

Hiltgen, A. P. (1998). Towards a better understanding of one-wayness: Facing linear
permutations, Proceedings of EuroCrypt ’98, Lecture Notes in Computer Science, Vol.
1233, pp. 319–333.

Hirsch, E. A., Melanich, O. & Nikolenko, S. I. (2011). Feebly secure cryptographic primitives.
Hirsch, E. A. & Nikolenko, S. I. (2008). A feebly secure trapdoor function, PDMI preprint

16/2008.
Hirsch, E. A. & Nikolenko, S. I. (2009). A feebly secure trapdoor function, Proceedings of the

4th Computer Science Symposium in Russia, Lecture Notes in Computer Science, Vol. 5675,
pp. 129–142.

Immerman, M. (1987). Languages which capture complexity classes, SIAM Journal of
Computing 4: 760–778.

Impagliazzo, R. (1995). A personal view of average-case complexity, Proceedings of the 10th
Annual Structure in Complexity Theory Conference (SCT’95), IEEE Computer Society,
Washington, DC, USA, p. 134.

Khrapchenko, V. M. (1971). Complexity of the realization of a linear function in the class of
π-circuits, Mat. Zametki 9(1): 36–40.

Kojevnikov, A. A. & Nikolenko, S. I. (2008). New combinatorial complete one-way functions,
Proceedings of the 25th Symposium on Theoretical Aspects of Computer Science, Bordeaux,
France, pp. 457–466.

Kojevnikov, A. A. & Nikolenko, S. I. (2009). On complete one-way functions, Problems of
Information Transmission 45(2): 108–189.

Lamagna, E. A. & Savage, J. E. (1973). On the logical complexity of symmetric switching
functions in monotone and complete bases, Technical report, Brown University, Rhode
Island.

Levin, L. A. (1986). Average case complete problems, SIAM Journal of Computing
15(1): 285–286.

Lupanov, O. B. (1965). On a certain approach to the synthesis of control systems – the principle
of local coding, Problemy Kibernet. 14: 31–110.

Markov, A. A. (1964). Minimal relay-diode bipoles for monotonic symmetric functions,
Problems of Cybernetics 8: 205–212.

Massey, J. (1996). The difficulty with difficulty: A guide to the transparencies from the
EUROCRYPT’96 IACR distinguished lecture.

Melanich, O. (2009). Nonlinear feebly secure cryptographic primitives, PDMI preprint
12/2009.

Nechiporuk, E. I. (1966). A Boolean function, Soviet Mathematics. Doklady 7: 999–1000.
Paul, W. J. (1977). A 2.5n lower bound on the combinational complexity of boolean functions,

SIAM Journal of Computing 6: 427–443.

21Provably Secure Cryptographic Constructions

20 Will-be-set-by-IN-TECH

Razborov, A. A. (1985). Lower bounds on monotone complexity of the logical permanent, Mat.
Zametki 37(6): 887–900.

Razborov, A. A. (1987). Lower bounds on the size of bounded depth circuits over a complete
basis with logical addition, Mat. Zametki 41(4): 598–608.

Razborov, A. A. (1990). Lower bounds of the complexity of symmetric boolean functions of
contact-rectifier circuit, Mat. Zametki 48(6): 79–90.

Razborov, A. A. (1995). Bounded arithmetic and lower bounds, in P. Clote & J. Remmel
(eds), Feasible Mathematics II, Vol. 13 of Progress in Computer Science and Applied Logic,
Birkhäuser, pp. 344–386.

Regev, O. (2005). On lattices, learning with errors, random linear codes, and cryptography,
Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pp. 84–93.

Regev, O. (2006). Lattice-based cryptography, Proceedings of the 26th Annual International
Cryptology Conference (CRYPTO’06), Lecture Notes in Computer Science, Vol. 4117,
pp. 131–141.

Rivest, R. L., Shamir, A. & Adleman, L. (1978). A method for obtaining digital signatures and
public-key cryptosystems, Communications of the ACM 21(2): 120–126.

Savage, J. E. (1976). The Complexity of Computing, Wiley, New York.
Shannon, C. E. (1949). Communication theory of secrecy systems, Bell System Technical Journal

28(4): 656–717.
Sholomov, L. A. (1969). On the realization of incompletely-defined boolean functions by

circuits of functional elements, Trans: System Theory Research 21: 211–223.
Smolensky, R. (1987). Algebraic methods in the theory of lower bounds for boolean circuit

complexity, Proceedings of the 19th Annual ACM Symposium on Theory of Computing,
pp. 77–82.

Stockmeyer, L. (1977). On the combinational complexity of certain symmetric boolean
functions, Mathematical Systems Theory 10: 323–326.

Stockmeyer, L. (1987). Classifying the computational complexity of problems, Journal of
Symbolic Logic 52: 1–43.

Subbotovskaya, B. A. (1961). Realizations of linear functions by formulas using ∨, &, ¬, Soviet
Mathematics. Doklady 2: 110–112.

Subbotovskaya, B. A. (1963). On comparison of bases in the case of realization of functions of
algebra of logic by formulas, Soviet Mathematics. Doklady 149(4): 784–787.

Vernam, G. S. (1926). Cipher printing telegraph systems for secret wire and radio telegraphic
communications, Journal of the IEEE 55: 109–115.

Wegener, I. (1987). The Complexity of Boolean Functions, B. G. Teubner, and John Wiley & Sons.
Yablonskii, S. V. (1957). On the classes of functions of logic algebra with simple circuit

realizations, Soviet Math. Uspekhi 12(6): 189–196.
Yao, A. C.-C. (1985). Separating the polynomial-time hierarchy by oracles, Proceedings of the

26th Annual IEEE Symposium on the Foundations of Computer Science, pp. 1–10.
Yao, A. C.-C. (1990). On ACC and threshold circuits, Proceedings of the 31st Annual IEEE

Symposium on the Foundations of Computer Science, pp. 619–627.

22 Cryptography and Security in Computing

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

