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Problem setting

A buffer B that handles a sequence of arriving packets.

Each packet p has several required processing cycles
r(p) ∈ {1, . . . ,k}, denoted by r(p) .

Discrete time, each time slot contains:
1 arrival: new packets arrive, and the buffer management unit

performs admission control and, possibly, push-out;
2 assignment and processing: a single packet is selected for

processing by the scheduling module;
3 transmission: packets with zero required processing left are

transmitted and leave the queue.
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Basic definitions

Notation:
k is the maximal number of required processing cycles;
B is the buffer size;
C is the number of processing cores (C = 1 for now).

Natural properties: an algorithm is
greedy if it accepts all arrivals whenever there is buffer space
available;
work-conserving if it always processes whenever it has
admitted packets that require processing in the queue;
preemptive if it allows packets to push out (preempt) currently
stored packets.
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Basic definitions

The goal is to transmit as many packets as possible (i.e., drop
as little as possible).

Definition
An online algorithm A is said to be α-competitive (for some α ≥ 1)
if for any arrival sequence σ the number of packets successfully
transmitted by A is at least 1/α times the number of packets
successfully transmitted by an optimal solution (denoted OPT)
obtained by an offline clairvoyant algorithm.
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Simple algorithms

Non-preemptive greedy NPO: for an incoming packet p, if
buffer occupancy is less than B then accept p else drop p.
Preemptive greedy PO: for an incoming packet p,

if buffer occupancy is less than B then accept p;
else let q be the first (from HOL) packet with maximal
number of residual processing; if rt(p) < rt(q) then drop q and
accept p according to FIFO order, else drop p,

What are their competitive ratios?
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Simple algorithms

Obvious upper bound: any reasonable greedy work-conserving
algorithm (even NPO) is k-competitive.
Lower bound for NPO is also k :

fill NPO buffer with k s;
keep NPO buffer full with k s by adding one more every k
time slots;
at the same time, feed OPT with 1 s (OPT does not accept
all k s and leaves room for 1 s).

This concludes our theoretical analysis of NPO.
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Lower bounds for PO

Lower bound for PO is at least 2
(
1− 1

B

)
for k ≥ B :

t Arriving IB{PO , LPO}
t #PO IBOPT

t # OPT

1 1 B 1 B 0 1 1

2 1 1 1 B − 1 0 1 2

3 1 1 1 1 B − 2 0 1 3
. . . . . . . . .

B − 2 1 1 . . . 1 2 0 1 B − 2
B − 1 1 × B 1 . . . 1 1 1 1 . . . 1 1 B − 1
. . . . . . . . .

2B − 1 B 2B − 2
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Lower bounds for PO

Lower bound for PO is at least 2k
k+1 for k < B :

on step 1, there arrive (1− α)B × k followed by αB × 1 ;
PO accepts all, OPT rejects k s.
on step αB, there arrive αB

k × 1 ; on step αB(1+ 1
k ),

αB
k2 × 1 and so on;
when PO is out of packets with k processing cycles, its queue
is full 1 s, and OPT’s queue is empty; now, there arrive
B × 1 , they are processed, and the sequence is repeated.

In order for this sequence to work, we need to have
αB

(
1+ 1

k + 1
k2 + . . .

)
= k (1− α)B , so we get α = 1− 1

k .
During the sequence, OPT has processed
αB

(
1+ 1

k + 1
k2 + . . .

)
+ B = 2B packets, while PO has

processed (1− α)B + B =
(
1+ 1

k

)
B packets, so the

competitive ratio is 2
1+ 1

k
.
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Lower bounds for PO

For large values of k , we can have a logarithmic lower bound.
First step: suppose k ≥ (B − 1)(B − 2). Then:

we begin with buffer state

1 2 3 4 . . . B − 1 (B − 1)(B − 2) .

OPT drops first packet and processes the rest while PO keeps
processing the first;
then, for B steps one 1 per step arrives; PO keeps dropping
its HOL;
then PO has a queue of 1 s, so we flush it out with B × 1 .

At the end of this iteration, PO has processed B + 1 packets;
OPT, 3B packets.
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Lower bounds for PO

We can iterate this construction for larger values of k : having
proven for S = Ω(Bn−1), on the next step we begin with

1+ S 2+ S 3+ S 4+ S . . . B − 1+ S (B − 1)(B − 2+ S) .

Theorem

The competitive ratio of PO is at least blogB kc+ 1− O( 1
B ).
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Lazy policies

So the lower bound that we can show for PO is ≈ logB k –
much better than k .

But can we show a matching upper bound? It is far from
obvious how to analyze PO.

We do the analysis by defining a new class of algorithms – lazy
processing policies.
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Lazy policies

Lazy push-out algorithm LPO mimics the behaviour of PO
with two important differences:

LPO does not transmit HOL 1 if it has at least one packet
with r > 1, until the buffer contains only 1 s;
then, LPO transmits all 1 s one by one, accepting new
packets in the end of the queue (they cannot push out 1 s).
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Lazy policies

Intuitively, LPO is a weakened version of PO since PO tends
to empty its buffer faster.
However, in the worst case they are incomparable:

there exists a sequence of inputs on which PO processes ≥ 3
2

times more packets than LPO;
there exists a sequence of inputs on which LPO processes ≥ 5

4
times more packets than PO.
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Lazy policies

Lower bounds on LPO almost exactly match lower bounds on
PO:

the competitive ratio of LPO is at least 2
(
1− 1

B

)
for k ≥ B

and at least 2k−1
k for k < B;

for large k , the competitive ratio of LPO is at least
blogB kc+ 1− O( 1

B ).

The difference is that for LPO, we can prove an upper bound.
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Upper bound on the competitiveness of LPO

Idea – we define an iteration:
the first iteration begins with the first arrival;
an iteration ends when all packets in the LPO buffer have a
single processing pass left;
each subsequent iteration starts after the transmission of all
LPO packets from the previous iteration.

The plan is to count how many packets LPO can lose to OPT
on each iteration.
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Upper bound on the competitiveness of LPO

Wlog, OPT never pushes out packets and it is work-conserving.
Further, we give OPT an additional property for free:

1 at the start of each iteration, OPT flushes out all packets
remaining in its buffer from the previous iteration (for free,
with extra gain to its throughput).

Notation:
A, number of non-HOL packets in OPT’s buffer at time tcon;
WA, their total required processing;
Mt , maximal number of residual processing cycles among all
packets in LPO’s buffer at time t in current iteration;
Wt , total residual work for all packets in LPO’s buffer at time
t.
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Upper bound on the competitiveness of LPO

Consider an iteration I that begins at time tbeg and ends at
time tend; tcon is the time when LPO buffer is first congested.
The following statements hold:

1 during I , the buffer occupancy of LPO is at least the buffer
occupancy of OPT;

2 if during a time interval [t,t ′], tbeg ≤ t ≤ t ′ ≤ tcon, there is no
congestion in LPO’s buffer then during [t,t ′] OPT transmits at
most | IBLPO

t ′ | packets and LPO does not transmit any packets.
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Lemma
1 During [tbeg,tcon], OPT processes at most B − 1 packets.
2 For every packet p in OPT’s buffer at time tconexcept perhaps

the HOL packet, there is a corresponding packet q in LPO’s
buffer with r(q) ≤ r(p).

Proof.
1. During [tbeg,tcon], there arrive exactly B packets (because LPO does not
transmit any packets and becomes congested at tcon). Moreover, OPT cannot
process all B packets because then LPO would also have time to process them,
and the iteration would be uncongested.
2. Every packet in OPT’s buffer also resides in LPO’s buffer because LPO has
not dropped anything yet at time tcon; r(q) ≤ r(p) because LPO may have
processed some packets partially.
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Upper bound on the competitiveness of LPO

By prev. Lemma, LPO buffer at time tcon contains A
corresponding packets, so Wtcon ≤WA + (B − A)k .

Moreover, over the next WA time slots OPT will be processing
these A packets and LPO, being congested, will also not be
idle, so at time tcon + A we will have Wtcon+A ≤ (B − A)k (we
give OPT its HOL packet for free, so OPT processes A+ 1
packets over [tcon,tcon + A]).
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Lemma

For every packet accepted by OPT at time t ∈ [tcon,tend] and
processed by OPT during time interval [t ′,t ′′],
tcon ≤ t ′ ≤ t ′′ ≤ tend, Wt ′′ ≤Wt−1 −Mt .

Proof.
If LPO’s buffer is full then a packet p accepted by OPT either
pushes out a packet in LPO’s buffer or is rejected by LPO. If p
pushes a packet out, then the total work Wt−1 is immediately
reduced by Mt − rt(p). Moreover, after processing p,
Wt ′′ ≤Wt−1 − (Mt − rt(p)) − rt(p) = Wt−1 −Mt . If, on the other
hand, p is rejected by LPO then rt(p) ≥ Mt , and thus
Wt ′′ ≤Wt−1 − rt(p) ≤Wt−1 −Mt .
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Upper bound on the competitiveness of LPO

We denote by f (B,W ) the maximal number of packets that OPT
can accept and process during [t,t ′], tcon ≤ t ≤ t ′ ≤ tend, where
W = Wt−1. The next lemma is crucial for the proof.

Lemma

For every ε > 0, f (B,W ) ≤ B−1
1−ε ln W

B for B sufficiently large.

Proof: all packets LPO transmits it does at the end of an
iteration, hence, if the buffer of LPO is full, it will remain full
until tend − B .

At any time t, Mt ≥ Wt
B : the maximal required processing is

no less than the average.
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Upper bound on the competitiveness of LPO

We know that for every packet p accepted by OPT at time t,
the total work W = Wt−1 is reduced by Mt after OPT has
processed p.

Therefore, after OPT processes a packet at time t ′, Wt ′ is at
most W

(
1− 1

B

)
.

Now by induction on W ; for W = B the base is trivial.
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Upper bound on the competitiveness of LPO

The induction hypothesis is that after a packet is processed by
OPT, there cannot be more than

f (B,
W
B

(
1−

1
B

)
) ≤ B − 1

1− ε
ln
[
W
B

(
1−

1
B

)]
packets left, and for the induction step we have to prove that

B − 1
1− ε

ln
[
W
B

(
1−

1
B

)]
+ 1 ≤ B − 1

1− ε
ln

W
B
.

This is equivalent to

ln
W
B
≥ ln

[
W
B

B − 1
B

e
1−ε
B−1

]
,

and this holds asymptotically because for every ε > 0, we have
e

1−ε
B−1 ≤ B

B−1 for B sufficiently large.
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Upper bound on the competitiveness of LPO

Applying Lemma 5 to the time tcon + A, we get the following.

Corollary

For every ε > 0, the total number of packets processed by OPT
between tcon and tend in a congested iteration does not exceed

A+ 1+ (B + o(B)) ln
(B − A)k

B
.

And the final result is as follows.

Theorem

LPO is at most (max{1, ln k}+ 2+ o(1))-competitive.
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Upper bound on the competitiveness of LPO

Consider an iteration I over time [tbeg, tend].
If I is uncongested then OPT cannot transmit more than
| IBLPO

t | packets during I .
Consider an iteration I first congested at time tcon:

by a lemma, during [tbeg, tcon) OPT can transmit at most
B − 1 packets, leaving A+ 1 packets in its buffer;
by the corollary, OPT processes at most
A+ 1+ B−1

1−ε ln (B−A)k
B + o(B ln (B−A)k

B ) packets during
[tcon, tend] and flushes out ≤ B packets at time tend;
thus, the total number of packets transmitted by OPT over a
congested iteration is at most

2B + A+ (B + o(B)) ln
(B − A)k

B
.

It is now easy to check that for every 1 ≤ A ≤ B − 1 the
theorem’s statement is satisfied.
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Simulations: variable λon
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Simulations: variable max processing
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Simulations: variable buffer
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Simulations: variable # of cores
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Processing orders

Priority queueing (PQ): a packet with minimal residual work
(that is more than one) is processed first.

Reversed priority queueing (RevPQ): a packet with maximal
residual work is processed first.

FIFO.

FIFO with recycles (RFIFO): non-fully processed packets are
recycled to the back of the queue.
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Lazy: a definition

Definition

A buffer processing policy LA is called lazy if it satisfies the
following conditions:

(i) LA greedily accepts packets if its buffer is not full;

(ii) LA pushes out the first packet with maximal number of
processing cycles in case of congestion;

(iii) LA does not process and transmit packets with a single
processing cycle if its buffer contains at least one packet with
more than one processing cycle left;

(iv) once all packets in LA’s buffer (say m packets) have a single
processing cycle remaining, LA transmits them over the next
m time slots, even if additional packets arrive during that time.
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A general upper bound on LA

Ideas of the LPO upper bound can be extended to a general
upper bound on all lazy policies.

Lemma

Consider an iteration I that has started at time t ′ and ended at
time t. The following statements hold.

(1) During I , the buffer occupancy of LA is at least the buffer
occupancy of OPT.

(2) Between two consecutive iterations I and I ′, OPT transmits at most
|IBLA

t | packets.

(3) If during an interval of time [t ′,t "], t ′ ≤ t " ≤ t, there is no
congestion, then during [t ′,t "] OPT transmits at most |IBLA

t" | packets.
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A general upper bound on LA

Same as above.

Lemma

For any packet accepted by OPT at time t and processed by OPT
during [ts ,te ], t ≤ ts ≤ te , if |IBLA

t−1| = B and |IBOPT
t−1 | = 0 then

Wte ≤Wt−1 −Mt−1.
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A general upper bound on LA

And this comes to a logarithmic bound (though worse than
above).

Theorem

LA is at most (3+ logB/(B−1) k)-competitive.
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A general upper bound on LA

In a congested iteration, any packet processed by OPT
decreases the total LA work by Mt , i.e., by at least W /B .

After n transmission rounds, the residual number of processing
cycles in LA buffer is W (1− 1/B)n.

Since initially W ≤ kB , n ≤ logB/(B−1) k .
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Lower bounds

This lower bounds is tight for some processing orders.

Theorem

LRFIFO, LRevPQ, and RFIFO are at least
(1+ logB/(B−1) k)-competitive.
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Lower bounds

Proof: denote γ = B−1
B .

First burst: (B − 1)× k packets arrive followed by γk ;

OPT drops all k s and only leaves γk .

After γk steps, all three policies will have B × γk in the

buffer, and then γ2k arrives.

Repeat this sequence ( γi+1k arrives after γi more steps)

until IBALG consists of 1 ’s.

We get that OPT has processed log 1
γ
k = log B

B−1
k packets

while LRevPQ (LRFIFO) has processed none.

Then we flush out with a new burst of B × 1 .
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LPQ

Theorem

(i) LPQ is at most 2-competitive.

(ii) LPQ is at least
(
2− 1

B

⌈B
k

⌉)
-competitive.

Proof.

(i) Since PQ is optimal, during an iteration OPT cannot transmit more
packets than reside in the LPQ buffer at the end of an iteration. By
Lemma 9(2), LPQ is at most 2-competitive.

(ii) For k ≥ B, consider two bursts of packets: B × k and then, in (k − 1)B
steps, (B − 1)× 1 each. After these two bursts, OPT has processed
2B − 1 packets, and LPQ has processed B packets, so we can repeat
them to get the asymptotic bound. For k < B, in the same construction⌈B

k

⌉
packets are left in OPT’s queue after (k − 1)B processing steps.
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Other extensions

Theorem

Any greedy Semi-FIFO policy is at least
(
1+ m−1

B

)
-competitive for

m = min{k ,B}.

Theorem

Any lazy policy LA (including LRevPQ) is incomparable with either
FIFO or RFIFO in the worst case for every k > 2 and B > 2.

Theorem

Any greedy non-push-out Semi-FIFO policy NPO is at least
k+1
2 -competitive. Any lazy greedy non-push-out policy NLPO is at

least (k − 1)-competitive.
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Constraints on push-out

In some situations, we’d like to impose constraints on
push-out; e.g., there might be copying cost α for each
admitted packet.

We introduce an additional constraint β: a policy ALGβ
pushes out only if the new arrival has at least β times less
work than the maximal residual work in the buffer.
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Upper bound with β-preemption

The key lemma will now have Wte ≤Wt−1 −
Mt−1
β .

Theorem

LAβ is at most
(3+log βB

βB−1
k)(1−α)

1−α logβ k -competitive for copying cost

0 < α < 1
logβ k .
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Simulations
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Simulations
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Results summary

Algorithm/family Lower bound Upper bound
Semi-FIFO 1+ min{k,B}−1

B open problem
Lazy 1+ min{k,B}−1

B 3+ log B
B−1

k

LRFIFO, LRevFIFO 1+ log B
B−1

k 3+ log B
B−1

k

LPO blogB kc+ 1 max{1, ln k}+ 2
LPQ 2− 1

B

⌈B
k

⌉
2

2LFIFO k − 1+ 1
B

⌊B
k

⌋
k

Lazy β-push-out 1+ min{k,B}−1
B

(
3+log βB

βB−1
k

)
(1−α)

1−α logβ k

Non-push-out k+1
2 k

Lazy non-push-out k − 1 k
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Thank you!

Thank you for your attention!
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