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Introduction

I In probabilistic rating models, Bayesian
inference aims to find a linear ordering on a
certain set given noisy comparisons of
relatively small subsets of this set.

I Useful whenever there is no way to compare
a large number of entities directly, but only
partial (noisy) comparisons are available.

I Elo rating, Bradley–Terry models, and
recently TrueSkillTM [Graepel, Minka,
Herbrich, 2007].

I TrueSkillTM was initially developed in
Microsoft Research for Xbox 360 gaming
servers.

I Applications: matchmaking, AdPredictor, etc.

Model variables

I Layers of TrueSkill factor graph:
I si ,j – skill of player i from team j ; normally

distributed around µi ,j with variance σi ,j ;
I pi ,j – performance of player i from team j ;
I tj – performance of team j ;
I dj – difference in performance between

teams who took neighboring places in the
tournament; a tie corresponds to |dj | ≤ ε; a
win, to dj > ε;

I our contribution: lj – place performance; uj
– difference between team performance
and the corresponding place performance,
|uj | ≤ ε.

I Inference is complicated by indicator
functions at the bottom; solved with
Expectation Propagation [Minka, 2001].

Experimental Results
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TrueSkill factor graph
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A sample TrueSkillTM factor graph: four teams, teams 1 and 4 have two players each;
teams 2 and 3, one player each. Team 1 won, teams 2 and 3 drew behind it, team 4 placed last.

Our factor graph
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Our factor graph for the same case.

TrueSkill problems

I Large multiway ties are deadly for
TrueSkillTM. Consider four teams in a
tournament with performances p1, . . . ,p4.

I Team 1 has won, teams 2–4 drew behind.
I Then the factor graph tells us that

p2 < p1− ε, |p2−p3| ≤ ε, |p3−p4| ≤ ε.

I Team 3’s performance may actually nearly
equal p1, and p4 may exceed p1!

I Moreover, these boundary cases are
realized in practice when unexpected
results occur.

I Another undesired feature of TrueSkillTM

is the assumption that a team’s
performance is the sum of player
performances: in many competitions, an
undersized team stands a very good
chance against a full one.

Team performance functions

I We can easily use any affine function for
team performance, e.g., average.

I To approximate nonlinear functions,
replace player performances with their
estimates provided by the prior ratings µi .
E.g., to approximate t = p2

1 + p2
2 + . . . + p2

n
we replace it with

t = µ1p1 + µ2p2 + . . . + µnpn

(here pi are model variables, and µi are
constants fixed before inference).

I For our dataset, the function that worked
best was (TS2b and TS2c on the graph)

ti =


∑ni

j=1 pi ,j
ni

· (0.88 + 0.02ni), ni ≤ 6,
ni∑

j=1
pi ,j ·

∑6
j=1 µi ,j

6
∑ni

j=1 µi ,j
, ni > 6,

where ni is number of players in team i .
I Obviously, it wouldn’t work for other

applications, so please tune it yourself.
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