A New Bayesian Rating System for Team Competitions Sergey Nikolenko ${ }^{1,2}$ and Alexander Sirotkin ${ }^{1,3}$

${ }^{1}$ St. Petersburg Academic University - Nanotechnology Research and Education Centre of the RAS, 194021, St. Petersburg, Khlopina 8, korp. 3 ${ }^{2}$ Steklov Mathematical Institute, 191023, St. Petersburg, Russia, nab. r. Fontanka, 27 ${ }^{3}$ St. Petersburg Institute for Informatics and Automation of the RAS, 199178, St. Petersburg, 14 Line V.O., 39

Introduction

- In probabilistic rating models, Bayesian inference aims to find a linear ordering on a certain set given noisy comparisons of relatively small subsets of this set.
- Useful whenever there is no way to compare a large number of entities directly, but only partial (noisy) comparisons are available.
Elo rating, Bradley-Terry models, and recently TrueSkill ${ }^{\text {TM }}$ [Graepel, Minka, Herbrich, 2007].
TrueSkill ${ }^{\text {TM }}$ was initially developed in Microsoft Research for Xbox 360 gaming servers.
- Applications: matchmaking, AdPredictor, etc.

Model variables

- Layers of TrueSkill factor graph:
- $s_{i, j}$ - skill of player i from team j; normally distributed around $\mu_{i, j}$ with variance $\sigma_{i, j}$; - $p_{i, j}$ - performance of player i from team j; - t_{j} - performance of team j;
- d_{j} - difference in performance between teams who took neighboring places in the tournament; a tie corresponds to $\left|d_{j}\right| \leq \varepsilon$; a win, to $d_{j}>\varepsilon$;
our contribution: l_{j} - place performance; u_{j} - difference between team performance and the corresponding place performance, $\left|u_{j}\right| \leq \varepsilon$.
- Inference is complicated by indicator functions at the bottom; solved with Expectation Propagation [Minka, 2001].

Experimental Results

Average error rate over the sliding window of 50 tournaments.

TrueSkill problems

- Large multiway ties are deadly for TrueSkill ${ }^{\text {TM }}$. Consider four teams in a tournament with performances p_{1}, \ldots, p_{4}.
- Team 1 has won, teams 2-4 drew behind.
- Then the factor graph tells us that
$p_{2}<p_{1}-\epsilon, \quad\left|p_{2}-p_{3}\right| \leq \epsilon, \quad\left|p_{3}-p_{4}\right| \leq \epsilon$.
- Team 3's performance may actually nearly equal p_{1}, and p_{4} may exceed p_{1} !
- Moreover, these boundary cases are realized in practice when unexpected results occur.
- Another undesired feature of TrueSkill ${ }^{\text {TM }}$ is the assumption that a team's performance is the sum of player performances: in many competitions, an undersized team stands a very good chance against a full one.

Team performance functions

- We can easily use any affine function for team performance, e.g., average.
- To approximate nonlinear functions, replace player performances with their estimates provided by the prior ratings μ_{i}. E.g., to approximate $t=p_{1}^{2}+p_{2}^{2}+\ldots+p_{n}^{2}$ we replace it with

$$
t=\mu_{1} p_{1}+\mu_{2} p_{2}+\ldots+\mu_{n} p_{n}
$$

(here p_{i} are model variables, and μ_{i} are constants fixed before inference).

- For our dataset, the function that worked best was (TS2b and TS2c on the graph)

$$
t_{i}= \begin{cases}\frac{\sum_{j=1}^{n_{j}} p_{i, j}}{n_{i}} \cdot\left(0.88+0.02 n_{i}\right), & n_{i} \leq 6, \\ \sum_{j=1}^{n_{i}} p_{i, j} \cdot \frac{\sum_{j=1}^{6} \mu_{i, j}}{6 \sum_{j=1}^{n_{i}} \mu_{i, j}}, & n_{i}>6,\end{cases}
$$

where n_{i} is number of players in team i.
Obviously, it wouldn't work for other applications, so please tune it yourself.

Our factor graph for the same case.

