A New Bayesian Rating System for Team Competitions

Sergey Nikolenko^{1,2} and Alexander Sirotkin^{1,3}

¹St. Petersburg Academic University – Nanotechnology Research and Education Centre of the RAS, 194021, St. Petersburg, Khlopina 8, korp. 3 ²Steklov Mathematical Institute, 191023, St. Petersburg, Russia, nab. r. Fontanka, 27 ³St. Petersburg Institute for Informatics and Automation of the RAS, 199178, St. Petersburg, 14 Line V.O., 39

Introduction

- In probabilistic rating models, Bayesian inference aims to find a linear ordering on a certain set given noisy comparisons of relatively small subsets of this set.
- Useful whenever there is no way to compare a large number of entities directly, but only partial (noisy) comparisons are available.
- Elo rating, Bradley–Terry models, and recently TrueSkillTM [Graepel, Minka, Herbrich, 2007].
- TrueSkillTM was initially developed in Microsoft Research for Xbox 360 gaming servers.
- Applications: matchmaking, AdPredictor, etc.

Model variables

- Layers of TrueSkill factor graph:
 - ► $s_{i,j}$ skill of player *i* from team *j*; normally distributed around $\mu_{i,j}$ with variance $\sigma_{i,j}$;
 - $ightarrow p_{i,j}$ performance of player *i* from team *j*;
 - $t_j performance of team j;$
 - *d_j* difference in performance between teams who took neighboring places in the tournament; a tie corresponds to |*d_j*| ≤ ε; a win, to *d_j* > ε;
 - our contribution: l_j place performance; u_j – difference between team performance and the corresponding place performance, $|u_j| \le \varepsilon$.
- Inference is complicated by indicator functions at the bottom; solved with Expectation Propagation [Minka, 2001].

Experimental Results

Average error rate over the sliding window of 50 tournaments.

TrueSkill problems

Large multiway ties are deadly for

TrueSkill factor graph

 $\mathcal{N}(\mathbf{s}_{1,1};\mu_{1,1},\sigma_{1,1}^2) \quad \mathcal{N}(\mathbf{s}_{1,2};\mu_{1,2},\sigma_{1,2}^2) \quad \mathcal{N}(\mathbf{s}_{2,1};\mu_{2,1},\sigma_{2,1}^2) \quad \mathcal{N}(\mathbf{s}_{3,1};\mu_{3,1},\sigma_{3,1}^2) \quad \mathcal{N}(\mathbf{s}_{4,1};\mu_{3,1},\sigma_{3,1}^2) \quad \mathcal{N}(\mathbf{s}_{4,2};\mu_{4,2},\sigma_{4,2}^2)$

A sample TrueSkillTM factor graph: four teams, teams 1 and 4 have two players each; teams 2 and 3, one player each. Team 1 won, teams 2 and 3 drew behind it, team 4 placed last.

Our factor graph

- TrueSkillTM. Consider four teams in a tournament with performances p_1, \ldots, p_4 .
- ► Team 1 has won, teams 2–4 drew behind.
- Then the factor graph tells us that

 $p_2 < p_1 - \epsilon$, $|p_2 - p_3| \le \epsilon$, $|p_3 - p_4| \le \epsilon$.

- Team 3's performance may actually nearly equal p₁, and p₄ may exceed p₁!
- Moreover, these boundary cases are realized in practice when unexpected results occur.
- Another undesired feature of TrueSkillTM is the assumption that a team's performance is the sum of player performances: in many competitions, an undersized team stands a very good chance against a full one.

Team performance functions

- We can easily use any affine function for team performance, e.g., average.
- To approximate nonlinear functions, replace player performances with their estimates provided by the prior ratings μ_i . E.g., to approximate $t = p_1^2 + p_2^2 + \ldots + p_n^2$ we replace it with

 $t = \mu_1 p_1 + \mu_2 p_2 + \ldots + \mu_n p_n$

(here p_i are model variables, and μ_i are constants fixed before inference).

For our dataset, the function that worked best was (TS2b and TS2c on the graph)

 $t_{i} = \begin{cases} \frac{\sum_{j=1}^{n_{i}} p_{i,j}}{n_{i}} \cdot (0.88 + 0.02n_{i}), & n_{i} \leq 6, \\ \sum_{j=1}^{n_{i}} p_{i,j} \cdot \frac{\sum_{j=1}^{6} \mu_{i,j}}{6\sum_{j=1}^{n_{i}} \mu_{i,j}}, & n_{i} > 6, \end{cases}$

where n_i is number of players in team *i*.
Obviously, it wouldn't work for other applications, so please tune it yourself.

Mail: snikolenko@gmail.com, sergey@logic.pdmi.ras.ru

WWW: http://logic.pdmi.ras.ru/~sergey