A New Bayesian Rating System for Team Competitions

Sergey Nikolenko^{1,2} Alexander Sirotkin^{1,3}

¹St. Petersburg Academic University
²Steklov Mathematical Institute, St. Petersburg
³St. Petersburg Institute for Informatics and Automation of the RAS

ICML 2011, June 30, 2011

Sergey Nikolenko, Alexander Sirotkin A New Bayesian Rating System for Team Competitions

Outline

TrueSkill and its problems

- TrueSkill
- Motivation and TrueSkill problems

Problems and solutions

- Undersized teams
- Multiway ties and the new factor graph

- In probabilistic rating models, Bayesian inference aims to find a linear ordering on a certain set given noisy comparisons of relatively small subsets of this set.
- Useful whenever there is no way to compare a large number of entities directly, but only partial (noisy) comparisons are available.
- We will stick to the metaphor of matches and players.

Introduction

- Elo rating system: first probabilistic rating model (chess: two players).
- Bradley–Terry models: assume that each player has a "true" rating γ_i, and the win probability is proportional to this rating: γ₁ wins over γ₂ with probability ^{γ₁}/_{γ₁+γ₂}.
- Inference: fit this model to the data from matches played.
- Several extensions, but large matches are hard for Bradley–Terry models.

・ロット 全部 マート・ キャー

Introduction

- TrueSkill was initially developed in MS Research for Xbox Live gaming servers [Graepel, Minka, Herbrich, 2007].
- Given results of team competitions, learn the ratings of players of these teams.
- Direct application matchmaking: find interesting opponents for a player or team.
- [Graepel et al., 2010]: AdPredictor. Predicts CTRs of advertisements based on a set of features: the features are a team, and the team wins whenever a user clicks the ad.

TrueSkill Motivation and TrueSkill problems

TrueSkill factor graph

Sergey Nikolenko, Alexander Sirotkin A New Bayesian Rating System for Team Competitions

TrueSkill

- Layers of TrueSkill factor graph:
 - $s_{i,j}$ skill of player *i* from team *j*; normally distributed around $\mu_{i,j}$ with variance $\sigma_{i,j}$, where $(\mu_{i,j}, \sigma_{i,j})$ are prior ratings;
 - *p_{i,j}* performance of player *i* from team *j* in this match; conditionally normally distributed around the skill *s_{i,j}* with variance β (a global model parameter);
 - *t_j* − performance of team *j*; in TrueSkillTM, team performance is the sum of player performances;
 - d_j difference in performance between teams who took neighboring places in the tournament; a tie between two teams corresponds to $|d_j| \le \varepsilon$ for some model parameter ε , and a win corresponds to $d_j > \varepsilon$.

《曰》 《部》 《글》 《글》 - 글

TrueSkill

- There is no evidence per se, it is incorporated in the structure of the graph, we just have to marginalize by message passing.
- The marginalization problem is complicated by the step functions at the bottom; solved with Expectation Propagation [Minka, 2001]:
 - approximate messages from $\mathbb{I}(d_i > \epsilon)$ and $\mathbb{I}(|d_i| \le \epsilon)$ to d_i with normal distributions;
 - repeat message passing on the bottom layer of the graph until convergence.

(日) (同) (日) (日)

TrueSkill Motivation and TrueSkill problems

Example: a match of four players

4 ロ ト 4 合 ト 4 き ト 4 き ト き うへの A New Bayesian Rating System for Team Competitions

Motivation

- We started with a practical problem: we tried to apply TrueSkillTM to a Russian game "What? Where? When?".
- $\bullet\,$ Teams of ≤ 6 players answer questions, whoever gets the most correct answers wins.
- It turned out that TrueSkillTM works poorly on this dataset because of its properties:
 - large multiway ties are common; it is common to have 30–40 different places (because there were 35-50 questions in total) in a tournament with a thousand teams;
 - teams vary in size (max 6 players, but often incomplete).
- Why is it bad for TrueSkill[™] and what do we do about it?

イロト 不得 とうき イロト

Outline

TrueSkill and its problems

- TrueSkill
- Motivation and TrueSkill problems

Problems and solutions

- Undersized teams
- Multiway ties and the new factor graph

Variable team size

- An undesired feature of TrueSkillTM is the assumption that a team's performance is the sum of player performances.
- In many competitions (and comparison problems), an undersized team stands a very good chance against a full one, and it would be an unfair boost for the smaller team.
- To alleviate the team performance formula problem, we simply select a different function.
- We can very easily use any affine function, e.g., average (but it would be unfair for smaller teams now).

Variable team size

- Moreover, there is a simple way to approximate nonlinear functions: replace player performances with their estimates provided by the prior ratings µ_i.
- For instance, to approximate a team performance function

$$t=p_1^2+p_2^2+\ldots+p_n^2$$

we replace it with

$$t = \mu_1 p_1 + \mu_2 p_2 + \ldots + \mu_n p_n$$

(here p_i are model variables, and μ_i are constants fixed before inference and equal to prior ratings).

Variable team size

- I don't know a universally good team performance function, I can only encourage you to try different ones.
- In the end, for our dataset the function that worked best was (assuming m_{i,j}'s are sorted)

$$t_{i} = \begin{cases} \frac{\sum\limits_{j=1}^{n_{i}} p_{i,j}}{n_{i}} \cdot (0.88 + 0.02n_{i}), & \text{if } n_{i} \leq 6, \\ \sum\limits_{j=1}^{n_{i}} p_{i,j} \cdot \frac{\sum\limits_{j=1}^{6} \mu_{i,j}}{6\sum\limits_{j=1}^{n_{i}} \mu_{i,j}}, & \text{if } n_{i} > 6. \end{cases}$$

where n_i is number of players in team *i*.

• Obviously, it wouldn't work for other applications.

Multiway ties

- Large multiway ties are deadly for TrueSkillTM. Consider four teams in a tournament with performances p_1, \ldots, p_4 .
- Team 1 has won, while teams 2–4, listed in this order, drew behind the first.
- Then the factor graph tells us that

$$t_2 < t_1 - \varepsilon, \quad |t_2 - t_3| \leq \varepsilon, \quad |t_3 - t_4| \leq \varepsilon.$$

• Team 3's performance t₃ may actually nearly equal t₁, and t₄ may exceed t₁!

• Moreover, these boundary cases are realized in practice when unexpected results occur.

$$t_2 < t_1 - \varepsilon, \quad |t_2 - t_3| \leq \varepsilon, \quad |t_3 - t_4| \leq \varepsilon.$$

- Suppose the winning team t_1 was an underdog, and its prior distribution fell behind the priors of t_2 , t_3 , and t_4 , t_4 being the prior leader of all four.
- Then the maximum likelihood value of t_4 is likely to exceed t_1 .

・ロット 全部 マート・ キャー

Changes in the factor graph

- For the multiway tie problem, we add another layer in the factor graph, namely the layer of *place performances l_i*.
- Each team performs in the ϵ -neighborhood of its place performance, and place performances relate to each other with strict inequalities like $l_2 < l_1 2\epsilon$.
- Then it's inference as usual. We have not experienced any slowdown in convergence.

Undersized teams Multiway ties and the new factor graph

New factor graph

Sergey Nikolenko, Alexander Sirotkin A New Bayesian Rating System for Team Competitions

Undersized teams Multiway ties and the new factor graph

Experimental results

Thank you!

Thank you for your attention!

Sergey Nikolenko, Alexander Sirotkin A New Bayesian Rating System for Team Competitions