
Invariant-based Cryptosystems and Their
Security Against Provable Worst-Case Break?

Dima Grigoriev1, Arist Kojevnikov2, Sergey Nikolenko2

1 IRMAR, Université de Rennes
Beaulieu, 35042, Rennes, France

http://perso.univ-rennes1.fr/dmitry.grigoryev/
2 St.Petersburg Department of V. A. Steklov Institute of Mathematics

27 Fontanka, 191023 St.Petersburg, Russia
http://logic.pdmi.ras.ru/∼arist/
http://logic.pdmi.ras.ru/∼sergey/

Abstract. Cryptography based on noncommutative algebra still suffers
from lack of schemes and lack of interest. In this work, we show new
constructions of cryptosystems based on group invariants and suggest
methods to make such cryptosystems secure in practice.
Cryptographers still cannot prove security in its cryptographic sense or
even reduce it to some statement about regular complexity classes. In
this paper we introduce a new notion of cryptographic security, a provable
break, and prove that cryptosystems based on matrix group invariants,
a variation of the Anshel-Anshel-Goldfeld key agreement protocol, and
a non-commutative generalization of the Diffie-Hellman protocol for ma-
trix groups are secure against provable worst-case break unless NP = RP.

1 Introduction

Suppose that, as usual, Alice and Bob are engaged in a cryptographic protocol,
and Charlie tries to eavesdrop, decoding the messages that Bob sends to Alice.
But now Charlie does not really trust the results he receives (or, perhaps, he has
a boss who does not trust Charlie’s algorithm of breaking the protocol), so he
wants to be able to prove that his decoded message is actually what Bob had in
mind. This is (informally) what we call a provable break.

In this setting, it is not sufficient for Charlie just to recover the encrypted
message m from a ciphertext c, he should also justify that it is possible to
encode m into c. Namely, in the provable break security model an adversary
given a codeword E(m) should not only produce the message m, but also present
suitable random bits of E that might lead to such a cipher.

There may be several sets of random bits {r1, . . . , rk} that produce the same
cipher: E(m, pk, r1) = . . . = E(m, pk, rk). In this case, of course, an adversary

? The research was done during the stay at the Max-Planck-Institut für Mathematik,
Bonn, Germany. Supported in part by INTAS (YSF fellowship 05-109-5565) and
RFBR (grants 05-01-00932, 06-01-00502).

only needs to present some random string that results in the cipher, not neces-
sarily the one Bob actually used (when k > 1, Charlie has absolutely no chance
to find it anyway).

Informal discussion of provable break began in connection with the Rabin–
Goldwasser–Micali cryptosystem based on quadratic residues [1]. It was shown
that provable break of this cryptosystem implies that factoring is contained in
RP. However, we know of no reference where a formal definition was presented.

One of the most fundamental questions in theoretical cryptography is to con-
struct a secure encryption scheme based on some natural complexity assumption
like P6=NP. It is likely to be impossible (see [2] for recent results). Moreover, it
is unknown if hard on average problems imply one-way functions [3]. Partial re-
sults were obtained under the assumption of a very strong adversary, worst-case
adversary, who breaks the code in all cases [4, 5].

In this paper, we present two slightly different definitions of provable break
(one weaker than the other) and prove that three different cryptographic proto-
cols, namely the Anshel-Anshel-Goldfeld key agreement protocol, the generalized
non-commutative Diffie-Hellman key agreement protocol for matrix groups, and
cryptosystems based on group invariants are all secure against provable worst-
case break provided NP6⊆RP. For the latter cryptosystem, we develop new ways
to provide for their security in the usual cryptographic sense.

2 Definitions

First we define provable break of public key cryptosystems and then extend it
to key agreement protocols. We present two separate definitions, one of them
worst-case. The following definition is taken from [1].

Definition 1. A public-key encryption scheme S consists of three probabilistic
worst-case polynomial-time algorithms (G,E, D) for key generation, encryption
and decryption respectively.

The key generation algorithm G on input 1n (the security parameter) pro-
duces a pair G(1n) = (e, d) of public and secret keys. The encryption algorithm E
takes as input a public key e and a plaintext message m and produces a ciphertext

E(e,m) = c.

Finally, the decryption algorithm D takes as input a secret key d and a ciphertext
c. The output of D is a message

D(d, c) = m′,

which may fail to equal the original message m when E(e, m) = E(e,m′). These
situations are called collisions; we assume that collisions happen with negligible
probability.

Remark 1. In what follows we (equivalently) redefine the encryption algorithm
E to be a deterministic worst-case polynomial-time algorithm with access to a
random string r. It takes as input a public key e, a plaintext message m, and a
random string r and produces ciphertext E(r, e, m) = c.

Definition 2. An adversary C performs provable break of a cryptosystem
(G,E, D) if for a uniform distribution over messages m and random bits of
all participating algorithms (the public key pk is taken from the pair (pk, sk)
generated by the key generation algorithm G(1n))

Pr [C(E(m, pk, r), pk) = (m, r′)] ≥ 1
poly(n)

,

where E(m, pk, r′) = E(m, pk, r), and n is the security parameter.

If E is deterministic then provable break is equivalent to usual break. How-
ever, such cryptosystems are usually easy to break, because they allow an adver-
sary to check that he has the right answer by re-encrypting the message. This is
precisely the idea of provable break. An adversary should not only decipher the
message, but also check that the cipher is actually a valid one; while the former
may be trivial (as it will be in some of our examples), the latter may be very
hard.

We also introduce the notion of a very strong adversary, that performs a
worst-case break. The difference with the usual break is that the adversary should
be successful on all inputs.

Definition 3. An adversary C performs provable worst-case break of a cryp-
tosystem (G,E,D) if for all messages m

Pr [C(E(m, pk, r), pk) = (m, r′)] ≥ 1
poly(n)

,

where E(m, pk, r′) = E(m, pk, r), n is the security parameter, and the distribu-
tion is taken over random bits of all participating algorithms (public key pk is
taken from the pair (pk, sk) generated by the key generation algorithm G(1n)).

We say that a cryptosystem (G,E, D) is secure against provable (worst-case)
break is there is no polynomial probabilistic Turing machine C performing prov-
able (worst-case) break of (G,E, D).

Remark 2. It is easy to think of a trivial cryptosystem which is secure against
provable break. Let Bob transfer the message openly (decryption is thus trivial),
but add a value of some one-way function to the end of the message. Alice can
disregard this one-way function, but Charlie would have to invert this one-way
function in order to get a valid set of Bob’s random bits. Therefore, our task is
not to simply devise cryptosystems that are secure against provable break, but
to devise them in such a way that they are or at least may be made secure in
the usual cryptographic sense. Of course, we cannot prove their security (no-
body currently can prove security of any cryptosystem at all), but we provide
constructions that we believe to produce reasonably secure cryptosystems.

3 Invariant-based cryptosystems and their provable break

3.1 Cryptosystems based on group invariants

In [11], D. Grigoriev suggested a new class of public-key cryptosystems based
on group invariants. In an invariant-based cryptosystem, Alice chooses a group
G ≤ GL(n, F) acting on some vector space Fn. As a secret key, Alice chooses an
invariant f : Fn → X such that ∀g ∈ G f(gx) = f(x). She also selects a set (or a
space given by generators) of messages M ⊆ Fn such that for all m1 6= m2 ∈ M
f(m1) 6= f(m2). Thus, an invariant-based cryptosystem is defined by a triple
(G, f, M). As the public key Alice transmits generators of G and M .

Bob selects a vector m ∈ M (m is Bob’s message) and a random element g ∈
G. After that, Bob communicates to Alice gm. Alice can decipher the message
by taking the invariant f(gm) = f(m).

It is now clear that the primary concern of the security of invariant-based
cryptosystems is to find a well-concealed invariant. In what follows we give sev-
eral ways to do so. These ways are similar to the ones employed in [9] and may
be summarized with the following construction. Consider a tree such that each
node of the tree contains a triple (G, f, M). Alice builds this tree from the leaves
to the root, at each step keeping track of G, f , and M . After the tree is created,
Alice takes the cryptosystem from the root and uses it.

An adversary will thus be able to break the cryptosystem if he knows the
structure of the tree. This structure is equivalent to the description of the invari-
ant from the security point of view, and may also be considered as Alice’s secret
key. The security of this cryptosystem will rely on the difficulty of the conjugacy
and membership problems, as in [9].

3.2 An invariant-based cryptosystem secure against provable break
unless NP⊆RP

The construction is based on the modular group. The modular group is the
multiplicative group SL2(Z) of 2 × 2-matrices of determinant 1 (unimodular
matrices).

In [7, Corollary 11.5] Blass and Gurevich proved that the following bounded
membership problem (BM) for the modular group is NP-complete.

Problem 1. Let X be an unimodular matrix, S be a finite set of unimodular
matrices and N be a positive integer. Can X be represented as

∏m
i=1 Yi, where

m ≤ N and for each i either Yi or Y −1
i is in S?

Remark 3. Do not confuse this problem with other problems that in [7] are
proven to be RNP-complete. The primary difference is that in this case we
are dealing with group membership, while RNP-complete problems arise from
checking membership in semigroups.

Let us take G to be the unimodular group (1 ∗
0 1). As the invariant we take

f (x1
x2) = x2 and as the message space — the space of vectors (1

∗). Bob takes a

random element g in the given group (obtained by multiplying not more than,
say, N generators), transports the message vector m into gm and transmits gm
and N . Alice computes f(gm) and decides which m it was.

Note that this “cryptosystem” is trivial to break: encryption does not change
the part of the vector that actually carries the message. However, we will
presently see that its provable break is NP-hard.

Theorem 1. If there is a polynomial adversary C performing provable worst-
case break of the invariant-based cryptosystem described above then NP ⊆ RP.

Proof. In short, the provable break is NP-hard because the Integer Sum problem
is easily reduced to deciding bounded membership in a subgroup of the modular
group, as shown in [7].

First, note that (
1 λ
0 1

) (
1 µ
0 1

)
=

(
1 λ + µ
0 1

)
.

Thus, the problem of deciding bounded membership in a subgroup of the mod-
ular group is equivalent to the problem of deciding whether a given number is
expressible as a bounded sum of other given numbers. This is the Integer Sum
problem, shown to be NP-complete in [7].

If a polynomial-time algorithm solves a search problem with success prob-
ability 1

nConst , this probability can be easily amplified to 3/4 by repeating the
algorithm for a polynomial number of times and taking the majority vote as
an answer. Therefore, if a polynomially bounded adversary provably worst-case
breaks the cryptosystem presented, NP ⊆ RP.

In Sections 4 and 5 we present constructions aimed at making invariant-based
cryptosystems more reasonable from the security viewpoint.

4 The tree of groups

The invariant-based protocol described in the previous section shares a discour-
aging property with the cryptosystem presented in a remark in Section 2. It is
easy to break in the common cryptographic sense. In this section we provide
a construction that allows us to “hide” these primitives inside a large tree of
groups. We can also use it to improve security of the Anshel-Anshel-Goldfeld
and generalization of the Diffie-Hellman key agreement protocols.

We basically follow the lines of [9] (where one can find more details) to pro-
duce a tree of group–invariant–messages triples such that knowing the structure
of the tree one can efficiently calculate the invariant in its root, while without
knowing the structure the invariant is “concealed” in the tree.

In what follows, we concentrate on the invariant-based cryptosystems (intro-
duced in Section 3) since [9] can be directly applied to key agreement protocols
described in Section 7. However, we have to develop several new techniques to
handle invariant-based cryptosystems. We will consider the same operations as

in [9] and look at what happens with the invariants. But first we should introduce
the basic notions.

To each vertex v of the tree a triple (Gv, fv,Mv) is attached and triples are
produced by recursion on the vertices of the tree starting with leaves towards
the root to each vertex one of the following operations is assigned which allow
the recursive step. For every vertex v the group Gv is a matrix group for some
n and some underlying ring R.

To a tree we attach a resulting triple (G, f, M), where G ≤ GL(n,R) is a
group, f is an invariant, that is, a function f : Rn → R such that ∀g ∈ G
∀x ∈ Rn f(gx) = f(x), and M ⊂ Fn is a canonical set of messages with the
property that ∀m 6= m′ ∈ M f(m) 6= f(m′).

The public key will consist of R, n, G (given by generators), and M . The
point of building such a tree is to conceal the secret invariant. Note that in
situations where we change the invariant we can either change the invariant
from f to f ◦ h or change the message space from M to h(M). Since we care
about concealing the invariant, and the message space will be given publicly, we
will always choose the first alternative.

We want to combine this regular security with provable worst-case security
of the modular group that we have proven in Theorem 1. To do this, we place a
provably secure construction based on the modular group in one of the leaves of
the tree. Then, for Charlie to solve the membership problem in the root of the
tree, Charlie would have to solve the membership problem for all leaves of the
tree (our construction has this property).

Let us now list the “building blocks” of the tree according to [12] and see
what happens with the invariants in these cases.

1. Changing the underlying ring φ : R → R′. If the ring becomes smaller (R′

embeds in R with ϕ : R′ → R, and φϕ = id), an invariant f transforms
into an invariant φ(f) that acts like φ(f)(x′) = f(ϕ(x′)). If ∀x ∈ Rn, g ∈ G
f(x) = f(gx) then

∀x′ ∈ R′n, g ∈ G φ(f)(gx′) = f(gϕ(x′)) = f(ϕ(x′)) = φ(f)f(x′)

If the ring becomes larger, bad things may happen (since there are new ele-
ments in the ring now, old equalities may not hold anymore). This property
allows us to reason that any invariant known from invariant theory over fields
will carry on to the rings that are subsets of these fields; e.g. any invariant
over C will be an invariant over Z.
However, this action requires care about the message space. If there were
different representatives m,m′ ∈ M such that φ(m) = φ(m′) then the cor-
responding messages will be considered identical in the resulting message
space φ(M). Therefore, it is sensible to reduce the underlying ring only if
φ(M) is nontrivial.

2. Conjugation g 7→ h−1gh. The invariant f(x) becomes the invariant f ′(x) =
f(hx). If ∀g ∈ G∀x ∈ Rn f(gx) = f(x) then

∀g ∈ G∀x ∈ Rn f ′(h−1ghx) = f(hh−1ghx) = f(g(hx)) = f(hx) = f ′(x).

The message space M does not change.
3. Direct product G1, G2 7→ G1 × G2. We here consider the natural represen-

tation of the direct product; if G1 ≤ GL(n1, F) and G2 ≤ GL(n2, F) then
G1×G2 ≤ GL(n1 +n2, F), acting componentwise. In this situation, if f1(x),
f2(x) were invariants of G1, G2, any element f ∈ 〈f1(x), f2(y)〉 ≤ R[x, y]
will be an invariant of G1×G2. We can choose a random element of this set,
and the message space will in any case become M1 ×M2 (if we do not need
that many different messages, we can choose several at random and discard
the others).

4. Wreath product G oH, where G ≤ GL(n,R), H ≤ Sm. In this case, we take
the natural representation of G oH on Rmn acting as

(g1, . . . , gm, π)

x1

. . .
xm

 =

g1xπ(1)

. . .
gmxπ(m)

 .

In this case, for any invariant f , if ∀g ∈ G, x ∈ Rn f(gx) = f(x) the same
will hold for G o H if we take fm to act componentwise. The permutation
disturbs nothing in the invariant equality. The message space will grow cor-
respondingly to Mm (again, we may choose several messages at random or
choose the diagonal ∆ = {(x, . . . , x) | x ∈ M} if we do not need that many
messages).

Apart from the old ways to extend the tree, invariant theory suggests new
ways. The following will only work if f is a polynomial.

1. Hessians H(f). If f is a polynomial invariant of G, and ∀g ∈ G ≤ GL(n, F)
det g = ±1 (note that F is a field) then

H(f) = det
(

∂2f

∂zi∂zj

)

is also an invariant. The group G and the message space M remain un-
changed.

2. Jacobian J . If f1, . . . , fn are polynomial invariants of G ≤ SL(n, F) (note
that F is a field) then

J(f1, . . . , fn) = det
(

∂fi

∂zj

)

is also an invariant. In this way we can unite n identical groups with different
invariants into one; this will probably be useful only on the first level of the
tree, where we can choose arbitrarily many identical groups.

5 The leaves of the tree

The previous section explains how to build a new invariant out of existing ones
(thus, the recursive step). The question that remains is to find the base of this
recursion. What should we put in the leaves of this tree?

5.1 General remarks

The first remark we should make is that in computer science, we cannot truly
work over C or R. Anything we do is actually over Q. Invariant theory over Q
is a little different from the classic well-known invariant theory over C. Fortu-
nately, we don’t have to throw away the theory: if f is an invariant of a group
G ≤ GL(n,C) represented by matrices with rational coefficients, then it is still
an invariant of the group G ≤ GL(n,Q) because elements of G have rational
coefficients. Therefore, in what follows we will refer to invariants over C but they
will always be the same for Q.

We may also look at invariants over finite fields, usually called modular in-
variants, but they provide a completely different story with completely different
theory.

5.2 Orbit Chern classes

As an example of a standard well-known construction from invariant theory
(see, e.g., [13]) we remind the so-called orbit Chern classes. They provide most
known invariants of finite groups. The idea is simple: take an orbit aG of an
element a ∈ Fn (suppose for the moment that G acts over a field) and note that∏

b∈aG(x + b), where x is a formal variable, is invariant under G (elements of
G only permute the factors in this expression). Its coefficients are called orbit
Chern classes. For example,

∑
b∈aG b is an invariant.

All orbit Chern classes are nothing more than symmetric functions in the
elements of the orbit; if we take a to be an unknown, we obtain the invariants
we are looking for. The similar for compact groups.

5.3 Examples of finite groups’ invariants

In this subsection we give several examples of invariants of different finite groups.
The examples may be easily multiplied.

Example 1. The symmetric group Sn has a monomial representation on Fn

Sn → GL(n, F) that permutes the variables. The ring of invariants in this case
is generated by all symmetric polynomials, from x1 + . . . + xn to x1 . . . xn. This
is a simple example of orbit Chern classes.

Example 2. A cyclic group Zn may be represented by any matrix g ∈ GL(m,F)
such that gn = e (a unipotent matrix of a matching order). For a function f
to be an invariant of a cyclic group’s representation, it suffices to ensure that it
remains unchanged under the action of the only generator: f(x) = f(gx).

For example, a cyclic group Zn is naturally represented by a subgroup gen-
erated by ξne, where ξn is a primitive n-th root of unity and e is the identity
matrix. Obviously, any homogeneous polynomial of degree n is an invariant of

this group. We can go one step further and consider the representation of a cyclic
group Zn generated by a matrix

ξ1 . . . 0
...

...
0 . . . ξm

 ,

where ξi are (possibly different) primitive roots of unity, ξn
i = 1. The invariant

ring of this group will be C[xn
1 , . . . , xn

m].
Note that invariants depend not only on groups themselves, but also on their

representations; the same group with different representations has very different
invariants.

Example 3. A dihedral group D2k has a representation D2k → GL(2,R) as the
symmetry group of a regular polygon. In this representation D2k is generated
by two matrices:

D2k =
〈(

cos 2π
k − sin 2π

k
sin 2π

k cos 2π
k

)
,

(
1 0
0 −1

)〉
.

Then the invariant ring of the dihedral group in this representation is gener-
ated by polynomials

q = x2 + y2, h =
k−1∏

i=0

((
cos

2πi

k

)
x +

(
sin

2πi

k

)
y

)
.

Example 4. For an odd prime p the dihedral group D2p has a representation
D2p → GL(2,Fp) over the finite field Fp given by the matrices

D2k =
〈(

1 1
0 1

)
,

(−1 0
0 1

)〉
.

In this case the invariant ring is isomorphic to Fp[y, (xyp−1 − xp)2]. However,
if we switch to the dual representation (by simply transposing the matrices),
the invariants will change substantially; the ring will now be isomorphic to
Fp[x2, y(yp−1 − xp−1)]. In this example it was important that the group was
represented over a finite field of degree not coprime with the group’s degree.

These two examples show how much invariants depend on the actual repre-
sentation. Some other examples of invariants of finite and classical groups one
can find in [11].

5.4 Invariants of classical groups

In this subsection, we will give some examples of well-known invariants of clas-
sical groups. They may also lie in the leaves of the tree of groups.

Example 5. The orthogonal group in an even dimension SO(2l, F) has the well-
known Dickson invariant : if charF 6= 2, which we will assume to be the case, it
is (−1)det g for a g ∈ SO(2l, F). This invariant works for any field with charac-
teristic not equal to two. Note that this invariant only has two values, so it is
good for encrypting only one bit.

Example 6. The symplectic group Sp(2n, F) by definition preserves a nondegen-
erate skew-symmetric bilinear form. The value of this form is an invariant (and,
unlike the previous example, a polynomial invariant).

6 Attacks on invariant-based cryptosystems

When a new cryptosystem (or a family of cryptosystems) is presented, it is
common to analyze the attacks on such cryptosystems. In this section we analyze
several attacks on invariant-based cryptosystems and give practical advises on
how to avoid their success.

6.1 Linear algebra attacks

The most dreaded attacks on algebraic cryptosystems usually go by linear alge-
bra: an adversary constructs a system of linear equations and finds the secret key
(the most notable example of this approach breaks the Polly Cracker scheme [14]
that was only recently augmented with special techniques to make linear algebra
attacks less efficient [15]).

Suppose that the invariant f is a polynomial of degree d. In this case, an
adversary can view it as a polynomial with

(
n+d+1

d

)
indefinite coefficients. To

find the coefficients, he considers the equations f(gimj) = f(mj) for all elements
of the message space mj ∈ M and all generators gi ∈ G. The space of solutions
will yield an invariant separating the orbits of M (along with trivial invariants
like f = const, of course). If d is a constant this attack will actually succeed, so
Alice should choose invariants in such a way that

(
n+d+1

d

)
is superpolynomial.

Example 7. Suppose that we are trying to build an invariant-based cryptosystem
based on the monomial representation of the symmetric group Sn generated by
transpositions τij and its first degree invariant

f(x1, . . . , xn) = x1 + . . . + xn.

For the message space we should choose a number of vectors such that the sums
of their coordinates are different; we denote them by mi = (mi1, . . . , min). An
adversary performing this kind of attack will simply consider a polynomial

h = λ1x1 + . . . + λnxn

and solve a system of equations to ensure that transpositions do not change
h. The equation corresponding to τij is h(τijx) = h(x) which is equivalent to

λi = λj . So, the adversary will arrive to the correct invariant (or a constant factor
of it) after performing a polynomial algorithm. Note that in order to overcome
this algorithm one should choose the message space in such a way that it contains
messages with identical sums of elements. The adversary does not need to find
the same invariant, he only needs to find an invariant that separates the vectors
of M .

6.2 Monte-Carlo attack and orbit sizes

Another concern comes from the sizes of the orbits of elements of M . Indeed,
suppose that an element m ∈ M has an orbit mG of polynomial size. In this
case, an adversary has a polynomial chance of hitting the correct cipher E(m)
by simply picking an element g ∈ G at random and comparing E(m) and gm.
Thus, the elements of the message space should be chosen with care to ensure
that their orbits are large.

Example 8. For a trivial yet representative example consider a message space
consisting of a zero vector and some other vector (the following analysis will do
for any subgroup of GL(n, F) and any invariant). The size of the zero vector
orbit is 1, so an adversary does not have to do anything: if he sees a zero vector,
the message was zero, if he sees a nonzero vector — it was the other vector that
got “encrypted”.

6.3 Tree reconstruction attack

Finally, an adversary may attempt to reconstruct the tree with which the invari-
ant was built. Along this way he will encounter, for example, of finding a matrix
a such that a−1Ga = H for given G and H. This is a well-known hard problem;
for example, in [10] it is shown that Graph Isomorphism reduces to the problem
of group conjugation. This kind of attacks was considered in detail in [12]; the
same reasoning applies in this case, since the task of reconstructing the tree has
not become any easier. In fact, it has become harder, as the tree nodes are now
augmented with invariants that may change nontrivially when going up the tree;
consequently, to reconstruct a tree an adversary needs not only to reconstruct
the groups but also to reconstruct invariants.

7 Key agreement protocols secure against provable break

7.1 Anshel-Anshel-Goldfeld key agreement protocols

First we recall the definition of the Anshel-Anshel-Goldfeld key agreement pro-
tocol [6]. Let G be a group, and let two players A and B choose two subgroups
of G

GA =< a1, . . . , am >, GB =< b1, . . . , bn > .

Remark 4. Note that everything shown below goes without change if GA and
GB are semigroups, not regular groups. All commutators are taken in the larger
group G.

The group G and elements ai, 1 ≤ i ≤ m, and bj , 1 ≤ i ≤ n, are made public.
Both players A and B randomly choose secret elements a ∈ GA and b ∈ GB as
products of not more than N generators and transmit to each other the following
sequences:

XA = {a−1bja}n
j=1, XB = {b−1aib}m

i=1 .

After this transmission, player A (resp. B) has a representation of the element a
(resp. b) in the subgroup GA (resp. GB). Therefore, he can compute a representa-
tion of the element b−1ab (resp. a−1ba) using elements of the sequence XA (resp.
XB). Thus, both players have shared a common key, namely the commutator

a−1(b−1ab) = [a, b] = (a−1ba)−1b .

An obvious necessary condition for this protocol to be secure is that the set of
all commutators with a ∈ GA and b ∈ GB should contain at least two elements.

To provably break the Anshel-Anshel-Goldfeld key agreement protocol, one
has to find representations of certain elements a

′
in GA and b

′
in GB , where

XA = {a′−1bja
′}n

j=1, XB = {b′−1aib
′}m

i=1 .

Theorem 2. The Anshel-Anshel-Goldfeld key agreement protocol for a modular
group G and its subgroups GA and GB is secure against provable worst-case
break unless NP ⊆ RP. The same statement holds if GA and GB are considered
as subsemigroups of G, not semigroups.

Proof. Assume that there is a probabilistic polynomial-time Turing machine M
such that for infinitely many security parameters N , and input I = {a1, . . . , am,
b1, . . . , bn, a−1b1a, . . . , a−1bma, b−1a1b, . . . , b

−1anb} it is true that

Pr[M(I) = a
′
1, s1, . . . , a

′
f , sf , b

′
1, t1, . . . , b

′
g, tg] ≥ 1/p(N),

where GA =< a1, . . . , am > and GB =< b1, . . . , bn > are subgroups of the
modular group, a ∈ GA, b ∈ GB , a

′
=

∏f
i=1 a

′si
i , b

′
=

∏g
j=1 b

′tj

j , a
′
i ∈ {ai}m

i=1,
b
′
j ∈ {bj}n

j=1, a
′−1bja

′
= a−1bja, for all 1 ≤ j ≤ n, b

′−1aib
′

= b−1aib, for all
1 ≤ i ≤ m, si and tj are in {−1, 1} for all 1 ≤ i ≤ f and 1 ≤ j ≤ g, f, g ≤ N
and p is some polynomial. Note that we can check the correctness of the answer
of M , so we also assume that M produces only correct answers.

Using M , we can a construct probabilistic polynomial-time Turing machine
M ′ that contains p(N)/2 copies of M such that on input (X, {Yi}i, N) it does
the following.

1. If X =
∏m

i=1 Y
′si
i , where Y ′ ∈ {Yi}i, m ≤ N , si ∈ {−1, 1} (if we con-

sider GA and GB as semigroups, here we take positive degrees only), then
Pr[M ′ accepts] ≥ 1/2.

2. Otherwise, Pr[M ′ accepts] = 0.

For inputs of all copies of M we take a = b = X, ai = bi = Yi, and compute
all a−1b1a, . . . , a−1bma, b−1a1b, . . . , b

−1anb in polynomial time. By [7, Corollary
11.5] the BM problem is NP-complete, hence, NP ⊆ RP. ut
Remark 5. If GA and GB are semigroups, the provable (not worst-case!) break
is hard, moreover, on average [8].

7.2 Non-commutative extension of the Diffie-Hellman key
agreement protocols

Another construction secure against provable break arises from a non-
commutative generalization of the Diffie-Hellman protocol introduced in [9].

Let G be a solvable group with bounded length c of the derived series acting
on a set X, such that for any x ∈ X and g ∈ G the image g(x) can be efficiently
computed. Two players A and B publish two words of free group F2 with two
free generators uA, uB :

WA(uA, uB) = u
b1,1
B · · ·ua1,m1

A , WB(uA, uB) = u
a2,1
A · · ·ub2,m2

B .

The words WA = WA,c and WB = WB,c for a constant c ∈ N are generated
by induction.

1. WA,1(uA, uB) = u−1
B uA, WB,1(uA, uB) = uAu−1

B .
2. At step i = 2, . . . , c we define new words as follows:

WA,i = WA,i−1([u−1
B , uA], [u−1

A , uB]), WB,i = WB,i−1([u−1
B , uA], [u−1

A , uB]) .

It is easy to see that WA,c(gA, gB) = WB,c(gA, gB) for all gA, gB ∈ G.
The protocol starts with the choice of a publicly known element x0 ∈ X and

secret elements gA ∈ G (resp. gB ∈ G) by the player A (resp. player B). During
the communication the player A does the following.

1. At step 0 A receives from B the image KA := g
b1,1
B (x0).

2. At steps i = 1, . . . ,m1−1 A sends to player B the image g
a1,i

A (KA), receives
from B the image g

b1,i+1
B (ga1,i

A (KA)), and continues with the new

KA := g
b1,i+1
B (ga1,i

A (KA)).

3. Finally, at step i = m1, A computes his secret word

KA := g
a1,m1
A (KA).

Note that a1,m1 should not equal 0; otherwise, the protocol is trivial to break.
The player B similarly computes his own secret word KB . Note that by the

second condition

KA = WA(gA, gB)(x0) = WB(gA, gB)(x0) = KB .

To perform provable break of the non-commutative generalization of the
Diffie-Hellman key agreement protocol, Charlie should find representations of
elements g

′
A ∈ G and g

′
B ∈ G, where

wA,0 = g
b1,1
B (x0) = g

′b1,1
B (x0), wB,0 = g

a2,1
A (x0) = g

′a2,1
A (x0)

and

g
a1,i

A (wA,i) = g
′a1,i

A (wA,i), wA,i+1 = g
a1,i

A g
b1,i+1
B (wA,i) = g

′a1,i

A g
′b1,i+1
B (wA,i),

g
b2,i

B (wB,i) = g
′b2,i

B (wB,i), wB,i+1 = g
b2,i

B g
a2,i+1
A (wB,i) = g

′b2,i

B g
′a2,i+1
A (wB,i).

Remark 6. Note that the set X should be of superpolynomial size, otherwise the
key agreement protocol can be broken in polynomial time by techniques of per-
mutation group theory [10]. Also the words WA and WB should be chosen in such
a way that there are at least two different elements WA(gA, gB) = WB(gA, gB)
with gA, gB ∈ G.

For B, C ∈ SL2(Z) we define a linear transformation T over SL2(Z),
T : X → C−1XB. In [7, Corollary 10.6] it was proven that if group G is de-
fined by m linear transformations over SL2(Z), then for a given X ∈ SL2(Z)
the problem to decide whether X = T (1) for some composition T of up to n
transformations from G is NP-complete on average. Thus, we have arrived at
the following theorem, also implied by [7].

Theorem 3. For given X, Y ∈ SL2(Z) and a group G generated by m linear
transformations over SL2(Z), the problem to decide whether T (Y) = X, where
T ∈ G, is NP-complete.

Now we are ready to prove the following.

Theorem 4. The non-commutative generalization of the Diffie-Hellman key
agreement protocol for linear transformations of modular groups is secure against
provable worst-case break unless NP ⊆ RP.

Proof. The proof is very similar to the proof of the previous theorem.
Assume that there is a probabilistic polynomial-time Turing machine M such

that for infinitely many security parameters N and input

I = {g1, . . . , gm, x0, wA,0 = g
b1,1
B (x0), wB,0 = g

a2,1
A (x0),

wA,i+ 1
2

= g
a1,i

A (wA,i), wA,i+1 = g
b1,i+1
B (wA,i+ 1

2
),

wB,i+ 1
2

= g
b2,i

B (wB,i), wB,i+1 = g
a2,i+1
A (wB,i+ 1

2
)}

it is true that

Pr[M(I) = a
′
1, s1, . . . , a

′
f , sf , b

′
1, t1, . . . , b

′
g, tg] ≥ 1/p(N),

where x0 ∈ X, G =< g1, . . . , gm > is a solvable group with bounded length
c of the derived series acting on a set X, gA ∈ G, gB ∈ G, g

′
A =

∏f
i=1 a

′si
i ,

g
′
B =

∏g
j=1 b

′tj

j , a
′
i, b

′
j ∈ {gi}m

i=1, wA,0 = g
′b1,1
B (x0), wB,0 = g

′a2,1
A (x0),

wA,i+ 1
2

= g
′a1,i

A (wA,i), wA,i+1 = g
′b1,i+1
B (wA,i+ 1

2
), wB,i+ 1

2
= g

′b2,i

B (wB,i),

wB,i+1 = g
′a2,i+1
A (wB,i+ 1

2
), si and tj are in {−1, 1} for all 1 ≤ i ≤ a and

1 ≤ j ≤ b, a, b ≤ N , and p is some polynomial. Note that we can check the
correctness of M ’s answer, so we also assume that M produces only correct
answers.

Using M , we can construct a probabilistic polynomial-time Turing machine
M ′ that contains p(N)/2 copies of M such that on input (X, Y, {Yi}i, N) it does
the following.

1. If ◦m
i=1Y

si
i (X) = Y , where m ≤ N , si ∈ {−1, 1} (again, in the semigroup

setting we would only choose Yi’s themselves), then Pr[M ′ accepts] ≥ 1/2.
2. Otherwise, Pr[M ′ accepts] = 0.

By induction, if g = gA = gB , then the words WA and WB are superpositions
of gg−1 and g−1g, so all of wA,i and wB,j are either X or Y , where Y = g(X).
Moreover we can decide this in polynomial time of sizes of WA and WB .

By Theorem 3, the Turing machine M ′ solves NP-complete problem, hence,
NP ⊆ RP. ut

8 Conclusions and further work

In the paper, we have introduced a new notion of provable break and provable
security in general. While this notion is undoubtedly much weaker than regular
cryptographic security, it appears natural, well-defined, and sensible. Moreover,
this notion of security is the only notion known to us for which provable positive
statements are possible. We have provided three examples of cryptographic pro-
tocols: an invariant-based cryptosystem secure against provable break and two
key agreement protocols secure against provable break. We are sure that one can
produce more examples along the same lines.

Therefore, on one hand, further work lies in the search for more cryptographic
primitives secure against provable break. On the other hand, one also wishes to
look for connections between provable break and other notions of security. It is
easy to think of a trivial cryptosystem for which provable security is equivalent
to regular cryptographic security; however, it may be useful to look for nontrivial
examples of the same. These lines will probably be similar to the research carried
out by Ajtai and Dwork [16] who managed to reduce a worst-case problem to an
average-case one and thus obtained a cryptosystem that is secure under some
worst-case assumptions.

References

1. Goldwasser, S., Bellare, M.: Lecture notes on cryptography. Summer course on
cryptography at MIT (2001)

2. Bogdanov, A., Trevisan, L.: On worst-case to average-case reductions for np prob-
lems. In: FOCS’03. (2003) 308–317

3. Levin, L.A.: The tale of one-way functions. Problems of Information Transmission
39(1) (2003) 92–103

4. Evan, S., Yacobi, Y.: Cryptography and np-completeness. In: ICALP’80. (1980)
195–207

5. Lempel, A.: Cryptography in transition. Computing Surveys 11(4) (1979) 215–220
6. Anshel, I., Anshel, M., Goldfeld, D.: An algebraic method for public-key cryptog-

raphy. Mathematical Research Letters 6 (1999) 287–291
7. Blass, A., Gurevich, Y.: Matrix transformation is complete for the average case.

SIAM J. Comput. 24(1) (1995) 3–29
8. Venkatesan, R., Rajagopalan, S.: Average case intractability of matrix and dio-

phantine problems. In: STOC’92. (1992) 632–642
9. Grigoriev, D., Ponomarenko, I.: Constructions in public-key cryptography over

matrix groups. In Gerritzen, L., Goldfeld, D., Kreuzer, M., Gerhard, R., Shpilrain,
V., eds.: Contemporary Mathematics: Algebraic Methods in Cryptography. Volume
418. AMS, Providence, RI (2007) 103–120

10. Luks, E.M.: Permutation groups and polynomial-time computation. In: DIMACS
Series in Discrete Mathematics and Theoretical Computer Science. Volume 11.,
(DIMACS, 1991), AMS (1993) 139–175

11. Grigoriev, D.: Public-key cryptography and invariant theory. J. Math. Sci. 126(3)
(2005) 1152–1157

12. Grigoriev, D., Ponomarenko, I.: Homomorphic public-key cryptosystems and en-
crypting boolean circuits. Applicable Algebra in Engineering, Communication, and
Computing 17 (2006) 239–255

13. Smith, L.: Polynomial Invariants of Finite Groups. Volume 6 of Research Notes in
Mathematics. A. K. Peters, Wellesley, Massachusets (1996)

14. Fellows, M., Koblitz, N.: Combinatorial cryptosystems galore! finite fields: theory,
applications, and algorithms. Contemp. Math. 168 (1992) 51–61

15. Ly, L.V.: Polly two: A new algebraic polynomial-based public-key scheme. Appli-
cable Algebra in Engineering, Communication, and Computing 17 (2006) 267–283

16. Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case
equivalence. In: The twenty-ninth annual ACM symposium on Theory of comput-
ing. (1997) 284–293

