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ABSTRACT
Automated evaluation of topic quality remains an impor-
tant unsolved problem in topic modeling and represents a
major obstacle for development and evaluation of new topic
models. Previous attempts at the problem have been formu-
lated as variations on the coherence and/or mutual informa-
tion of top words in a topic. In this work, we propose several
new metrics for evaluating topic quality with the help of dis-
tributed word representations; our experiments suggest that
the new metrics are a better match for human judgement,
which is the gold standard in this case, than previously de-
veloped approaches.
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1. INTRODUCTION
Evaluating topic quality has been an important problem

in topic modeling since its very inception. The problem here
is that while it is usually immediately evident for a human
whether a topic is “good” or not, i.e., whether it is easily in-
terpretable and can serve to draw conclusions regarding the
dataset, it is hard to evaluate it automatically. This problem
is especially prominent in real-life applications of topic mod-
eling to social sciences, where the goal is usually to get an
overview of what the dataset is about and which documents
to actually read, which is impossible without interpretable
topics [5, 15]. However, it it still an open and interesting
problem to devise metrics that would give good approxi-
mations to human interpretability; actual human evaluation
remains the gold standard here.

In this work, we propose several candidate metrics based
on distributed word representations. Word representations
have been extensively used in natural language processing;
the idea is to map words into some kind of semantic space
where geometric relations between vectors will supposedly
correspond to semantic relations between the original words.
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In this work, we posit that such embeddings and the se-
mantic information that they capture can be leveraged to
evaluate topic models, with results significantly improving
upon previously known techniques. We perform quantitative
evaluation by comparing the ranking produced by automatic
quality metrics with rankings produced by human experts
asked specifically to evaluate topic interpretability. In other
words, we measure interpretability directly by a consensus
of human experts and try to approximate it by automated
metrics. We show that even very simple metrics that mea-
sure how close top words in a topic are in the semantic space
still significantly outperform previously used metrics.

The paper is organized as follows. In Section 2, we de-
scribe the problem setting in detail and survey related work,
including previously known approaches to topic evaluation
that we compare with. In Section 3, we describe the new
metrics based on distributed representations. Section 4 de-
scribes our experimental setup and presents the results, and
Section 5 concludes the paper.

2. RELATED WORK

2.1 Topic modeling
We begin by surveying (very briefly due to space con-

straints) the topic models whose results we try to evaluate.
Let D be a finite set (collection) of texts and W a finite
set (vocabulary) of all terms from these texts. Probabilis-
tic topic models represent the text collection as a sequence
of triples (di, wi, zi), where di is a document, wi is a word,
and zi is the topic from which wi has been drawn in this
instance; di and wi are observed from the data, while zi
are latent variables. Introducing the word-topic distribu-
tions Φ, φwt = p(w | t), and document-topic distributions Θ,
θtd = p(t | d), we get that p(w | d) =

∑
t∈T p(w | t) p(t | d) =∑

t∈T φwtθtd, and the generative process is similar in all
topic models: for every word instance, we first sample the
topic ti from distribution p(t | d) and then sample the word wi

from distribution p(w | ti).
In the basic probabilistic latent semantic analysis (pLSA)

model [10], Φ and Θ matrices are learned by directly opti-
mizing the log-likelihood of the training dataset L(Φ,Θ) =∑

d∈D

∑
w∈d ndw ln

∑
t∈T φwtθtd. In the recently developed

approach known as additive regularization of topic models
(ARTM) [19], the basic pLSA model is augmented with ad-
ditive regularizers, and Φ and Θ matrices are learned by
maximizing a linear combination of L(Φ,Θ) and r regulariz-
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ers Ri(Φ,Θ), i = 1, . . . , r with regularization coefficients τi:

R(Φ,Θ) =

r∑
i=1

τiRi(Φ,Θ), L(Φ,Θ) +R(Φ,Θ) → max
Φ,Θ

.

This makes it easy to devise new regularizers, adding desired
properties to the topic model [19,20].

The latent Dirichlet allocation (LDA) model [3, 4, 8] in-
troduces prior Dirichlet distributions for the vectors of term
probabilities in topics φt ∼ Dir(β) as well as for the vectors
of topic probabilities in documents θd ∼ Dir(α) with param-
eters β and α respectively. Inference in LDA is usually
done via either variational approximations or Gibbs sam-
pling. Over the last decade, LDA has been subject to many
extensions (too many to survey them here), each of them
presenting either a variational of a Gibbs sampling algorithm
for a model that builds upon LDA to incorporate some ad-
ditional information or additional presumed dependencies.

In each case, the result of learning a topic model can be
represented as the Φ and Θ matrices. In this work, we con-
centrate on evaluating the quality of the Φ word-topic dis-
tributions, usually presented to a user as an ordered list
of top words for every topic, i.e., words with the largest
φwt = p(w | t).

2.2 Distributed word representations for nat-
ural language processing

The modern neural network approaches to natural lan-
guage processing can be roughly divided into two subprob-
lems: constructing and training new models for individual
words (this field is known as word embeddings or distributed
word representations) and developing subsequent layers of
deep architectures to find syntactic and semantic features
while taking into account the context of a word in a sentence
and specific problems that a system attempts to solve.

To train distributed word representations, one first con-
structs a vocabulary with one-hot representations of individ-
ual words (where each word is represented with a vector of
size equal to vocabulary size with a single 1) and then trains
representations for individual words starting from there, ba-
sically as a dimensionality reduction problem. For this pur-
pose, researchers have usually employed a model with one
hidden layer that attempts to predict the next word based
on a window of several preceding words. Then representa-
tions learned at the hidden layer are taken to be the word’s
features; this approach has been applied, for instance in the
Polyglot system developed in 2013 [1] and in other methods
of learning distributed word representations [17]. A recent
study on the performance of various vector space models for
word semantic similarity evaluation [16] demostrates that
compositions of models such as GloVe and Word2Vec as
well as unsupervised one-model approaches show reasonable
results for the Russian language (which we use in evalua-
tions since we have expert evaluations available for Russian-
language topics).

2.3 Topic quality metrics
Next, we survey the topic quality metrics that we build

upon in this work. We begin with coherence, proposed as a
topic quality metric in [7,13]. For a topic t characterized by
its set of top words Wt, coherence is defined as

c(t,Wt) =
∑

w1,w2∈Wt

log
d(w1, w2) + ε

d(w1)
,

where d(wi) is the number of documents that contain wi,
d(wi, wj) is the number of documents where wi and wj cooc-
cur, and ε is a smoothing count usually set to either 1 or
0.01. Coherence and word cooccurrence statistics in gen-
eral have also been used to initialize LDA parameters [18].
However, in a recent work [15] coherence was criticized for a
number of shortcomings, primarily because it was found to
be too heavily reliant on common words that cooccur often
but do not define interpretable topics. To alleviate this, the
work [15] proposed a modification of the coherence metric
called tf-idf coherence defined as

ctfidf(t,Wt) =∑
w1,w2∈Wt

log

∑
d:w1,w2∈d tfidf(w1, d)tfidf(w2, d) + ε∑

d:w1∈d tfidf(w1, d)
,

where the tfidf metric is computed with augmented fre-
quency,

tfidf(w, d) = tf(w, d)× idf(w) =(
1

2
+

f(w, d)

maxw′∈d f(w′, d)

)
log

|D|
|{d ∈ D : w ∈ d}| ,

where f(w, d) is the number of occurrences of term w in
document d. This skews the metric towards topics with
high tfidf scores in top words, since the numerator of the
coherence fraction has quadratic dependence on the tfidf
scores and the denominator only linear.

Another class of topic quality metrics is based on the
notion of pairwise pointwise mutual information (PMI) be-
tween the top words in a topic. Following a recent work [11],
we compute three variations on this idea. For a given or-
dered set of top words Wt = (w1, . . . , wN ) in a topic,

(1) the basic pairwise PMI metric [14] is computed as

PMIt =
∑
i<j

log
p(wi, wj)

p(wi)p(wj)
;

(2) the normalized PMI variation [6] is computed as

NPMIt =
∑
i<j

log
p(wi,wj)

p(wi)p(wj)

− log p(wi, wj)
;

(3) the pairwise log conditional probability (LCP) metric
[13] is computed as

LCPt =
∑
i<j

log
p(wi, wj)

p(wi)
.

3. TOPIC QUALITY METRICS BASED ON
WORD VECTORS

In this section, we propose a number of metrics for eval-
uating topic quality based on distributed word representa-
tions. Suppose that a vector space model has been trained,
and every vocabulary word w ∈ W has been assigned with
a vector vw ∈ Rd. The basic assumption in our metrics is
that a good metric should be well localized in the semantic
space: specifically, top words in a topic should be close to
each other in the semantic space.

Hence, we use the following general scheme for topic qual-
ity metrics: given a set of top words Wt for a topic t with
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weights (word probabilities) φwt, w ∈ Wt, their distributed
representations cw ∈ Rd, and a distance function d : Rd ×
Rd → R, we define topic quality as the average distance
between the top words in the topic:

Qt =
1

|Wt|(|Wt| − 1)

∑
w1 6=w2∈Wt

d(vw1 , vw2).

If d(w1, w2) is a distance function in the space Rd, larger
results correspond to, supposedly, worse topics (with words
not as localized as in topics with smaller average distances).
We have compared four different distance-like metrics:

(1) cosine distance dcos(x, y) = 1 − x>y (no normalization
here since we have used normalized word vectors);

(2) L1-distance dL1(x, y) =
∑d

i=1 |xi − yi|;

(3) L2-distance dL2(x, y) =
∑d

i=1 (xi − yi)2;

(4) coordinate distance dcoord(x, y) =
∑d

i=1 [xi − yi > η],
where [A] = 1 if A holds and 0 otherwise; the intu-
ition here was that different dimensions of the semantic
space may represent different aspects of a word’s seman-
tics and may be incomparable directly, so it may make
sense to simply count in how many coordinates the two
vectors differ significantly; the threshold η was tuned by
hand to give reasonable results.

4. EVALUATION

4.1 Datasets and experimental setup
The core of all proposed metrics are word vector represen-

tations. We used the skip-gram word2vec model of dimen-
sion 500 trained on a large Russian language corpus [2, 16];
the corpus consisted of:

• Russian Wikipedia: 1.15M documents, 238M tokens;

• web crawl data: 890K documents, 568M tokens;

• lib.rus.ec library: 234K documents, 12.9G tokens.

A large collection of general-purpose texts ensured good re-
sulting distributed representations; for an in-depth descrip-
tion of the model we refer to [2, 16].

To evaluate the proposed approach, we have used a dataset
with approximately 1.58 million lemmatized posts from the
top LiveJournal bloggers, all in Russian; the Russian lan-
guage was chosen since we had experts estimates available
for topic interpretability only in Russian. The complete vo-
cabulary amounted to 860K words, but after preprocessing
it was reduced to 90K words; after dictionary reduction and
filtering, there remained about 1.38 million nonempty doc-
uments. We have trained all models with T = 400 topics, a
number chosen by training pLSA models with 100, 300, and
400 topics and evaluating the results.

We have evaluated the quality of six different topic mod-
els; since the human coding results were obtained as part
of a case study for mining ethnic-related content, two mod-
els work specifically with ethnonyms, but in each case the
assessors simply evaluated top words in every topic:

(1) probabilistic latent semantic analysis model (pLSA);

(2) latent Dirichlet allocation model (LDA);

(3) ARTM model with smoothing and sparsity regularizers;

(4) ARTM model with a decorrelation regularizer;

(5) ARTM model with a separate modality for ethnonyms,
small dictionary of ethnonyms;

(6) ARTM model with a separate modality for ethnonyms,
large dictionary of ethnonyms.

Human assessors were asked to interpret the topics based
on 20 most probable words in every topic of each model. For
each topic, assessors answered the following question: “Do
you understand why these words are collected together in
this topic?”. They were also told that the idea was to see
whether the topic was generally understandable and given
three options: (a) absolutely not; (b) partially; (c) yes.

The “correct” (human-generated) ranking of topics was
produced according to the total number of positive answers,
counting (b) as 1 and (c) as 2. For comparison, we have
computed five previously known metrics: coherence, tf-idf
coherence, PMI, NPMI, and LPC1, and four word2vec-based
metrics with four different distances shown in Section 3.

To evaluate how well a metric matches this ranking, we
have computed, for each subject and each metric, the area-
under-curve (AUC) measure [9,12]. AUC is a popular qual-
ity metric for classifiers that produce ranking results; by
definition it represents the probability that for a uniformly
selected pair consisting of a positive and a negative example
the classifier ranks the positive one higher. Thus, the opti-
mal AUC is 1 (all positive examples come before negative
ones), the worst possible AUC is 0, and a random classifier
would get an AUC of 0.5. In our case AUC is the perfect
fit since the actual values of a metric are mostly irrelevant,
and the users are interested in the ranking (to view the best
topics from a dataset).

Results of our experiments are shown in Table 1. We
see that the new word2vec-based metrics outperform, often
significantly, previously known approaches. As expected, tf-
idf coherence is better than regular coherence and NPMI
is better than PMI, but all of them lose to vector space
metrics in most cases. There is little difference between the
new metrics themselves, but we can recommend to use L1

and L2 metrics.

5. CONCLUSION
In this work, we have proposed a number of simple metrics

based on distributed word representations for the purpose
of evaluating topic quality in topic modeling results. We
have shown that the new metrics outperform previously used
topic quality metrics in terms of agreeing with human inter-
pretation. The metrics introduced in this work are rather
straightforward; in further work we expect to significantly
improve upon our results shown here by learning distribu-
tions in the semantic space that are better aligned with ac-
tual topics. For instance, it is perfectly plausible for a topic
to have several clusters of closely matching words that de-
scribe the same issue from different sides; in this case, it
would probably be beneficial to consider a clustering model.
We expect new exciting developments along these lines, al-
though even the basic metrics proposed here already outper-
form existing state of the art topic evaluation approaches.
1To compute PMI, NPMI, and LPC we have used the com-
panion software for [11] available at https://github.com/
jhlau/topic interpretability.
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Model Quality metrics
Coherence Mutual information Word2vec metrics

regular tf-idf PMI NPMI LPC cos L1 L2 coord
1 (pLSA) 0.7720 0.8910 0.8675 0.8707 0.8811 0.8954 0.8957 0.8965 0.8832
2 (LDA) 0.7817 0.8748 0.8469 0.8372 0.8541 0.8786 0.8797 0.8806 0.8692
3 (ARTM smoothing + sparsity) 0.7513 0.8439 0.6637 0.6973 0.7738 0.8543 0.8616 0.8589 0.8597
4 (3 + decorrelation) 0.6783 0.8635 0.7571 0.7821 0.8408 0.8675 0.8718 0.8704 0.8605
5 (4 + ethnic modality, small vocab.) 0.7425 0.8924 0.8791 0.8865 0.8885 0.8889 0.8920 0.8906 0.8848
6 (5 + ethnic modality, large vocab.) 0.7857 0.8767 0.8526 0.8430 0.8672 0.8812 0.8827 0.8815 0.8588

Figure 1: Experimental comparison between LDA topic quality metrics: area under curve (AUC) comparison metrics between
human-generated interpretability evaluation and automatic quality metrics.
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