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Abstract. Although undirected cycles in directed graphs of Bayesian
belief networks have been thoroughly studied, little attention has so far
been given to a systematic analysis of directed (feedback) cycles. In this
paper we propose a way of looking at those cycles; namely, we suggest
that a feedback cycle represents a family of probabilistic distributions
rather than a single distribution (as a regular Bayesian belief network
does). A non-empty family of distributions can be explicitly represented
by an ideal of conjunctions with interval estimates on the probabilities of
its elements. This ideal can serve as a probabilistic model of an experts
uncertain knowledge pattern; such models are studied in the theory of al-
gebraic Bayesian networks. The family of probabilistic distributions may
also be empty; in this case, the probabilistic assignment over cycle nodes
is inconsistent. We propose a simple way of explicating the probabilis-
tic relationships an isolated directed cycle contains, give an algorithm
(based on linear programming) of its consistency checking, and establish
a lower bound of the complexity of this checking.

1 Introduction

Bayesian belief networks (BBN), originating in the works of Judea Pearl
[19,20,21], have employed directed acyclic graphs (DAG) in order to describe
a probabilistic distribution in a way convenient for bayesian inference (we refer
to [13] for an excellent overview of the subject). Since the original works, many
generalizations and similar apparata have been developed, among them being,
for example, dynamic Bayesian networks (see [14] and references therein).

Many efforts went into generalizing the basic structure of the network. Always
the generalizations were related to employing a more general structure to be able
to build more general independency models, that is, to incorporate different
statements of the kind “X is independent of Y given Z”. Finally, chain graphs
as described in [23] seem to solve this problem (although there is still plenty
of room for improvement). They have a complex structure with three different
kinds of edges and allow undirected cycles in the graph.
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Returning to directed acyclic graphs, the current state of the art in the
Bayesian belief networks allows to efficiently deal with undirected cycles, that
is, patterns which would be cycles if the arrow directions were not taken into
account. However, very little (if any) work seems to have been done in the direc-
tion of generalizing Bayesian belief networks to allow directed cycles. The article
[22], despite its highly relevant title, deals with establishing Markov properties
of directed cyclic graphs representing stochastically disturbed linear equations,
and does not deal with semantics of a cycle in a Bayesian belief network. It is
also clearly stated in [13] that there is no BBN-calculus developed to deal with
directed (feedback) cycles in Bayesian belief networks.

However, this generalization seems natural and may occur in practice, since
the structure of a Bayesian network is determined by the experts. In fact, the
need for this generalization has already been encountered in literature: see, for
example, [1]. In that article the authors simply revert an edge of the directed
cycle; however, such an operation, as we shall show here, changes the semantics
of the whole network and is certainly not the right thing to do.

In this paper, we consider semantics of a directed cycle in a Bayesian belief
network; the network is defined over a set of atomic propositions. We show that
a cycle introduces interval bounds for the joint probabilities of variables of the
network, and thus requires a new formalism to deal with it. We shall need to
deal with a whole family of distributions, which may be empty. Thus, we shall
look for algorithms that check consistency and find the upper and lower bounds
for marginal joint probabilities of the cycle’s elements.

Our approach, in a certain sense, is a complement to Heckerman et al. [11,12].
They are ready to work with as many cycles as may appear in their dependency
networks that may also be, as they say, almost consistent (instead of being
just consistent with probability axioms). We are incorporating cycles in BBN
calculi preserving consistency with probabilistic axioms and avoid using artificial
constraints requiring strict positiveness of appearing probabilistic distributions,
as opposed to Heckerman et al.

2 Basic Definitions

In the paper, we follow a probabilistic logic approach introduced by N. Nilsson
in [18] and formalized from a logical viewpoint in [2,3,4].

Let T = {t1, . . . , tN} be the set of atoms (atomic propositions, Boolean vari-
ables) that are to represent experts’ elementary judgements about a certain do-
main. S = {x1, . . . , xn} is a subset of T : S ⊆ T . We denote the negation of x by x̄.

An ideal of conjunctions C = C (S) over S consists of all non-empty conjunc-
tions of elements of S. For example,

C ({x1, x2, x3}) = {x1, x2, x3, x1x2, x1x3, x2x3, x1x2x3}.

A consistent probabilistic distribution over C (S) can be uniquely extended to
all propositional formulas built over S. A consistent assignment of point-valued
estimates of probabilities of the elements of C defines the unique probabilis-
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tic distribution over propositional formulas over S. A consistent assignment of
interval-valued estimates defines a family of probabilistic distributions. The al-
gorithms for consistency checking for such a distribution (or a family of the
distributions) have already been developed, and we shall use them to cope with
a cycle in a BBN. Let us note in addition that ideal C can be considered as a
probabilistic model for an expert’s knowledge pattern with uncertainty.

A Bayesian belief network is traditionally defined as a directed acyclic graph
(DAG) G = (V, E) (where V is a finite set of nodes, and E is a set of edges, that
is, E ⊆ G×G) together with a joint probabilistic distribution P that satisfies the
Markov condition, namely that each variable x ∈ V is conditionally independent
of the set of all its nondescendents given the set of all its parents (see [15] for this
definition and a detailed consideration of BBNs). The probabilistic distribution
in question is defined by assigning conditional probabilities to each node given
its parents.

In brief, an algebraic Bayesian network (ABN) is a set of possibly intersecting
ideals of conjunctions together with point-valued or interval-valued estimates on
the joint probabilities of conjunctions appearing in these ideals. Formally, a
BBN’s knowledge pattern is modeled with a point-valued tensor of conditional
probability. In contrast to BBN, an ABN’s knowledge pattern is modeled with
an ideal of conjunctions that represents marginal probabilities in a specific form.
Those marginal joint probabilities may be assigned with point-valued or interval-
valued estimates.

In what follows we are trying to extend the class of BBNs with directed cyclic
graphs, keeping the method of defining a network. It turns out that together with
the word “acyclic” we shall need to throw away the concept of having a single
probabilistic distribution corresponding to a BBN. We should rather consider
families of distributions corresponding to a cycle in a BBN.

3 Semantics of a Cycle

In this article we restrict ourselves to the simplest cyclic situation possible: a
generalized Bayesian belief network consisting of a single directed cycle. We
denote the nodes of the graph by x1, . . . , xn. The cycle is presented on Fig. 1.

x1

x2 x3

x4

x5xn

Fig. 1. An isolated cycle with n vertices
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By definition, we receive as input the probabilities

p(x1 | x̃n), p(x2 | x̃1), . . . , p(xn | x̃n−1), x̃i ∈ {xi, x̄i}, i ∈ 1(1)n.

Note that there are no additional restrictions by the Markov condition in this
case (because the set of nondescendents of each node in an isolated directed cycle
is empty).

Let us try to deduce from the given data the marginal probabilities and
the description of the probabilistic distribution this network represents. By the
definition of conditional probability we can obtain the following equations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p(x1) = p(x1 | xn)p(xn) + p(x1 | x̄n)(1 − p(xn))
p(x2) = p(x2 | x1)p(x1) + p(x2 | x̄1)(1 − p(x1))

...
p(xn) = p(xn | xn−1)p(xn−1) + p(xn | x̄n−1)(1 − p(xn−1))

(1)

Note that the only unknowns in this system are the probabilities p(xi). Thus,
the system is a linear system (with a very simple structure) of the form

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 . . . 0 r1n

r21 1 0 . . . 0 0
0 r32 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . rn,n−1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎝

p(x1)
p(x2)
p(x3)

...
p(xn)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

p(x1 | x̄n)
p(x2 | x̄1)
p(x3 | x̄2)

...
p(xn | x̄n−1)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (2)

where rij = p(xi | x̄j) − p(xi | xj). Thus, we obtain p(xi).

Remark 1. There is a special case when the system is degenerate. This may
happen if the determinant of the matrix of the system is equal to zero, that is,
if 1 − r1nr21 . . . rn,n−1 = 0. This is possible only if all ri,i−1 = ±1. If in this case
the right-hand side is non-zero, the system has no solutions, and the network
is inconsistent. If the right-hand side is zero, it means that de facto all nodes
of the network describe the same judgement x. There are no restrictions on the
probability of that x, that is, all we can say is p(x) ∈ [0, 1]. In this case, of course,
there is no need to draw a network, let alone a directed cycle, so we may assume
that this case does not hold in practice (if it happens, the cycle may be easily
reduced to one node without loss of information).

After we have calculated p(xi), we may proceed to find p(xixi−1), i =
1, . . . , n, by definition of conditional probability (we denote here x0 := xn for
simplicity of the formulae and freely substitute x0 and xn further):

p(xixi−1) = p(xi−1)p(xi | xi−1) + (1 − p(xi−1))p(xi | x̄i−1). (3)

But this is exactly where our certain knowledge about the point-valued proba-
bilities stops.

Joint probabilities of three and more variables, and even joint probabilities
of pairs of variables representing non-adjacent graph nodes may not in general
be determined from the input. Only interval bounds may be established as a
result of solving the linear programming task that will be described in Sect. 5.



218 A.L. Tulupyev and S.I. Nikolenko

4 Special Case: A Cycle with Two Vertices

The simplest (and in some ways special) case of a cyclic BBN is an isolated cycle
with two vertices. This case is special because it is the only case where the input
conditional probabilities determine the whole probabilistic distribution uniquely.
The marginal probabilities p(x1) and p(x2) satisfy the following linear system (a
special case of (2)):

{
p(x1) + (p(x1|x2) − p(x1|x̄2))p(x2) = p(x1|x̄2)
(p(x2|x1) − p(x2|x̄1))p(x1) + p(x2) = p(x2|x̄1)

(4)

After solving it we obtain explicit formulae for marginal probabilities:

p(x1) =
p(x1|x̄2) − (p(x1|x2) − p(x1|x̄2))p(x2|x̄1)

1 − (p(x1|x2) − p(x1|x̄2))(p(x2|x1) − p(x2|x̄1))

p(x2) =
p(x2|x̄1) − (p(x2|x1) − p(x2|x̄1))p(x1|x̄2)

1 − (p(x1|x2) − p(x1|x̄2))(p(x2|x1) − p(x2|x̄1))

It is now easy to obtain the entire distribution:

p(x1x2) = p(x1)p(x2|x1),
p(x1x̄2) = p(x1)(1 − p(x2|x1)),
p(x̄1x2) = (1 − p(x1))p(x2|x̄1),
p(x̄1x̄2) = (1 − p(x1))(1 − p(x2|x̄1)).

(5)

Let us note that these formulae make sense provided

(p(x1|x2) − p(x1|x̄2))(p(x2|x1) − p(x2|x̄1)) �= 1,

which may happen only in the degenerate case considered in the previous section.

5 Consistency Checking

As we have seen above, a Bayesian belief network with a directed cycle may
describe a whole family of probabilistic distributions rather than the only one,
as a regular Bayesian belief network does. This family may, of course, be empty.
Therefore, the problem of establishing the consistency of an initial probabilistic
assignment arises. In this section we describe the most straightforward way to
check for consistency. However, as we show further, this method is hard to im-
prove. In this section, as in the whole article, we restrict ourselves to the case of
one isolated cycle on n nodes.

To establish consistency, we must ensure that there exists a probabilistic
distribution p(x̃1x̃2 . . . x̃n) over all n variables which is compatible with axioms
of probability

∀x̃1x̃2 . . . x̃n p(x̃1x̃2 . . . x̃n) ≥ 0;
∑

x̃1x̃2...x̃n

p(x̃1x̃2 . . . x̃n) = 1
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and meets conditional probabilities given as input. To do that, we simply solve
the linear programming task that may be extracted from the axioms of probabil-
ity and given constraints. Its unknowns are probabilities of positive conjunctions
p(xi1xi2 . . . xik

). The input enters the formulation of the linear programming task
as p(xi) and p(xixj), which, as was shown above, may be deduced from the input.

Example 1. We provide the linear programming task for the case of a cycle
on three nodes. In this case the problem is trivial because there is only one
variable, p(x1x2x3). We should minimize and maximize it over the following set
of constraints:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p(x1x2x3) ≥ 0
p(x1x2) − p(x1x2x3) ≥ 0
p(x1x3) − p(x1x2x3) ≥ 0
p(x2x3) − p(x1x2x3) ≥ 0
p(x1) − p(x1x2) − p(x1x3) + p(x1x2x3) ≥ 0
p(x2) − p(x1x2) − p(x2x3) + p(x1x2x3) ≥ 0
p(x3) − p(x1x3) − p(x2x3) + p(x1x2x3) ≥ 0
1 − p(x1) − p(x2) − p(x3) + p(x1x2) + p(x2x3) + p(x1x3) − p(x1x2x3) ≥ 0

By solving similar linear programming problems, we may establish interval
bounds for the probabilities of unknown conjunctions in the general case. These
will allow us to reconstruct the overall probability distribution (that is, the family
of distributions).

Example 2. We show how conjunctions of positive literals generate the entire
distribution for the case of three variables:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p(x̄1x2x3) = p(x2x3) − p(x1x2x3)
p(x1x̄2x3) = p(x1x3) − p(x1x2x3)
p(x1x2x̄3) = p(x1x2) − p(x1x2x3)
p(x̄1x̄2x3) = p(x3) − p(x2x3) − p(x1x3) + p(x1x2x3)
p(x̄1x2x̄3) = p(x2) − p(x1x2) − p(x2x3) + p(x1x2x3)
p(x1x̄2x̄3) = p(x1) − p(x1x2) − p(x1x3) + p(x1x2x3)
p(x̄1x̄2x̄3) = 1 − p(x1) − p(x2) − p(x3)+

+ p(x1x2) + p(x2x3) + p(x1x3) − p(x1x2x3).

However, the linear programming problem is in general very large. For a cycle
of n nodes, it has 2n constraints and 2n −2n−1 unknowns (2n unknowns disap-
pear since we can determine p(xi) and p(xixi−1)). Solving it for large knowledge
patterns would require too much computational power. It would be extremely
helpful to reduce this task to some easier ones. However, in the next section we
give a negative result on this approach.

Before we proceed to complexity issues, we should remark on the nature of
the result. What we had to do in order to check consistency and establish the
interval bounds, is known as the a priori inference in the theory of algebraic
Bayesian networks introduced by V. Gorodetski in [5,6,7,8,9,16] and developed
in [10,24,25]. We simply immersed the cycle in question into the corresponding
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knowledge pattern of an algebraic Bayesian network. It is not the point of this
article to compare the two formalisms, but in this case algebraic Bayesian net-
works turn out to be more descriptive than Bayesian belief networks, because
they are able to capture this kind of relation between the boolean variables.

6 Complexity of the Consistency Checking

As we have seen in the previous section, consistency checking in general is an ex-
pensive task. Since Bayesian networks were intended to deal with decomposable
distributions, a natural question arises: are we able to decompose the problem
on the big knowledge pattern that includes the whole cycle to smaller problems
on some subsets of the cycle?

The answer is definitely negative. Moreover, we note that, in fact, consistency
of a cycle always has to be considered as a whole, rather than in part. The matter
is that a linear chain of nodes in a Bayesian belief network is always consistent
(see [13] or any other source on Bayesian belief networks); it usually comes
with a number of conditional independence restrictions that allow to single one
particular distribution out of the whole family, but the family is never empty
anyway.

However, as soon as we engage cycles (even isolated), inconsistent cycles
become possible. We give here an example of an inconsistent cycle on three
vertices.

Example 3. Consider the following Bayesian belief network — a cycle on three
vertices:

p(x2|x1) = 1/4, p(x3|x2) = 3/4, p(x1|x3) = 3/4,
p(x2|x̄1) = 1/2, p(x3|x̄2) = 1/6, p(x1|x̄3) = 1/6.

By solving the linear system (2), we obtain

p(x1) = p(x2) = p(x3) = 2
5 ,

p(x1x2) = 1
10 ,

p(x2x3) = p(x1x3) = 3
10 .

Now restrictions on p(x1x2x3) include, on one hand, p(x1x2) − p(x1x2x3) ≥ 0,
that is, p(x1x2x3) ≤ 1/10, and, on the other hand, p(x3) − p(x1x3) − p(x2x3) +
p(x1x2x3) ≥ 0, that is, p(x1x2x3) ≥ 2/10. Thus, this cycle on three vertices is
inconsistent.

Therefore, even if more efficient algorithms exist (which they may), they
should take into consideration all the data at once, and consider the overall
probabilistic distribution.

7 On Reverting Edges in a Cycle

A cycle, as we have shown above, forces the probabilistic semantics of a Bayesian
belief network outside the realm of unique distributions that seems so natural for
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Bayesian belief networks. Therefore, it is natural that the basic idea of previously
suggested ways to cope with cycles has been to try and get rid of the cycle and
thus reduce the problem to well-known cases. We have already mentioned in
the introduction the paper [1], where the simplest way to remove a cycle is
considered. The proposed technique is to revert an edge in the cycle, making it
non-directed and, therefore, subject to standard Bayesian network analysis.

However, this is incorrect, because by reverting an edge (and considering the
result as a regular Bayesian belief network) we would replace a whole family of
distributions by a single one. In fact, the initial network might be inconsistent,
but the result will always be consistent. The distribution becomes unique be-
cause reverting an edge imposes additional constraints in the form of conditional
independence of certain nodes of the cycle that are now (after reverting an edge)
d-separable. However, even if the initial cycle was consistent, the unique distri-
bution appearing after reverting an edge might not even be contained in the
initial family of distributions — at least, it has to be proven. There is no sound
justification for this process in [1].

Such a justification might be that this unique distribution has some special
properties which single it out of the family. In [17] we consider ways to look for
this distribution. For example, it may be a good idea to select distributions based
on the maximal entropy principle. There also exist experimental techniques for
selecting a single distribution, for example, stochastic modeling. However, this
problem remains open — even in the motivational phase, it is not clear what
kind of a distribution to look for (since the usual decomposable ones don’t work
anymore).

One certainly valid way to work with a cycle is to revert all its edges at once
(leaving the cycle in place, but changing its direction). This does not change
the semantics of the network, because receiving as input conditional proba-
bilities {p(x̃i|x̃i−1)}, as we have shown above, to receiving joint probabilities
{p(x̃i), p(x̃ix̃i−1)}, and the latter do not depend on where the edges in the cycle
are directed.

For an isolated cycle this reverting is, of course, meaningless. However, it
may prove useful for coping with several intersecting cycles or other Bayesian
belief networks with more complex structure — for example, it may simplify this
structure, remove unnecessary cycles, and so on.

8 Conclusions and Further Work

We have shown that a cycle in a BBN may represent a (possibly empty) family of
probabilistic distributions over its elements and their conjunctions, rather than
a single distribution a regular BBN represents. If we want to incorporate cycles
into a BBN, we should therefore check the network for consistency. In this article
this work is done for the case of an isolated cycle. We have also shown that to
establish consistency in general it is necessary to consider the exponential-sized
linear programming task, since no smaller one (none corresponding to the joint
distribution of a smaller set of variables) would suffice.
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All known BBN calculi deal with a single distribution defined by the network.
Therefore, we should either somehow choose a single distribution out of the
family of possible distributions, or generalize the calculus to deal with interval-
valued estimates of probabilities of BBN nodes, as is done in the ABN approach.

One of the natural directions for further work would be to generalize the
algorithms of evidence propagation to the directed cyclic case. This approach has
been to some extent carried out in the theory of algebraic Bayesian networks, but
there are differences between the two formalisms that make considering cyclic
Bayesian belief networks a worthwhile task by itself.

However, Bayesian belief networks on directed cyclic graphs should always
be treated with care, that is, one should carefully check for consistency and
deal with families of distributions rather than a single one. This feature will not
disappear unless too restrictive conditions are satisfied (and thus the formalism
is rendered impractical). Therefore, another direction for future research is to try
to establish sufficient conditions for effective consistency checking. In the current
work we have shown that no effective necessary conditions exist, but some good
enough sufficient conditions may cover many interesting cases.
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ERRATUM 

 
to 
 

Tulupyev A.L., Nikolenko S.I. Directed Cycles in Bayesian Belief Networks: Probabilistic 
Semantics and Consistency Checking Complexity // MICAI 2005: Advances in Artificial 
Intelligence. 4th Mexican International Conference on Artificial Intelligence, Monterrey, 
Mexico, November 14-18, 2005, Proceedings Series: Lecture Notes in Computer Science; 
Subseries: Lecture Notes in Artificial Intelligence, Vol. 3789. Gelbukh, Alexander; Terashima, 
Hugo (Eds.) 2005, XXVI. P. 214–223. 
 
 
 
The formulae (3) on page 217 reads 
 

)|())(1()|()()( 11111 −−−−− −+= iiiiiiii xxpxpxxpxpxxp . (3)
 
It should read 
 

).|()()( 111 −−− = iiiii xxpxpxxp  (3)
 
Both authors bring their apologies for the error detection happened too late.  
 
This Erratum is written by the authors and is not a part of the original publication.  
 

Alexander L. Tulupyev 
Sergey I. Nikolenko 

 
St. Petersburg 

November 26, 2005 
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