INTRODUCTION TO MACHINE LEARNING

MAster's Deep Learning

Sergey Nikolenko

Harbour Space University, Barcelona, Spain
November 7, 2017

TEASER

TEASER

- In 2005-2006, a revolution started in machine learning.
- Neural networks have been around forever, but nobody could reliably train deep neural networks.
- And now they could, and this turned the world of machine learning upside down.
- By now almost everywhere the best results are done with deep neural networks.

TEASER

- Image processing:

TEASER

- Even in real time:

TEASER

- Speech recognition:

TEASER

- Natural language processing:

TEASER

- Previously unthinkable achievements:

OUR PLAN

- We will learn how to train neural networks.
- In particular, deep neural networks.
- We will learn a lot of different architectures for neural networks.
- And tricks of the trade.
- We will begin this with a few words about the neurons.
- But first - a quick reminder about what we are doing in ML generally.

MACHINE LEARNING PROBLEMS

HISTORY

- Neural networks appeared even before AI and ML as a science.
- AI - Turing test (1950), Dartmouth seminar (1956). Then:

1950-60s big hopes and logical inference;
1970s knowledge-based systems based on rule combinations;
1980s second bubble of the neural networks;
1990-2000s machine learning, Bayesian methods, probabilistic learning; 2010s deep learning.

MAIN PROBLEMS AND NOTIONS OF MACHINE LEARNING

MAIN DEFINITIONS AND PROBLEMS

- Supervised learning:
- training set (training sample), where each example consists of features (attributes);
- correct answers - response variable, which we are predicting;
- categorical, continuous, or ordinal;

MAIN DEFINITIONS AND PROBLEMS

- Supervised learning:
- training set (training sample), where each example consists of features (attributes);
- correct answers - response variable, which we are predicting;
- categorical, continuous, or ordinal;
- a model trains on this set (training phase, learning phase), then can be applied to new examples (test set);
- the goal is to train a model that not only explains examples from the training set but also generalizes well to the test set;
- one important problem - overfitting;

MAIN DEFINITIONS AND PROBLEMS

- Supervised learning:
- usually we simply have the training set; how do we know how well a model generalizes?
- cross-validation: break the sample up into training and validation sets;
- before feeding data into a model, it makes sense to do preprocessing:
- feature extraction,
- normalization/whitening,
- encoding categorical features,
- ...

MAIN DEFINITIONS AND PROBLEMS

- Supervised learning:
- classification: a certain discrete set of categories (classes), and we have to classify new examples into one of these classes;
- text classification by topics (e.g., spam filter);
- image/object/character recognition;

MAIN DEFINITIONS AND PROBLEMS

- Supervised learning:
- classification: a certain discrete set of categories (classes), and we have to classify new examples into one of these classes;
- text classification by topics (e.g., spam filter);
- image/object/character recognition;
- regression: predicting the values of an unknown continuous function:
- engineering applications (predict physical values, e.g., temperature, position etc.);
- finances (predicting prices or effects);
- ...
- the same plus a time dimension: time series analysis, speech recognition etc.

MAIN DEFINITIONS AND PROBLEMS

- Unsupervised learning - no correct answers, only data:
- clustering - divide data into subsets so that the points are similar inside a cluster but dissimilar between them:
- extract families of genes from a sequence of nucleotides;
- cluster users and personalize an app for them;
- cluster a mass-spectrometry image into subregions with similar composition;
- feature extraction - when unsupervised learning is an auxiliary, instrumental goal for some subsequent supervised problems;
- most generally, density estimation.

MAIN DEFINITIONS AND PROBLEMS

- Unsupervised learning - no correct answers, only data:
- clustering - divide data into subsets so that the points are similar inside a cluster but dissimilar between them:
- extract families of genes from a sequence of nucleotides;
- cluster users and personalize an app for them;
- cluster a mass-spectrometry image into subregions with similar composition;
- feature extraction - when unsupervised learning is an auxiliary, instrumental goal for some subsequent supervised problems;
- most generally, density estimation.
- Other variations:
- Dimensionality reduction: represent a high-dimensional sample in lower dimensions while preserving important properties;
- Matrix completion: given a matrix with lots of unknown elements, predict them.
- Often we know the correct answers for a small part of available data: semi-supervised learning.

MAIN DEFINITIONS AND PROBLEMS

- Reinforcement learning - when an agent trains by trial and error:
- multiarmed bandits: maximize expected revenue from an action;
- exploration vs. exploitation: how and when to pass from exploring new possibilities to simply choosing the current best;
- credit assignment: we get a response at the end but are now sure what exactly went right or wrong along the way.
- Active learning: how do we choose the next (costly) test?
- Learning to rank: how do we generate an ordered list (e.g., Web search)?
- Model combination: how do we combine several models to get one better than any single component?
- Model selection: how do we choose between simpler and more complicated models?

PROBABILITY IN ML

- In all methods and approaches of machine learning, the central notion is uncertainty.
- We don't know the answers, and the answers in the training set do not perfectly match our models.
- Moreover, it would be great to know how certain we are.
- Therefore, probability theory is crucial for ML.
- To be honest, this is mostly a course in applied probability theory.

BAYES THEOREM

- Discrete and continuous random values.
- Joint probability - $p(x, y)$ is the probability of both x and y at the same time; marginalization:

$$
p(x)=\sum_{y} p(x, y)
$$

- Conditional probability - probability of one event if we know that another occurred, $p(x \mid y)$:

$$
p(x, y)=p(x \mid y) p(y)=p(y \mid x) p(x)
$$

- From this definition, we can immediately see Bayes theorem:

$$
p(y \mid x)=\frac{p(x \mid y) p(y)}{p(x)}=\frac{p(x \mid y) p(y)}{\sum_{y^{\prime}} p\left(x \mid y^{\prime}\right) p\left(y^{\prime}\right)}
$$

- Independence: x and y are independent if

BAYES THEOREM

item Bayes theorem - the main formula in machine learning:

$$
p(\theta \mid D)=\frac{p(\theta) p(D \mid \theta)}{p(D)}
$$

Here

- $p(\theta)$ is the prior probability,
- $p(D \mid \theta)$ is the likelihood,
- $p(\theta \mid D)$ is the posterior probability,
- $p(D)=\int p(D \mid \theta) p(\theta) \mathrm{d} \theta$ is the evidence (probability of the data).
I am e
roy ford
your Lordship's
most obedient
humble Servant
\mathscr{T} Bayes.

BAYESIAN INFERENCE FOR A COIN

- Example - a completely unknown coin:

- Multiplying $p(\theta)=1$ on $[0,1]$ by $p(s \mid \theta)=\theta$, we get $p(\theta \mid s)=2 \theta$ на $[0,1]$.

BAYESIAN INFERENCE FOR A COIN

- Example - a coin taken from my pocket:

- Multiplying $p(\theta)=\operatorname{Beta}(\theta ; 10,10)$ on $[0,1]$ by $p(s \mid \theta)=\theta$, we get $p(\theta \mid s)=\operatorname{Beta}(\theta ; 10,11)$ on $[0,1]$.

Thank you for your attention!

