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LINEAR REGRESSION

- For example, linear regression.
- Linear model: consider a linear function

xwwar mwfxw 5% = (1l 8519 000 g Bm)lc
0 1 p

10

:
:
2 %o .
e, .
ol . %
= . . .
tes CRr]
- g 5.C
/-.- .
.

L L L
24 -10 10 20 30 40 50 60

- How can we find optimal parameters w by training data of the
form (x;,4,)/,?



LINEAR REGRESSION

- How can we find optimal parameters w by training data of the
form (x;,4,)/%,?
- Least squares estimation: we will minimize

RSS(w
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- There is even an exact solution, but that's not important right
now.



LINEAR REGRESSION

- What is important: suppose that noise (error in the data) has a
normal distribution, i.e., observed variable ¢ is

t=y(x,w)+e e~ N(0,02%), TOeCTb
p(t | x,w,0%) = N(t | y(x,w),0?).

E(Y) =iz + fo

N(Bias + Bo,o”)
N(Brz2 + fo,0?)

N(Biz1 + Bo,0?)
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LINEAR REGRESSION

- Aside — normal distribution:

34.1% 34.1%)

- Why is it so important?



LINEAR REGRESSION

- Consider a dataset X = {xy,...,x, } with correct answers

t={t,,...,tx}.
- We assume that the data points are independent identically
distributed:
N
p(t | X,w,0%) = [V (t, | W' o(x,),0?).
n=1

- We take the logarithm (we omit X below for brevity):

N 1 & 2
hlp(t ‘ w, 02) = _5 111(271'0'2) - ﬁ § (tn - WTQZ)(X,”)) :
n=1



LINEAR REGRESSION

- And we see that to maximize the likelihood w.rt. w we need to
minimze mean squared error!

1N
V., Inp(t | w,o?) —2215 —w'o(x,)) d(x,).
n=1

- We can also get a posterior distribution, introducing prior
distributions (also normal).
- And then the predictive distribution

p(v1 %) = [ ply | x wp(w| Ddw
..but that’s beside the point right now.
- Main conclusion: in many regression problems it makes sense to
minimize the sum of squared deviations, this corresponds to
normally distributed noise.
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BAYESIAN REGULARIZATION

- And now let us look at regression from the pure Bayesian
perspective.

- Recall that in Bayesian inference, we
(1) find the posterior distribution Ha runotesax/napamerpax:

p(6 | D) < p(D|6)p(6)

(and/or find the maximal a posteriori hypothesis
arg max,p(0 | D))
(2) find the predictive distribution:

p(z | D) p(z | 0)p(D|0)p(6)do.
6cO



BAYESIAN REGULARIZATION

- We have not yet had any priors in our study of linear regression.

- Let us introduce a prior; e.g,, the normal distribution:

p(w) = N(w | Hos Xo)-

- Consider a dataset X = {x, ..., x5 } with values t = {¢,, ..., tx };
we again assume that they are independent and identically
distributed:

N

n=1



BAYESIAN REGULARIZATION

- Then the problem is to compute
p(w | t) ocp(t| X, w,0?)p(w)

N
= N(w | 1y, So) [[ N (8, | w7 6(x,),02)

n=1

-+ Let us compute!



BAYESIAN REGULARIZATION

- We get
p(w | t) = N(w | py, En),
_ 1
py =Xy (Eolﬂo + pq;t) )
1, Lata)
Yy =125 —o P .
N ( o T3 )

- And now the log likelihood.



BAYESIAN REGULARIZATION

- If we take the prior distribution around zero:

pw) = N(w |0, =D,

we get the log likelihood as
1 X 2«
.
Inp(w | t) 2—; (t, —w'o(x,)) -5V w + const,

i.e., precisely ridge regression!



EXAMPLE

likelihood prior/posterior data space
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GENERALIZATION

- A slight generalization — a more general prior distribution:

M
_ Q(E)l/q 1 ~5 M |
p(w | ) [2 2) Tl © '

YnpaxHeHune. Compute the log likelihood.
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REGULARIZATION AGAIN

- We know that least squares do not always work well. Two
reasons:
1. bad predictive power - often better to regularize, trading bias for
variance;
2. hard to interpret — we often want to understand what is going on,
and if we have lots of different nonzero numbers, it's hard.

- Hence, we'd like to get more nonzero components in the vector
W.



SUBSET SELECTION

- What if we do it directly? Simply presume most coefficients are
zero and find the nonzero ones.

- This is called subset selection.

- Best subset selection: choose the subset of k input variables
that gives the best results



SUBSET SELECTION

- Naturally, this does not work computationally: there are lots of
subsets.

- Forward-stepwise selection: start from the intercept, then add
one best predictor per step.

- Backward-stepwise selection: start from full regression and
remove the predictor that influences the error the least.
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LASSO

- Let us now consider lasso regression:

1 N

- The main difference is that the form of the constraints is now
such that it is much more probable to get strictly zero w.

- Btw, what do | mean by “form of the constraints”?



LASSO

- We can rewrite the regression with regularizer in a different way:

1 -
wt = arglnjnw {2 Z(f(xl,w) = yi)2 + )\Z 'wj|} s
i=1 J=0

is equivalent to

DO | =

N p
S (W) y>} for Y luwyl <t.
i—1 =0

w" = arg min {
w

YnpaxHeHune. Prove it.



RIDGE AND LASSO







GENERALIZATION

- We can generalize ridge and lasso regression to

1

N p
Z — )+ A ().

=0

[\

YnpaxHenune. Which prior distribution on w does this correspond to?
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THANK YOU!

Thank you for your attention!
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