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linear regression

• For example, linear regression.
• Linear model: consider a linear function

𝑦(x, w) = 𝑤0 +
𝑝

∑
𝑗=1

𝑥𝑗𝑤𝑗 = x⊤w, x = (1, 𝑥1, … , 𝑥𝑝).

• How can we find optimal parameters ŵ by training data of the
form (x𝑖, 𝑦𝑖)𝑁

𝑖=1?
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linear regression

• How can we find optimal parameters ŵ by training data of the
form (x𝑖, 𝑦𝑖)𝑁

𝑖=1?
• Least squares estimation: we will minimize

RSS(w) =
𝑁

∑
𝑖=1

(𝑦𝑖 − x⊤
𝑖 w)2.

• There is even an exact solution, but that’s not important right
now.
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linear regression

• What is important: suppose that noise (error in the data) has a
normal distribution, i.e., observed variable 𝑡 is

𝑡 = 𝑦(x, w) + 𝜖, 𝜖 ∼ 𝒩(0, 𝜎2), то есть

𝑝(𝑡 ∣ x, w, 𝜎2) = 𝒩(𝑡 ∣ 𝑦(x, w), 𝜎2).
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linear regression

• Aside – normal distribution:

𝑝(𝑥) = 1
𝜎

√
2𝜋 𝑒− (𝑥−𝜇)2

2𝜎2 .

• Why is it so important?
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linear regression

• Consider a dataset X = {x1, … , x𝑁} with correct answers
t = {𝑡1, … , 𝑡𝑁}.

• We assume that the data points are independent identically
distributed:

𝑝(t ∣ X, w, 𝜎2) =
𝑁

∏
𝑛=1

𝒩 (𝑡𝑛 ∣ w⊤𝜙(x𝑛), 𝜎2) .

• We take the logarithm (we omit X below for brevity):

ln 𝑝(t ∣ w, 𝜎2) = −𝑁
2 ln(2𝜋𝜎2) − 1

2𝜎2

𝑁
∑
𝑛=1

(𝑡𝑛 − w⊤𝜙(x𝑛))2 .
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linear regression

• And we see that to maximize the likelihood w.r.t. w we need to
minimze mean squared error!

∇w ln 𝑝(t ∣ w, 𝜎2) = 1
𝜎2

𝑁
∑
𝑛=1

(𝑡𝑛 − w⊤𝜙(x𝑛)) 𝜙(x𝑛).

• We can also get a posterior distribution, introducing prior
distributions (also normal).

• And then the predictive distribution

𝑝(𝑦 ∣ x, 𝐷) = ∫
w

𝑝(𝑦 ∣ x, w)𝑝(w ∣ 𝐷)dw

...but that’s beside the point right now.
• Main conclusion: in many regression problems it makes sense to
minimize the sum of squared deviations, this corresponds to
normally distributed noise.
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• And now let us look at regression from the pure Bayesian
perspective.

• Recall that in Bayesian inference, we
(1) find the posterior distribution на гипотезах/параметрах:

𝑝(𝜃 ∣ 𝐷) ∝ 𝑝(𝐷|𝜃)𝑝(𝜃)

(and/or find the maximal a posteriori hypothesis
arg max𝜃𝑝(𝜃 ∣ 𝐷));

(2) find the predictive distribution:

𝑝(𝑥 ∣ 𝐷) ∝ ∫
𝜃∈Θ

𝑝(𝑥 ∣ 𝜃)𝑝(𝐷|𝜃)𝑝(𝜃)d𝜃.
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bayesian regularization

• We have not yet had any priors in our study of linear regression.
• Let us introduce a prior; e.g., the normal distribution:

𝑝(w) = 𝒩(w ∣ 𝜇0, Σ0).

• Consider a dataset X = {x1, … , x𝑁} with values t = {𝑡1, … , 𝑡𝑁};
we again assume that they are independent and identically
distributed:

𝑝(t ∣ X, w, 𝜎2) =
𝑁

∏
𝑛=1

𝒩 (𝑡𝑛 ∣ w⊤𝜙(x𝑛), 𝜎2) .
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• Then the problem is to compute

𝑝(w ∣ t) ∝ 𝑝(t ∣ X, w, 𝜎2)𝑝(w)

= 𝒩(w ∣ 𝜇0, Σ0)
𝑁

∏
𝑛=1

𝒩 (𝑡𝑛 ∣ w⊤𝜙(x𝑛), 𝜎2) .

• Let us compute!
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• We get

𝑝(w ∣ t) = 𝒩(w ∣ 𝜇𝑁 , Σ𝑁),

𝜇𝑁 = Σ𝑁 (Σ−1
0 𝜇0 + 1

𝜎2 Φ⊤t) ,

Σ𝑁 = (Σ−1
0 + 1

𝜎2 Φ⊤Φ)
−1

.

• And now the log likelihood.
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• If we take the prior distribution around zero:

𝑝(w) = 𝒩(w ∣ 0, 1
𝛼 I),

we get the log likelihood as

ln 𝑝(w ∣ t) = − 1
2𝜎2

𝑁
∑
𝑛=1

(𝑡𝑛 − w⊤𝜙(x𝑛))2 − 𝛼
2 w⊤w + const,

i.e., precisely ridge regression!
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generalization

• A slight generalization – a more general prior distribution:

𝑝(w ∣ 𝛼) = [𝑞
2 (𝛼

2 )
1/𝑞 1

Γ(1/𝑞)]
𝑀

𝑒− 𝛼
2 ∑𝑀

𝑗=1∣𝑤𝑗∣𝑞 .

Упражнение. Compute the log likelihood.
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regularization again

• We know that least squares do not always work well. Two
reasons:
1. bad predictive power – often better to regularize, trading bias for
variance;

2. hard to interpret – we often want to understand what is going on,
and if we have lots of different nonzero numbers, it’s hard.

• Hence, we’d like to get more nonzero components in the vector
w.

12



subset selection

• What if we do it directly? Simply presume most coefficients are
zero and find the nonzero ones.

• This is called subset selection.
• Best subset selection: choose the subset of 𝑘 input variables
that gives the best results

13



subset selection

• Naturally, this does not work computationally: there are lots of
subsets.

• Forward-stepwise selection: start from the intercept, then add
one best predictor per step.

• Backward-stepwise selection: start from full regression and
remove the predictor that influences the error the least.
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subset selection
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lasso

• Let us now consider lasso regression:

𝐿(w) = 1
2

𝑁
∑
𝑖=1

(𝑓(𝑥𝑖, w) − 𝑦𝑖)2 + 𝜆
𝑝

∑
𝑗=0

|𝑤𝑗|.

• The main difference is that the form of the constraints is now
such that it is much more probable to get strictly zero 𝑤𝑗.

• Btw, what do I mean by “form of the constraints”?
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lasso

• We can rewrite the regression with regularizer in a different way:

w∗ = arg minw {1
2

𝑁
∑
𝑖=1

(𝑓(𝑥𝑖, w) − 𝑦𝑖)2 + 𝜆
𝑝

∑
𝑗=0

|𝑤𝑗|} ,

is equivalent to

w∗ = arg minw {1
2

𝑁
∑
𝑖=1

(𝑓(𝑥𝑖, w) − 𝑦𝑖)2} for
𝑝

∑
𝑗=0

|𝑤𝑗| ≤ 𝑡.

Упражнение. Prove it.
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ridge and lasso
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ridge and lasso
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generalization

• We can generalize ridge and lasso regression to

𝐿(w) = 1
2

𝑁
∑
𝑖=1

(𝑓(𝑥𝑖, w) − 𝑦𝑖)2 + 𝜆
𝑝

∑
𝑗=0

(|𝑤𝑗|)𝑞.

Упражнение. Which prior distribution on w does this correspond to?
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different 𝑞
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thank you!

Thank you for your attention!
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