LOGISTIC REGRESSION

MASTER'S DEEP LEARNING

Sergey Nikolenko

Harbour Space University, Barcelona, Spain
November 9, 2017




CLASSIFICATION AND LOGISTIC RE-
GRESSION




CLASSIFICATION PROBLEMS

- For classification problems it is even more clear: we want to
classify a vector x to one of K classes €.

- Suppose that class €, has density p(x | €;,), find prior
distributions p(€,,), and then compute p(C,, | x) by Bayes'
theorem.

- For two classes:

p(x | Cy)p(Cy)
p(x | C1)p(Cy) +p(x| Cay)p(Cy)

p(Cy | x) =



CLASSIFICATION PROBLEMS

- We rewrite:
- p(x|€y)p(Cy) _ L = all@
P ) = T (@) + pix | Ep(Cy) ~ Tres 7
where
a:lnp(x‘ el)p(el) a(a): 1




CLASSIFICATION PROBLEMS

- o(a) is the logistic sigmoid:

c o(—a) =1—o0(a).
* a=In({Z;) - logit function.



CLASSIFICATION PROBLEMS

- This, in particular, leads to logistic regression: we optimize w
directly.

- For a dataset {¢_,t,},t, € {0,1}, ¢ = ¢(x,,):

N
p(t| w) = H T Y =p(C1]6,)

- We find maximal likelihood parameters, minimizing —Inp(t | w):

N
—Inp(t [t,Iny, + (1 —t,)In(l—y,)].
-1

n

E(w)



CLASSIFICATION PROBLEMS

- And we get a sigmoid that optimally separates the data and that
even tries to model probabilities:

Logistic Regression: 1 Feature

® samples (y=1)
® samples (y=0)
—— logistic: g(z)
linear: z

Feature



TWO CLASSES

- Let's go back to classification.
- Two classes, the posterior is the logistic sigmoid of a linear

function:
p(Cy | ¢) =y(d) =a(w'p), p(Csy|d)=1—p(C]¢).

- Logistic regression is when we optimize w directly.



TWO CLASSES

- For a dataset {¢_,t,},t, € {0,1}, ¢ = o(x,):

N
plt | w) = H y(1—y,) ", gy, =p(Cy | 9,).

- We look for maximal likelihood parameters by minimizing
—lnp(t|w):
N

E(w)=—1Inp(t [t,Iny, + (1 —t,)In(l—y,)].
=

n



TWO CLASSES

- Since 0’ = o(1 — o), we take the gradient:

N

n=1
- If we now perform gradient descent, we get the separating
surface.

- Note that if the data are actually separable, we could get heavy
overfitting: ||w|| — oo, and the sigmoid turns into a Heaviside
function.

- We have to regularize.



IRLS

- Logistic regression does not yield a closed form solution
because of the sigmoid.

- But function E(w) is convex, and we can use Newton-Raphson's
method: use local quadratic approximation to the loss function

on each step:
whew — yold _ H71VE(W),

where H (Hessian) is the matrix of second derivatives for E(w).



IRLS

- Aside: let us apply Newton-Raphson’s method to regular linear
regression with quadratic error:

M=

VEw)=) (w'¢ —t,)p = dw—a't,

Il
—

n

M=

VVE(wW)=> ¢ ¢' =o',

n

Il
—

n

and the optimization step will be
weW — wold _ (97d) " [0 dwold — B T¢] —
= (®0) 't

i.e, we get a solution in one step.



IRLS

- For logistic regression:

I
M=

3
Il
—

H=VVE(w)

|
‘Mz

S
Il
—

Un(1—y,)0,6' =" R®

for a diagonal matrix R ¢ R,,,, = v,,(1 — y,,).



IRLS

- Optimization step formula:
wrew — wold _ (TR®) ' &' (y—t) = (' RD) " @' Ry,

where z = dw°d — R~! (y —t).

- This is like a weighted least squares optimization problem with
matrix of weights R.

- Hence the title: iterative reweighted least squares (IRLS).



SEVERAL CLASSES

+ In case of several classes

(€| 6) = 1(6) = S for @, = wlo.

J

- Consider the ML estimate again; first,

yp

5a. = e (F=d1—y;).



SEVERAL CLASSES

- Let us now write the likelihood: for a 1-of-K coding scheme we
have target vector t,, and likelihood

N K N K
(T | Wy, Wg) = H Hp(ek | ¢,,,,)t"k = H Hyr:;@k
n=1 k=1 n=1k=1
for y,, = yk(9, ); taking the log, we get
N K
Ewy,...,wg)=—Inp(T | wy,...,wg) = —ZZtnklnynk, 7

ol
Il

n=1 1

N
Vo, B30 W5) = =D (Yg — tg) &,

J
n=1



SEVERAL CLASSES

- Again, we can optimize with Newton-Raphson’s method; the
Hessian is

N
vkaw].E‘(VVh 7WK) = _Zynk ([k = ]} - yng) ¢71¢;[
’ n=1



SEVERAL CLASSES

- Conclusion: for a classification problem it makes sense to
minimize the cross-entropy ZL [t,Iny, +(1—1,)In(1—y,)]
and softmax (rather than classification error, which is
problematic).

- One question remains: how do we optimize all this?
- For logistic regression, we have IRLS and even better approaches.
- But how do we optimize complicated functions in general?



GRADIENT DESCENT

- Gradient descent: take the gradient w.rt. weights, move in that
direction.

- Formally: for an error function FE, targets y, and model f with
parameters 6,

E(0>: Z E(f(X79),y),

(x,y)eD

0, =0, —nVE(®,_1) =0, —n Z VE(f(x,0;_1),9)-
(x,y)eD

- So we need to sum over the entire dataset for every step?!..



GRADIENT DESCENT

- Hence, stochastic gradient descent: after every training sample
update

et = 91571 - nvE(f(Xta 0t71)7yt)7

- In practice people usually use mini-batches, it's easy to
parallelize and smoothes out excessive “stochasticity”.

- So far the only parameter is the learning rate 7.



GRADIENT DESCENT

- Lots of problems with #:

(a) (6)

- We will get to them later, for now let's concentrate on the
certainly required step: the derivatives.



GRADIENT DESCENT

- Gradient descent: virtually the only way to optimize complicated
non-convex functions.

- Take the gradient VE(w) w.rt. weights, move in that direction.



GRADIENT DESCENT

- E.g, for logistic regression we can optimize
N
E(w)=—1Inp(t [t,Iny, +(1—t,)In(l—y,)].
n=1
- We use the fact that o/ = o(1 — o).
- Take the gradient:

:Z(y _

n=1

- And then we can simply use gradient descent (or do even better
with IRLS).



GRADIENT DESCENT

- Gradient descent is a local optimization procedure.

- But there are no global ones... we will only talk of local
improvements of gradient descent, but there will never be a
guarantee with these methods.



THANK YOU!

Thank you for your attention!
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