
logistic regression
Master's Deep Learning

Sergey Nikolenko

Harbour Space University, Barcelona, Spain
November 9, 2017

classification and logistic re-
gression

classification problems

• For classification problems it is even more clear: we want to
classify a vector x to one of 𝐾 classes 𝒞𝑘.

• Suppose that class 𝒞𝑘 has density 𝑝(x ∣ 𝒞𝑘), find prior
distributions 𝑝(𝒞𝑘), and then compute 𝑝(𝒞𝑘 ∣ x) by Bayes’
theorem.

• For two classes:

𝑝(𝒞1 ∣ x) = 𝑝(x ∣ 𝒞1)𝑝(𝒞1)
𝑝(x ∣ 𝒞1)𝑝(𝒞1) + 𝑝(x ∣ 𝒞2)𝑝(𝒞2) .

3

classification problems

• We rewrite:

𝑝(𝒞1 ∣ x) = 𝑝(x ∣ 𝒞1)𝑝(𝒞1)
𝑝(x ∣ 𝒞1)𝑝(𝒞1) + 𝑝(x ∣ 𝒞2)𝑝(𝒞2) = 1

1 + 𝑒−𝑎 = 𝜎(𝑎),

where
𝑎 = ln 𝑝(x ∣ 𝒞1)𝑝(𝒞1)

𝑝(x ∣ 𝒞2)𝑝(𝒞2) , 𝜎(𝑎) = 1
1 + 𝑒−𝑎 .

3

classification problems

• 𝜎(𝑎) is the logistic sigmoid:

𝜎(𝑎) = 1
1 + 𝑒−𝑎

• 𝜎(−𝑎) = 1 − 𝜎(𝑎).
• 𝑎 = ln(𝜎

1−𝜎) – logit function.

3

classification problems

• This, in particular, leads to logistic regression: we optimize w
directly.

• For a dataset {𝜙𝑛, 𝑡𝑛}, 𝑡𝑛 ∈ {0, 1}, 𝜙𝑛 = 𝜙(x𝑛):

𝑝(t ∣ w) =
𝑁

∏
𝑛=1

𝑦𝑡𝑛𝑛 (1 − 𝑦𝑛)1−𝑡𝑛 , 𝑦𝑛 = 𝑝(𝒞1 ∣ 𝜙𝑛).

• We find maximal likelihood parameters, minimizing − ln 𝑝(t ∣ w):

𝐸(w) = − ln 𝑝(t ∣ w) = −
𝑁

∑
𝑛=1

[𝑡𝑛 ln 𝑦𝑛 + (1 − 𝑡𝑛) ln(1 − 𝑦𝑛)] .

3

classification problems

• And we get a sigmoid that optimally separates the data and that
even tries to model probabilities:

3

two classes

• Let’s go back to classification.
• Two classes, the posterior is the logistic sigmoid of a linear
function:

𝑝(𝒞1 ∣ 𝜙) = 𝑦(𝜙) = 𝜎(w⊤𝜙), 𝑝(𝒞2 ∣ 𝜙) = 1 − 𝑝(𝒞1 ∣ 𝜙).

• Logistic regression is when we optimize w directly.

4

two classes

• For a dataset {𝜙𝑛, 𝑡𝑛}, 𝑡𝑛 ∈ {0, 1}, 𝜙𝑛 = 𝜙(x𝑛):

𝑝(t ∣ w) =
𝑁

∏
𝑛=1

𝑦𝑡𝑛𝑛 (1 − 𝑦𝑛)1−𝑡𝑛 , 𝑦𝑛 = 𝑝(𝒞1 ∣ 𝜙𝑛).

• We look for maximal likelihood parameters by minimizing
− ln 𝑝(t ∣ w):

𝐸(w) = − ln 𝑝(t ∣ w) = −
𝑁

∑
𝑛=1

[𝑡𝑛 ln 𝑦𝑛 + (1 − 𝑡𝑛) ln(1 − 𝑦𝑛)] .

4

two classes

• Since 𝜎′ = 𝜎(1 − 𝜎), we take the gradient:

∇𝐸(w) =
𝑁

∑
𝑛=1

(𝑦𝑛 − 𝑡𝑛)𝜙𝑛.

• If we now perform gradient descent, we get the separating
surface.

• Note that if the data are actually separable, we could get heavy
overfitting: ‖w‖ → ∞, and the sigmoid turns into a Heaviside
function.

• We have to regularize.

4

irls

• Logistic regression does not yield a closed form solution
because of the sigmoid.

• But function 𝐸(w) is convex, and we can use Newton–Raphson’s
method: use local quadratic approximation to the loss function
on each step:

wnew = wold − H−1∇𝐸(w),

where H (Hessian) is the matrix of second derivatives for 𝐸(w).

5

irls

• Aside: let us apply Newton–Raphson’s method to regular linear
regression with quadratic error:

∇𝐸(w) =
𝑁

∑
𝑛=1

(w⊤𝜙𝑛 − 𝑡𝑛) 𝜙𝑛 = Φ⊤Φw − Φ⊤t,

∇∇𝐸(w) =
𝑁

∑
𝑛=1

𝜙𝑛𝜙⊤
𝑛 = Φ⊤Φ,

and the optimization step will be

wnew = wold − (Φ⊤Φ)−1 [Φ⊤Φwold − Φ⊤t] =
= (Φ⊤Φ)−1 Φ⊤t,

i.e., we get a solution in one step.

5

irls

• For logistic regression:

∇𝐸(w) =
𝑁

∑
𝑛=1

(𝑦𝑛 − 𝑡𝑛) 𝜙𝑛 = Φ⊤ (y − t) ,

H = ∇∇𝐸(w) =
𝑁

∑
𝑛=1

𝑦𝑛(1 − 𝑦𝑛)𝜙𝑛𝜙⊤
𝑛 = Φ⊤𝑅Φ

for a diagonal matrix 𝑅 с 𝑅𝑛𝑛 = 𝑦𝑛(1 − 𝑦𝑛).

5

irls

• Optimization step formula:

wnew = wold − (Φ⊤𝑅Φ)−1 Φ⊤ (y − t) = (Φ⊤𝑅Φ)−1 Φ⊤𝑅z,

where z = Φwold − 𝑅−1 (y − t).
• This is like a weighted least squares optimization problem with
matrix of weights 𝑅.

• Hence the title: iterative reweighted least squares (IRLS).

5

several classes

• In case of several classes

𝑝(𝒞𝑘 ∣ 𝜙) = 𝑦𝑘(𝜙) = 𝑒𝑎𝑘

∑𝑗 𝑒𝑎𝑗
for 𝑎𝑘 = w⊤

𝑘 𝜙.

• Consider the ML estimate again; first,

𝜕𝑦𝑘
𝜕𝑎𝑗

= 𝑦𝑘 ([𝑘 = 𝑗] − 𝑦𝑗) .

6

several classes

• Let us now write the likelihood: for a 1-of-𝐾 coding scheme we
have target vector t𝑛 and likelihood

𝑝(T ∣ w1, … , w𝐾) =
𝑁

∏
𝑛=1

𝐾
∏
𝑘=1

𝑝(𝒞𝑘 ∣ 𝜙𝑛)𝑡𝑛𝑘 =
𝑁

∏
𝑛=1

𝐾
∏
𝑘=1

𝑦𝑡𝑛𝑘
𝑛𝑘

for 𝑦𝑛𝑘 = 𝑦𝑘(𝜙𝑛); taking the log, we get

𝐸(w1, … , w𝐾) = − ln 𝑝(T ∣ w1, … , w𝐾) = −
𝑁

∑
𝑛=1

𝐾
∑
𝑘=1

𝑡𝑛𝑘 ln 𝑦𝑛𝑘, и

∇w𝑗
𝐸(w1, … , w𝐾) = −

𝑁
∑
𝑛=1

(𝑦𝑛𝑗 − 𝑡𝑛𝑗) 𝜙𝑛.

6

several classes

• Again, we can optimize with Newton–Raphson’s method; the
Hessian is

∇w𝑘
∇w𝑗

𝐸(w1, … , w𝐾) = −
𝑁

∑
𝑛=1

𝑦𝑛𝑘 ([𝑘 = 𝑗] − 𝑦𝑛𝑗) 𝜙𝑛𝜙⊤
𝑛 .

6

several classes

• Conclusion: for a classification problem it makes sense to
minimize the cross-entropy ∑𝑁

𝑛=1 [𝑡𝑛 ln 𝑦𝑛 + (1 − 𝑡𝑛) ln(1 − 𝑦𝑛)]
and softmax (rather than classification error, which is
problematic).

• One question remains: how do we optimize all this?
• For logistic regression, we have IRLS and even better approaches.
• But how do we optimize complicated functions in general?

6

gradient descent

• Gradient descent: take the gradient w.r.t. weights, move in that
direction.

• Formally: for an error function 𝐸, targets 𝑦, and model 𝑓 with
parameters 𝜃,

𝐸(𝜃) = ∑
(x,𝑦)∈𝐷

𝐸(𝑓(x, 𝜃), 𝑦),

𝜃𝑡 = 𝜃𝑡−1 − 𝜂∇𝐸(𝜃𝑡−1) = 𝜃𝑡−1 − 𝜂 ∑
(x,𝑦)∈𝐷

∇𝐸(𝑓(x, 𝜃𝑡−1), 𝑦).

• So we need to sum over the entire dataset for every step?!..

7

gradient descent

• Hence, stochastic gradient descent: after every training sample
update

𝜃𝑡 = 𝜃𝑡−1 − 𝜂∇𝐸(𝑓(x𝑡, 𝜃𝑡−1), 𝑦𝑡),

• In practice people usually use mini-batches, it’s easy to
parallelize and smoothes out excessive “stochasticity”.

• So far the only parameter is the learning rate 𝜂.

7

gradient descent

• Lots of problems with 𝜂:

• We will get to them later, for now let’s concentrate on the
certainly required step: the derivatives.

7

gradient descent

• Gradient descent: virtually the only way to optimize complicated
non-convex functions.

• Take the gradient ∇𝐸(w) w.r.t. weights, move in that direction.

8

gradient descent

• E.g., for logistic regression we can optimize

𝐸(w) = − ln 𝑝(t ∣ w) = −
𝑁

∑
𝑛=1

[𝑡𝑛 ln 𝑦𝑛 + (1 − 𝑡𝑛) ln(1 − 𝑦𝑛)] .

• We use the fact that 𝜎′ = 𝜎(1 − 𝜎).
• Take the gradient:

∇𝐸(w) =
𝑁

∑
𝑛=1

(𝑦𝑛 − 𝑡𝑛)𝜙𝑛.

• And then we can simply use gradient descent (or do even better
with IRLS).

8

gradient descent

• Gradient descent is a local optimization procedure.

• But there are no global ones... we will only talk of local
improvements of gradient descent, but there will never be a
guarantee with these methods.

8

thank you!

Thank you for your attention!

9

	Classification and logistic regression

