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WORKING WITH SEQUENCES




SEQUENCES

- Sequences: financial time series, language, sound...
- Different kinds of sequence-based problems:
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SEQUENCES

- How to we apply a neural network to a sequence-based
problem?

- We can try to use a sliding window:
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SEQUENCES

- ..but it would be better to have a hidden state and update it.
- This is the whole idea of recurrent neural networks (RNN).
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- But how do we do backprop? Doesn’t the computational graph
have cycles now that

8; = h(Ty, Tiy1,Tiyar 8i-1)7



SEQUENCES

- ...not really. We can “unroll” it back:

Ys = f(x37x47x5,52) = f(x3,x4,x5,h(x2,x37x4,51)) =

= f(x3, 24, 25, h(2o, T3, T4, M(T1, To, T3, 50)))-

- So formally there is no problem.

- But, of course, lots of practical issues - it's a very deep network
with lots of shared weights...



RECURRENT NEURAL NETWORKS
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- “Simple” RNN:




SIMPLE RNN

- Formally:

a, =b+Ws,_, +Ux,,

s, = f(a),
0; = c+ Vs,
yi = h(o),

where f is the recurrent nonlinearity, and h is the output
function.
- Two problems:

- exploding gradients;
- vanishing gradients.



EXPLODING GRADIENTS

- We multiply by the same W, and the norm of the gradient grows
or decreases exponentially.

- What do we do when it explodes?



EXPLODING GRADIENTS

- We can simply bound the gradients from above!
- Two versions — bound either the norm or every value:

- sgd = optimizers.SGD(1lr=0.01, clipnorm=1.)
- sgd = optimizers.SGD(1lr=0.01, clipvalue=.05)



EXPLODING GRADIENTS

- (Pascanu et al,, 2013) - nice pictures about it:




EXPLODING GRADIENTS

- Also explains where such gaps come from — RNNs have
“bifurcation points”:
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BIDIRECTIONAL RNN

- Sometimes we need context from both directions:

Yo Y1 Y2 Y3
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BIDIRECTIONAL RNN

- Formally:
s, =o(b+Ws,_, +Ux,),
sp=0 (b +W’s;,; +U'x,),
o, =c+ Vs, +V's],
Y. =h(o,).

- This, of course, generalizes to any other sort of constructions.



LSTM AND GRU




LSTM

- Vanishing gradients: we have to multiply by W every time.
- This makes it impossible to have long-term memory.

- What do we do?..



LSTM

- ..we have seen the basic idea in ResNet: we have to provide the
“constant error carousel”, a shortcut for the gradients.

- Idea from the mid-1990s (Schmidhuber): let's construct RNNs
from a more complex unit that has the shortcut and controls
memory explicitly.

- LSTM (long short-term memory).



LSTM

- “Vanilla” LSTM: ¢, is the cell state, and h, is the hidden state.

- Input gate and forget gate control whether we change ¢, to the
new candidate cell state.
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LSTM

- Formally:

¢; =tanh (W, x, + W, .h, ; +b,) candidate cell state

iy, =o(Wyx,+Wyh, 1 +Db;) input gate
f, =0 (Wopx,+ Wy h, 1 +by) forget gate
o, =0 (W,x,+Wyh_;+b,) output gate
¢ =f,0¢4+i0c, cell state
h, = o, ®tanh(c,) block output

- So the LSTM cell is able to control the cell state with the hidden
state and weights.
* Very flexible, and if the forget gate is closed (f, = 1), we have

) dc
¢, =¢_1+1,0c, SO £ —1.
dc; 4

- The constant error carousel!



LSTM

- LSTM was developed in mid-1990s (Hochreiter and Schmidhuber,
1995; 1997).
- Completely in its modern form in (Gers, Schmidhuber, 2000).

- One problem: we want to control ¢, but it's unavailable for the
gates! They only see h, 4, which is

hy_4 = 0,1 ©tanh(c,_4).

- So if the output gate is closed the behaviour of LSTM does not
depend on cell state at all.

- This is not good...



LSTM

.50 of course we add a few more weight matrices (peepholes).
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LSTM

- Formally:

iy = 0 (Wyx, + Wyihe ) + Whici—1 + b;)
fo=0(WesX + Wishy o+ Wype,q +by)

0y =0 (WX, + Wiohy_y + WoCio1 +b,)

- Huge number of LSTM variations: we can basically remove any
kind of gate, add or remove each peephole, add or remove
activation functions etc.

- How do we choose?



LSTM

- «LSTM: a Search Space Odyssey» (Greff et al., 2015).
- Shows an experimental comparison of many variations.

- In particular, some significantly simpler architectures (with one
less gate!) did not lose to the vanilla LSTM much.

- This brings us to...



GRU

- ..Gated Recurrent Units (GRU); developed in (Cho et al., 2014).

- Also implements the constant error carousel, but simpler than
LSTM.
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GRU

- Formally:

uy = o(Wouxy + Wiy by +by)

ry = o(Wyx, + Wy, hy_y +b,)

hy = tanh(Wo, X, + Wy (ry © hy_y))
hy = (1—u,) © hy +u, O hy_y

- Update gate and reset gate; there is no distinction between ¢,
and h,.

- Fewer matrices (6 vs. 8 or 11 with peepholes), fewer weights, but
only very slightly worse than LSTM.

- So you can fit more GRUs and have better networks on a given
computational budget.



GRU

- There are other variations too.
- (Jozefowicz, Zaremba, Sutskever, 2015): huge experimental

comparison, with an evolutionary approach.

- ldentified three interesting architectures.
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THANK YOU!

Thank you for your attention!
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