RECURRENT NEURAL NETWORKS

MASTER'S DEEP LEARNING

Sergey Nikolenko

Harbour Space University, Barcelona, Spain
November 16, 2017

WORKING WITH SEQUENCES

SEQUENCES

- Sequences: financial time series, language, sound...
- Different kinds of sequence-based problems:

W® WO

(@) (6)

SEQUENCES

- How to we apply a neural network to a sequence-based
problem?

- We can try to use a sliding window:

Ya Ys Yé A
O .0 0 '
- @ P
<B é o/ [N

\
®]
\
\

>
-
—a-

SEQUENCES

- ..but it would be better to have a hidden state and update it.
- This is the whole idea of recurrent neural networks (RNN).

A
|
PYHKLMS OLLMOKM

W
\

YS/’/ ‘\‘\‘
o
: \\‘ ‘\Ts
L
\
o Gme)
S | |
—————————— '——————---—I \
@) @) @)
X2 X3 X4 X5

- But how do we do backprop? Doesn’t the computational graph
have cycles now that

8; = h(Ty, Tiy1,Tiyar 8i-1)7

SEQUENCES

- ...not really. We can “unroll” it back:

Ys = f(x37x47x5,52) = f(x3,x4,x5,h(x2,x37x4,51)) =

= f(x3, 24, 25, h(2o, T3, T4, M(T1, To, T3, 50)))-

- So formally there is no problem.

- But, of course, lots of practical issues - it's a very deep network
with lots of shared weights...

RECURRENT NEURAL NETWORKS

=
=
(a4
L
-
o
=
(%2}

- “Simple” RNN:

SIMPLE RNN

- Formally:

a, =b+Ws,_, +Ux,,

s, = f(a),
0; = c+ Vs,
yi = h(o),

where f is the recurrent nonlinearity, and h is the output
function.
- Two problems:

- exploding gradients;
- vanishing gradients.

EXPLODING GRADIENTS

- We multiply by the same W, and the norm of the gradient grows
or decreases exponentially.

- What do we do when it explodes?

EXPLODING GRADIENTS

- We can simply bound the gradients from above!
- Two versions — bound either the norm or every value:

- sgd = optimizers.SGD(1lr=0.01, clipnorm=1.)
- sgd = optimizers.SGD(1lr=0.01, clipvalue=.05)

EXPLODING GRADIENTS

- (Pascanu et al,, 2013) - nice pictures about it:

EXPLODING GRADIENTS

- Also explains where such gaps come from — RNNs have
“bifurcation points”:

1
X

0.8

L)
13

-3 bz -2.5 bl -2 b

BIDIRECTIONAL RNN

- Sometimes we need context from both directions:

Yo Y1 Y2 Y3

So | w,U | | W,U]

BIDIRECTIONAL RNN

- Formally:
s, =o(b+Ws,_, +Ux,),
sp=0 (b +W’s;,; +U'x,),
o, =c+ Vs, +V's],
Y. =h(o,).

- This, of course, generalizes to any other sort of constructions.

LSTM AND GRU

LSTM

- Vanishing gradients: we have to multiply by W every time.
- This makes it impossible to have long-term memory.

- What do we do?..

LSTM

- ..we have seen the basic idea in ResNet: we have to provide the
“constant error carousel”, a shortcut for the gradients.

- Idea from the mid-1990s (Schmidhuber): let's construct RNNs
from a more complex unit that has the shortcut and controls
memory explicitly.

- LSTM (long short-term memory).

LSTM

- “Vanilla” LSTM: ¢, is the cell state, and h, is the hidden state.

- Input gate and forget gate control whether we change ¢, to the
new candidate cell state.

[ssieiiose]

"""""" cell
sioie
‘ @*W output »@ o
| | : /—’ “““ Py >@
} i [o ! e
! I

|

|

|

|

|

: |

! |

| |

! |

A L mpui :

= o e ’
|

B : th cand. :

|

: I

! |

|

: :

)

|

|

LSTM

- Formally:

¢; =tanh (W, x, + W, .h, ; +b,) candidate cell state

iy, =o(Wyx,+Wyh, 1 +Db;) input gate
f, =0 (Wopx,+ Wy h, 1 +by) forget gate
o, =0 (W,x,+Wyh_;+b,) output gate
¢ =f,0¢4+i0c, cell state
h, = o, ®tanh(c,) block output

- So the LSTM cell is able to control the cell state with the hidden
state and weights.
* Very flexible, and if the forget gate is closed (f, = 1), we have

) dc
¢, =¢_1+1,0c, SO £ —1.
dc; 4

- The constant error carousel!

LSTM

- LSTM was developed in mid-1990s (Hochreiter and Schmidhuber,
1995; 1997).
- Completely in its modern form in (Gers, Schmidhuber, 2000).

- One problem: we want to control ¢, but it's unavailable for the
gates! They only see h, 4, which is

hy_4 = 0,1 ©tanh(c,_4).

- So if the output gate is closed the behaviour of LSTM does not
depend on cell state at all.

- This is not good...

LSTM

.50 of course we add a few more weight matrices (peepholes).

|

|

x}—»@ :
Wpf T (e

forget J 1

Yy |

|

|

N input :

—»| gate |

|

cand. l) :

cell @ *@—»@ - I

[7| state) i :

Ct

.@ |

W, |

P9 output 5 X !

i - |-y

O
B o ;M

LSTM

- Formally:

iy = 0 (Wyx, + Wyihe) + Whici—1 + b;)
fo=0(WesX + Wishy o+ Wype,q +by)

0y =0 (WX, + Wiohy_y + WoCio1 +b,)

- Huge number of LSTM variations: we can basically remove any
kind of gate, add or remove each peephole, add or remove
activation functions etc.

- How do we choose?

LSTM

- «LSTM: a Search Space Odyssey» (Greff et al., 2015).
- Shows an experimental comparison of many variations.

- In particular, some significantly simpler architectures (with one
less gate!) did not lose to the vanilla LSTM much.

- This brings us to...

GRU

- ..Gated Recurrent Units (GRU); developed in (Cho et al., 2014).

- Also implements the constant error carousel, but simpler than
LSTM.

| Why update °
/W> gate

XU

(a) (6)

GRU

- Formally:

uy = o(Wouxy + Wiy by +by)

ry = o(Wyx, + Wy, hy_y +b,)

hy = tanh(Wo, X, + Wy (ry © hy_y))
hy = (1—u,) © hy +u, O hy_y

- Update gate and reset gate; there is no distinction between ¢,
and h,.

- Fewer matrices (6 vs. 8 or 11 with peepholes), fewer weights, but
only very slightly worse than LSTM.

- So you can fit more GRUs and have better networks on a given
computational budget.

GRU

- There are other variations too.
- (Jozefowicz, Zaremba, Sutskever, 2015): huge experimental

comparison, with an evolutionary approach.

- ldentified three interesting architectures.

|
|
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
L

(6)

THANK YOU!

Thank you for your attention!

1

	Working with sequences
	Recurrent Neural Networks
	LSTM and GRU
	SCRN
	What to do with RNNs

