
recurrent neural networks
Master's Deep Learning

Sergey Nikolenko

Harbour Space University, Barcelona, Spain
November 16, 2017



working with sequences



sequences

• Sequences: financial time series, language, sound...
• Different kinds of sequence-based problems:

3



sequences

• How to we apply a neural network to a sequence-based
problem?

• We can try to use a sliding window:

3



sequences

• ...but it would be better to have a hidden state and update it.
• This is the whole idea of recurrent neural networks (RNN).

• But how do we do backprop? Doesn’t the computational graph
have cycles now that

𝑠𝑖 = ℎ(𝑥𝑖, 𝑥𝑖+1, 𝑥𝑖+2, 𝑠𝑖−1)?
3



sequences

• ...not really. We can “unroll” it back:

𝑦6 = 𝑓(𝑥3, 𝑥4, 𝑥5, 𝑠2) = 𝑓(𝑥3, 𝑥4, 𝑥5, ℎ(𝑥2, 𝑥3, 𝑥4, 𝑠1)) =
= 𝑓(𝑥3, 𝑥4, 𝑥5, ℎ(𝑥2, 𝑥3, 𝑥4, ℎ(𝑥1, 𝑥2, 𝑥3, 𝑠0))).

• So formally there is no problem.
• But, of course, lots of practical issues – it’s a very deep network
with lots of shared weights...

3



recurrent neural networks



simple rnn

• “Simple” RNN:

5



simple rnn

• Formally:

a𝑡 = b +𝑊 s𝑡−1 + 𝑈x𝑡,
s𝑡 = 𝑓(a𝑡),
𝑜𝑡 = 𝑐 + 𝑉 s𝑡,
y𝑡 = ℎ(𝑜𝑡),

where 𝑓 is the recurrent nonlinearity, and ℎ is the output
function.

• Two problems:
• exploding gradients;
• vanishing gradients.

5



exploding gradients

• We multiply by the same𝑊 , and the norm of the gradient grows
or decreases exponentially.

• What do we do when it explodes?

6



exploding gradients

• We can simply bound the gradients from above!
• Two versions — bound either the norm or every value:

• sgd = optimizers.SGD(lr=0.01, clipnorm=1.)
• sgd = optimizers.SGD(lr=0.01, clipvalue=.05)

6



exploding gradients

• (Pascanu et al., 2013) – nice pictures about it:

6



exploding gradients

• Also explains where such gaps come from – RNNs have
“bifurcation points”:

6



bidirectional rnn

• Sometimes we need context from both directions:

7



bidirectional rnn

• Formally:

s𝑡 = 𝜎 (b +𝑊 s𝑡−1 + 𝑈x𝑡) ,
s′𝑡 = 𝜎 (b′ +𝑊 ′s′𝑡+1 + 𝑈 ′x𝑡) ,
𝑜𝑡 = 𝑐 + 𝑉 s𝑡 + 𝑉 ′s′𝑡,
y𝑡 = ℎ (𝑜𝑡) .

• This, of course, generalizes to any other sort of constructions.

7



lstm and gru



lstm

• Vanishing gradients: we have to multiply by𝑊 every time.
• This makes it impossible to have long-term memory.

• What do we do?..

9



lstm

• ...we have seen the basic idea in ResNet: we have to provide the
“constant error carousel”, a shortcut for the gradients.

• Idea from the mid-1990s (Schmidhuber): let’s construct RNNs
from a more complex unit that has the shortcut and controls
memory explicitly.

• LSTM (long short-term memory).

9



lstm

• “Vanilla” LSTM: 𝑐𝑡 is the cell state, and ℎ𝑡 is the hidden state.
• Input gate and forget gate control whether we change 𝑐𝑡 to the
new candidate cell state.

9



lstm

• Formally:

𝑐′𝑡 = tanh (𝑊𝑥𝑐x𝑡 +𝑊ℎ𝑐ℎ𝑡−1 + b𝑐′) candidate cell state
𝑖𝑡 = 𝜎 (𝑊𝑥𝑖x𝑡 +𝑊ℎ𝑖ℎ𝑡−1 + b𝑖) input gate
𝑓𝑡 = 𝜎 (𝑊𝑥𝑓x𝑡 +𝑊ℎ𝑓ℎ𝑡−1 + b𝑓) forget gate
𝑜𝑡 = 𝜎 (𝑊𝑥𝑜x𝑡 +𝑊ℎ𝑜ℎ𝑡−1 + b𝑜) output gate
𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑐′𝑡, cell state
ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝑐𝑡) block output

• So the LSTM cell is able to control the cell state with the hidden
state and weights.

• Very flexible, and if the forget gate is closed (𝑓𝑡 = 1), we have

𝑐𝑡 = 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑐′𝑡, so
𝜕𝑐𝑡

𝜕𝑐𝑡−1
= 1.

• The constant error carousel!
9



lstm

• LSTM was developed in mid-1990s (Hochreiter and Schmidhuber,
1995; 1997).

• Completely in its modern form in (Gers, Schmidhuber, 2000).
• One problem: we want to control 𝑐, but it’s unavailable for the
gates! They only see ℎ𝑡−1, which is

ℎ𝑡−1 = 𝑜𝑡−1 ⊙ tanh(𝑐𝑡−1).

• So if the output gate is closed the behaviour of LSTM does not
depend on cell state at all.

• This is not good...

9



lstm

• ...so of course we add a few more weight matrices (peepholes).

9



lstm

• Formally:

𝑖𝑡 = 𝜎 (𝑊𝑥𝑖x𝑡 +𝑊ℎ𝑖ℎ𝑡−1 +𝑊𝑝𝑖𝑐𝑡−1 + b𝑖)
𝑓𝑡 = 𝜎 (𝑊𝑥𝑓x𝑡 +𝑊ℎ𝑓ℎ𝑡−1 +𝑊𝑝𝑓𝑐𝑡−1 + b𝑓)
𝑜𝑡 = 𝜎 (𝑊𝑥𝑜x𝑡 +𝑊ℎ𝑜ℎ𝑡−1 +𝑊𝑝𝑜𝑐𝑡−1 + b𝑜)

• Huge number of LSTM variations: we can basically remove any
kind of gate, add or remove each peephole, add or remove
activation functions etc.

• How do we choose?

9



lstm

• «LSTM: a Search Space Odyssey» (Greff et al., 2015).
• Shows an experimental comparison of many variations.
• In particular, some significantly simpler architectures (with one
less gate!) did not lose to the vanilla LSTM much.

• This brings us to...

9



gru

• ...Gated Recurrent Units (GRU); developed in (Cho et al., 2014).
• Also implements the constant error carousel, but simpler than
LSTM.

10



gru

• Formally:

𝑢𝑡 = 𝜎(𝑊𝑥𝑢x𝑡 +𝑊ℎ𝑢ℎ𝑡−1 + b𝑢)
𝑟𝑡 = 𝜎(𝑊𝑥𝑟x𝑡 +𝑊ℎ𝑟ℎ𝑡−1 + b𝑟)
ℎ′
𝑡 = tanh(𝑊𝑥ℎ′x𝑡 +𝑊ℎℎ′(𝑟𝑡 ⊙ ℎ𝑡−1))

ℎ𝑡 = (1 − 𝑢𝑡) ⊙ ℎ′
𝑡 + 𝑢𝑡 ⊙ ℎ𝑡−1

• Update gate and reset gate; there is no distinction between 𝑐𝑡
and ℎ𝑡.

• Fewer matrices (6 vs. 8 or 11 with peepholes), fewer weights, but
only very slightly worse than LSTM.

• So you can fit more GRUs and have better networks on a given
computational budget.

10



gru

• There are other variations too.
• (Józefowicz, Zaremba, Sutskever, 2015): huge experimental
comparison, with an evolutionary approach.

• Identified three interesting architectures.

10



thank you!

Thank you for your attention!

11


	Working with sequences
	Recurrent Neural Networks
	LSTM and GRU
	SCRN
	What to do with RNNs

