
reinforcement learning i
Master's Deep Learning

Sergey Nikolenko

Harbour Space University, Barcelona, Spain
November 22, 2017



multiarmed bandits



problem setting

• So far we’ve either had a set of “correct answers” (supervised
learning) or simply nothing (unsupervised learning).

• But is it really how learning works in real life?
• How does a baby learn?

3



problem setting

• Hence, reinforcement learning.
• An agent interacts with the environment.
• On every step the agent can be in state 𝑠 ∈ 𝑆 and choose an
action 𝑎 ∈ 𝐴.

• The environment tells the agent its reward 𝑟 and the next state
𝑠′ ∈ 𝑆.

3



exploitation vs. exploration

• Exploitation vs. exploration: first learn, then apply.
• But when do we switch?
• Always a problem in reinforcement learning.

4



example

• Example: tic-tac-toe.
• How does an algorithm learn to play and win in tic-tac-toe?
• Example: genetic algorithm. Very slow, does not account for
information.

5



example

• States are board positions.
• Value function 𝑉 (𝑠) for every state.
• Reinforcement only at the end: the credit assignment problem.

5



example

• One version — propagate the reward back: if we got from 𝑠 to 𝑠′,
we update

𝑉 (𝑠) ∶= 𝑉 (𝑠) + 𝛼 [𝑉 (𝑠′) − 𝑉 (𝑠)] .

• This is called TD-learning (temporal difference learning), works
very well in practice; we’ll get to it.

5



one-state agents

• If |𝑆| = 1, the agent has a fixed set of actions 𝐴 and the
environment has no memory.

• The multiarmed bandit model.
• No credit assignment, only exploration vs. exploitation.

6



greedy algorithm

• Always choose the best option, where best is defined with
average reward so far:

𝑄𝑡(𝑎) =
𝑟1 + 𝑟2 + … + 𝑟𝑘𝑎

𝑘𝑎
.

• What’s wrong with this algorithm?

7



greedy algorithm

• Always choose the best option, where best is defined with
average reward so far:

𝑄𝑡(𝑎) =
𝑟1 + 𝑟2 + … + 𝑟𝑘𝑎

𝑘𝑎
.

• What’s wrong with this algorithm?
• Easy to miss the optimum if we’re unlucky with the initial
sample.

• Useful heuristic — optimism under uncertainty.
• You need evidence to reject, not to accept.

7



randomized strategies

• 𝜖-greedy strategy: choose the best (as above) action with
probability 1 − 𝜖 and random action with probability 𝜖.

• Start with large 𝜖, then gradually decrease.
• Boltzmann exploration:

𝜋𝑡(𝑎) = 𝑒𝑄𝑡(𝑎)/𝑇

∑𝑎′ 𝑒𝑄𝑡(𝑎′)/𝑇 ,

where 𝐸𝑅 is the expected reward, 𝑇 is the temperature.
• Temperature usually decreases with time.

8



linear reward-inaction algorithm

• For the case of binary payoffs (0-1).
• The linear reward-inaction algorithm adds linear reward to
probability of 𝑎𝑖 if it is successful:

𝑝𝑖 ∶= 𝑝𝑖 + 𝛼(1 − 𝑝𝑖),

𝑝𝑗 ∶= 𝑝𝑗 − 𝛼𝑝𝑗, 𝑗 ≠ 𝑖,

and nothing changes if unsuccessful.

9



linear reward-inaction algorithm

• The algorithm converges with probability 1 to a vector with one 1
and the rest 0.

• Does not always converge to the optimal strategy; but by
decreasing 𝛼 we decrease the probability of error.

• Linear reward-penalty: same thing, but unsuccessful actions get
punished (i.e., all the rest get a reward).

9



interval estimates

• One way to apply the optimism under uncertainty heuristic.
• Store the statistics 𝑛 and 𝑤 for every action, compute
confidence interval with confidence 1 − 𝛼, use the upper bound.

• Example: Bernoulli trials (coin tossing). With probability .95 the
average lies in the interval

( ̄𝑥 − 1.96 𝑠√𝑛, ̄𝑥 + 1.96 𝑠√𝑛) ,

where 1.96 is taken from Student’s 𝑡 distribution, 𝑛 is the
number of trials, 𝑠 = √ ∑(𝑥−𝑥̄)2

𝑛−1 .

• A great method if the assumptions hold (which is often unclear).

10



incremental updates

• How do we recompute 𝑄𝑡(𝑎) = 𝑟1+…+𝑟𝑘𝑎
𝑘𝑎

when new information
arrives?

• Easy:

𝑄𝑘+1 = 1
𝑘 + 1

𝑘+1
∑
𝑖=1

𝑟𝑖 = 1
𝑘 + 1 [𝑟𝑘+1 +

𝑘
∑
𝑖=1

𝑟𝑖] =

= 1
𝑘 + 1 (𝑟𝑘+1 + 𝑘𝑄𝑘) = 𝑄𝑘 + 1

𝑘 + 1 (𝑟𝑘+1 − 𝑄𝑘) .

11



incremental updates

• This is a special case of a general rule:

NewEstimate ∶= OldEstimate+ StepSize [Target− OldEstimate] .

• For the average, the step size is not constant: 𝛼𝑘(𝑎) = 1
𝑘𝑎
.

• Changing the sequence of steps, we can achieve other effects.

11



nonstationary case

• What if the payoffs change with time?
• We should value recent information highly and outdated
information low.

• Example: for an update rule

𝑄𝑘+1 = 𝑄𝑘 + 𝛼 [𝑟𝑘+1 − 𝑄𝑘]

with constant 𝛼 the weights decay exponentially:

𝑄𝑘 = 𝑄𝑘−1 + 𝛼 [𝑟𝑘 − 𝑄𝑘−1] = 𝛼𝑟𝑘 + (1 − 𝛼)𝑄𝑘−1 =

= 𝛼𝑟𝑘+(1−𝛼)𝛼𝑟𝑘−1+(1−𝛼)2𝑄𝑘−2 = (1−𝛼)𝑘𝑄0+
𝑘

∑
𝑖=1

𝛼(1−𝛼)𝑘−𝑖𝑟𝑖.

12



nonstationary case

• This update rule does not necessarily converge, which is good:
we want to follow new averages.

• General result – an update rule converges if the sequence of
weights satisfies

∞
∑
𝑘=1

𝛼𝑘(𝑎) = ∞ and
∞

∑
𝑘=1

𝛼2
𝑘(𝑎) < ∞.

• E.g., for 𝛼𝑘(𝑎) = 1
𝑘𝑎
it does.

12



optimism again

• We can simplify the search if we begin with optimistic initial
values.

• Start with large 𝑄0(𝑎), so that any real value is “disappointing”.
• But not too large — we need 𝑄0 to average out with the real 𝑟𝑖.

13



reinforcement comparison

• The intuition for reinforcement comparison is to look for “large”
payoffs; what is “large”?

• Let’s compare with average over all arms.
• These methods usually do not have action values 𝑄𝑘, only
preferences 𝑝𝑡(𝑎); probabilities can be obtained, e.g., with
softmax:

𝜋𝑡(𝑎) = 𝑒𝑝𝑡(𝑎)

∑𝑎′ 𝑒𝑝𝑡(𝑎′) .

14



reinforcement comparison

• And on every step we update both preference and average:

̄𝑟𝑡+1 = ̄𝑟𝑡 + 𝛼 (𝑟𝑡 − ̄𝑟𝑡) ,
𝑝𝑡+1(𝑎) =𝑝𝑡(𝑎𝑡) + 𝛽 (𝑟𝑡 − ̄𝑟𝑡) .

14



pursuit methods

• Pursuit methods store both expectation estimates and action
preferences, and preferences “follow” averages.

• E.g., 𝜋𝑡(𝑎) is the probability to choose 𝑎 at time 𝑡; after step 𝑡 we
look for a greedy strategy

𝑎∗
𝑡+1 = arg max𝑎𝑄𝑡+1(𝑎)

and change 𝜋 towards the greedy strategy:

𝜋𝑡+1(𝑎∗
𝑡+1) = 𝜋𝑡(𝑎∗

𝑡+1) + 𝛽 [1 − 𝜋𝑡(𝑎∗
𝑡+1)] ,

𝜋𝑡+1(𝑎) = 𝜋𝑡(𝑎) + 𝛽 [0 − 𝜋𝑡(𝑎)] .

15



dynamic programming

• Assume finite horizon of ℎ steps.
• We use the Bayesian approach to find the optimal strategy.
• Begin with random parameters {𝑝𝑖}, e.g., uniform; compute the
mapping from belief states (after several rounds) to actions.

• A state is expressed as 𝒮 = {𝑛1, 𝑤1, … , 𝑛𝑘, 𝑤𝑘}, where each
bandit 𝑖 has been run 𝑛𝑖 times with 𝑤𝑖 positive (binary) results.

16



dynamic programming

• 𝑉 ∗(𝒮) — expected remaining payoff.
• Recursion: if ∑𝑘

𝑖=1 𝑛𝑖 = ℎ, 𝑉 ∗(𝒮) = 0 since there’s no time left.
• If we know 𝑉 ∗ for all states when 𝑡 time slots are left, we can
recompute for 𝑡 + 1:

𝑉 ∗(𝑛1, 𝑤1, … , 𝑛𝑘, 𝑤𝑘) =
= max

𝑖
(𝜌𝑖(1 + 𝑉 ∗(… , 𝑛𝑖 + 1, 𝑤𝑖 + 1, …))+

(1 − 𝜌𝑖)𝑉 ∗(… , 𝑛𝑖 + 1, 𝑤𝑖, …)) ,

where 𝜌𝑖 is the posterior probability of action 𝑖 to be rewarded
(if 𝑝𝑖 had uniform priors then Laplace rule applies: 𝜌𝑖 = 𝑤𝑖+1

𝑛𝑖+2 ).

16



general problem setting



general case

• We now go back to the multi-state model.
• Agent and environment, the agent is rewarded by the
environment on every step: 𝑟𝑡, 𝑟𝑡+1, …

• Two different problems:
• learn the environment;
• find out the optimal way to operate in it.

• We begin by solving them separately and then unite.

18



what is virtue?

• But what is “good” in the long run? How do we evaluate an
algorithm?

• Episodic task: fixed finite horizon (a game of chess), we can
simply maximize the reward per episode (until terminal state).

• But what about continuous problems?

19



different models

• Finite horizon: agent only looks at the next ℎ steps: 𝐸 [∑ℎ
𝑡=0 𝑟𝑡].

• Infinite horizon: we’d like to account for the entire future but it’s
better to have a dollar today than tomorrow. How do we account
for it?

20



different models

• Finite horizon: agent only looks at the next ℎ steps: 𝐸 [∑ℎ
𝑡=0 𝑟𝑡].

• Infinite horizon: we’d like to account for the entire future but it’s
better to have a dollar today than tomorrow. How do we account
for it?

•

𝐸 [
∞

∑
𝑡=0

𝛾𝑡𝑟𝑡] ,

where 𝛾 is a constant discount factor.

20



different models

• Finite horizon: agent only looks at the next ℎ steps: 𝐸 [∑ℎ
𝑡=0 𝑟𝑡].

• Infinite horizon: we’d like to account for the entire future but it’s
better to have a dollar today than tomorrow. How do we account
for it?

•

𝐸 [
∞

∑
𝑡=0

𝛾𝑡𝑟𝑡] ,

where 𝛾 is a constant discount factor.
• Average reward model:

lim
ℎ→∞

𝐸 [ 1
ℎ

ℎ
∑
𝑡=0

𝑟𝑡] .

20



different models

• The infinite horizon model is the most common.
• Besides, it can be generalized to episodic problems: let 𝛾 = 1
and add one extra terminal state with reward 0 which is closed
to itself.

• So we will always assume

𝑅𝑡 =
∞

∑
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1.

• Estimating quality of an algorithm:
• convergence itself;
• rate of convergence (to a fixed share of optimality of after fixed
time);

• regret (the best but also the hardest measure).

21



markov processes

• Markov decision process:
• set of states 𝑆;
• set of actions 𝐴;
• reward function 𝑅 ∶ 𝑆 × 𝐴 → ℝ; expected reward when passing
from 𝑠 to 𝑠′ after action 𝑎 is 𝑅𝑎

𝑠𝑠′ ;
• transition functions between states 𝑝𝑎

𝑠𝑠′ ∶ 𝑆 × 𝐴 → Π(𝑆), where
Π(𝑆) is the set of probability distributions over 𝑆; the probability
to get from 𝑠 to 𝑠′ after 𝑎 is 𝑃 𝑎

𝑠𝑠′ .

• The model is Markov if transitions do not depend on the history
of transitions.

22



the markov property

• The Markov property:

𝑝(𝑠𝑡+1 = 𝑠′, 𝑟𝑡+1 = 𝑟 ∣ 𝑠𝑡, 𝑎𝑡, … , 𝑠0, 𝑎0) = 𝑝(𝑠𝑡+1 = 𝑠′, 𝑟𝑡+1 = 𝑟 ∣ 𝑠𝑡, 𝑎𝑡).

• Does not seem to be relevant: don’t we almost always need to
account for history?

• Well, yes, but we can still consider Markov processes. Why?

23



the markov property

• The Markov property:

𝑝(𝑠𝑡+1 = 𝑠′, 𝑟𝑡+1 = 𝑟 ∣ 𝑠𝑡, 𝑎𝑡, … , 𝑠0, 𝑎0) = 𝑝(𝑠𝑡+1 = 𝑠′, 𝑟𝑡+1 = 𝑟 ∣ 𝑠𝑡, 𝑎𝑡).

• Does not seem to be relevant: don’t we almost always need to
account for history?

• Well, yes, but we can still consider Markov processes. Why?
• Because we will simply define states 𝑆 so that each state holds
all relevant information.

• What is the state in chess? in poker?

23



value function and bellman
equations



reward function and value function

• Main difference compared to bandits – the difference between
reward function (immediate reinforcement) and value function
(total expected reinforcement if we start from this state).

• The essence of many reinforcement learning algorithms is to
estimate and optimize the value function.

• For Markov processes we can formally define

𝑉 𝜋(𝑠) = E𝜋 [𝑅𝑡 ∣ 𝑠𝑡 = 𝑠] = E𝜋 [
∞

∑
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1 ∣ 𝑠𝑡 = 𝑠] .

25



reward function and value function

• Or in even more detail – general reinforcement which is
expected if we start from state 𝑠 and action 𝑎:

𝑄𝜋(𝑠, 𝑎) = E𝜋 [𝑅𝑡 ∣ 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] =

= E𝜋 [
∞

∑
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1 ∣ 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] .

• Functions 𝑉 and 𝑄 are exactly what we need to estimate; if we
knew them we could simply choose 𝑎 that maximizes 𝑄(𝑠, 𝑎).

25



reward function and value function

• For a known strategy 𝜋, 𝑉 satisfies Bellman equations:

𝑉 𝜋(𝑠) = E𝜋 [𝑅𝑡 ∣ 𝑠𝑡 = 𝑠] = E𝜋 [
∞

∑
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1 ∣ 𝑠𝑡 = 𝑠]

= E𝜋 [𝑟𝑡+1 + 𝛾
∞

∑
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+2 ∣ 𝑠𝑡 = 𝑠]

= ∑
𝑎

𝜋(𝑠, 𝑎) ∑
𝑠′

𝑃 𝑎
𝑠𝑠′ (𝑅𝑎

𝑠𝑠′ + 𝛾E𝜋 [
∞

∑
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+2 ∣ 𝑠𝑡+1 = 𝑠′])

= ∑
𝑎

𝜋(𝑠, 𝑎) ∑
𝑠′

𝑃 𝑎
𝑠𝑠′ (𝑅𝑎

𝑠𝑠′ + 𝛾𝑉 𝜋(𝑠′)) .

25



two main problems

• If we know the model, the problem is to find the optimal
strategy.

• In a real situation, we don’t know the model, and we don’t know
the strategy.

• We begin with the first (easier) problem.

26



optimal state values

• Optimal state value is the expected total reward for an agent
that starts in this state and follows the optimal strategy:

𝑉 ∗(𝑠) = max
𝜋

E [
∞

∑
𝑡=0

𝛾𝑡𝑟𝑡] .

27



optimal state values

• Also satisfies similar Bellman equations:

𝑉 𝜋(𝑠) = max
𝑎

𝑄𝜋∗(𝑠, 𝑎) = max
𝑎

E𝜋∗ [𝑅𝑡 ∣ 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]

= max
𝑎

E𝜋∗ [
∞

∑
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1 ∣ 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]

= max
𝑎

E𝜋∗ [𝑟𝑡+1 + 𝛾
∞

∑
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+2 ∣ 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]

= max
𝑎

E [𝑟𝑡+1 + 𝛾𝑉 ∗(𝑠𝑡+1) ∣ 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]

= max
𝑎

∑
𝑠′

𝑃 𝑎
𝑠𝑠′ (𝑅𝑎

𝑠𝑠′ + 𝛾𝑉 ∗(𝑠′)) .

27



optimal state values

• I.e., 𝑉 ∗(𝑠) can be defined as a solution of the system

𝑉 ∗(𝑠) = max
𝑎

∑
𝑠′∈𝑆

𝑃 𝑎
𝑠𝑠′ (𝑅𝑎

𝑠𝑠′ + 𝛾𝑉 ∗(𝑠′)) ,

and then choose the optimal strategy as

𝜋∗(𝑠) = arg max𝑎 ∑
𝑠′∈𝑆

𝑃 𝑎
𝑠𝑠′ (𝑅𝑎

𝑠𝑠′ + 𝛾𝑉 ∗(𝑠′)) .

• How can we solve these equations?

27



policy evaluation

• To compute value functions for a given strategy, we can simply
iteratively recompute Bellman equations:

𝑉 (𝑠) ∶= ∑
𝑎

𝜋(𝑠, 𝑎) ∑
𝑠′∈𝑆

𝑃 𝑎
𝑠𝑠′ (𝑅𝑎

𝑠𝑠′ + 𝛾𝑉 (𝑠′)) ,

until convergence.
• Accordingly, for the optimal 𝑉 ∗ we solve equations with max:

𝑉 ∗(𝑠) ∶= max
𝑎

∑
𝑠′∈𝑆

𝑃 𝑎
𝑠𝑠′ (𝑅𝑎

𝑠𝑠′ + 𝛾𝑉 ∗(𝑠′)) .

28



value iteration

• The same for 𝑄 — repeat until convergence:

𝑄(𝑠, 𝑎) ∶= ∑
𝑠′∈𝑆

𝑃 𝑎
𝑠𝑠′ (𝑅𝑎

𝑠𝑠′ + 𝛾 ∑
𝑎′

𝜋(𝑠, 𝑎′)𝑄(𝑠, 𝑎′)) .

• And then simply set 𝑉 (𝑠) ∶= max𝑎 𝑄(𝑠, 𝑎).
• It is also easy to find optimal 𝑄∗(𝑠, 𝑎):

𝑄∗(𝑠, 𝑎) ∶= ∑
𝑠′∈𝑆

𝑃 𝑎
𝑠𝑠′ (𝑅𝑎

𝑠𝑠′ + 𝛾 max
𝑎′

𝑄∗(𝑠, 𝑎′)) .

29



stochastic version

• The recomputation in the previous algorithm uses information
from all preceding states:

𝑄(𝑠, 𝑎) ∶= ∑
𝑠′∈𝑆

𝑃 𝑎
𝑠𝑠′ (𝑅𝑎

𝑠𝑠′ + 𝛾 max
𝑎′

𝑄(𝑠, 𝑎′)) .

• We can make a stochastic version: for a current transition we
update

𝑄(𝑠, 𝑎) ∶= 𝑄(𝑠, 𝑎) + 𝛼(𝑟 + 𝛾 max
𝑎′

𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)).

• It works (theorem) if every pair (𝑠, 𝑎) occurs an infinite number
of times, 𝑠′ is chosen from distribution 𝑃 𝑎

𝑠𝑠′ , and 𝑟 is sampled
with mean 𝑅(𝑠, 𝑎) and bounded variance.

30



what's the problem?

• We have seen a simple algorithm that works well and converges
rapidly.

• What’s the problem? Have we solved reinforcement learning (in
a known model)?

31



what's the problem?

• We have seen a simple algorithm that works well and converges
rapidly.

• What’s the problem? Have we solved reinforcement learning (in
a known model)?

• Problem: huge number of states, even larger number of
state-action pairs.

• So we will have to approximate these equations and try to limit
search space.

• But first let’s talk some more about general approaches.

31



policy improvement

• How can we improve a strategy? For a strategy 𝜋, is it beneficial
to change the action for a given state 𝑠?

• If we choose a new action 𝑎 at state 𝑠 and then follow 𝜋, we get

𝑄𝜋(𝑠, 𝑎) = ∑
𝑠′

𝑃 𝑎
𝑠𝑠′ (𝑅𝑎

𝑠𝑠′ + 𝛾𝑉 𝜋(𝑠′)) .

• Policy improvement theorem: if, for some strategies 𝜋 and 𝜋′, for
all 𝑠

𝑄𝜋(𝑠, 𝜋′(𝑠)) ≥ 𝑉 𝜋(𝑠),

then 𝜋′ is better: for all 𝑠 𝑉 𝜋′(𝑠) ≥ 𝑉 𝜋(𝑠).
• Proof: left as an exercise for rewriting Bellman equations.

32



policy improvement

• This gives a natural greedy algorithm (policy iteration):
• compute 𝑉 𝜋;
• update 𝜋′(𝑠) = arg max𝑎𝑄𝜋(𝑠, 𝑎);
• repeat.

• We will improve the strategy until it stops improving.
• Why does it stop, by the way?

32



value iteration

• Two-step process: 𝑉 → 𝜋 → 𝑉 → ….
• It may be hard to estimate 𝑉 . Let us stochastically stop after
one step; value iteration:

𝑉𝑘+1(𝑠) = max
𝑎

E [𝑟𝑡+1 + 𝛾𝑉𝑘(𝑠𝑡+1) ∣ 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] =

= max
𝑎

∑
𝑠′

𝑃 𝑎
𝑠𝑠′ (𝑅𝑎

𝑠𝑠′ + 𝛾𝑉𝑘(𝑠′)) .

• It’s the same as solving Bellman equations with the max.

33



policy iteration

• We can look for the optimal strategy with a simple iterative
algorithm.

• PolicyIteration:
• Initialize 𝜋.
• Repeat:

• compute state values for strategy 𝜋 by solving a system of linear
equations

𝑉𝜋(𝑠) = 𝑅(𝑠, 𝜋(𝑠)) + 𝛾 ∑
𝑠′∈𝑆

𝑃 𝜋(𝑠)
𝑠𝑠′ 𝑉𝜋(𝑠′),

• improve the strategy on every state:

𝜋′(𝑠) ∶= arg max𝑎 (𝑅(𝑠, 𝑎) + 𝛾 ∑
𝑠′∈𝑆

𝑃 𝑎
𝑠𝑠′ 𝑉𝜋(𝑠′)) ;

• until 𝜋 ≠ 𝜋′.

34



policy iteration

• Why does it converge?

35



policy iteration

• Why does it converge?
• On every step it strictly improves the objective function, and
there is a finite number (|𝐴||𝑆|) of strategies.

• There are other versions; the common theme is to recompute 𝜋
and 𝑉 until convergence.

35



thank you!

Thank you for your attention!

36


	Multiarmed bandits
	General problem setting
	Value function and Bellman equations
	Monte Carlo methods and TD-learning
	Representing the value function
	Deep Q-Learning
	Policy gradient and robotics
	AlphaGo

