REINFORCEMENT LEARNING |

MASTER'S DEEP LEARNING

Sergey Nikolenko

Harbour Space University, Barcelona, Spain
November 22, 2017

MULTIARMED BANDITS

PROBLEM SETTING

- So far we've either had a set of “correct answers” (supervised
learning) or simply nothing (unsupervised learning).

- Butis it really how learning works in real life?
- How does a baby learn?

PROBLEM SETTING

- Hence, reinforcement learning.

- An agent interacts with the environment.

- On every step the agent can be in state s € S and choose an
action a € A.

- The environment tells the agent its reward r and the next state
s’es.

EXPLOITATION VS. EXPLORATION

- Exploitation vs. exploration: first learn, then apply.
- But when do we switch?

- Always a problem in reinforcement learning.

EXAMPLE

- Example: tic-tac-toe.
- How does an algorithm learn to play and win in tic-tac-toe?

- Example: genetic algorithm. Very slow, does not account for
information.

EXAMPLE

- States are board positions.
- Value function V(s) for every state.
- Reinforcement only at the end: the credit assignment problem.

EXAMPLE

- One version — propagate the reward back: if we got from s to ¢,

we update
V(s):=V(s)+alV(s)—V(s)].

- This is called TD-learning (temporal difference learning), works
very well in practice; we'll get to it.

ONE-STATE AGENTS

- If |S| = 1, the agent has a fixed set of actions A and the
environment has no memory.

- The multiarmed bandit model.

- No credit assignment, only exploration vs. exploitation.

GREEDY ALGORITHM

- Always choose the best option, where best is defined with
average reward so far:

75, ar g O coe TP Tk,

Qi(a) = k

a

- What's wrong with this algorithm?

GREEDY ALGORITHM

- Always choose the best option, where best is defined with
average reward so far:

75, ar P S ooe +7"ka
2 .

Qi(a) =

a

- What's wrong with this algorithm?

- Easy to miss the optimum if we're unlucky with the initial
sample.

- Useful heuristic — optimism under uncertainty.

- You need evidence to reject, not to accept.

RANDOMIZED STRATEGIES

- e-greedy strategy: choose the best (as above) action with
probability 1 — e and random action with probability e.

- Start with large ¢, then gradually decrease.

- Boltzmann exploration:

th, (a)/T

mila) = > e@a/T

where ER is the expected reward, T is the temperature.
- Temperature usually decreases with time.

LINEAR REWARD-INACTION ALGORITHM

- For the case of binary payoffs (0-1).

- The linear reward-inaction algorithm adds linear reward to
probability of a, if it is successful:

pi i=p; + ol —py),

b; :=p; —apy, J# i,

and nothing changes if unsuccessful.

LINEAR REWARD-INACTION ALGORITHM

- The algorithm converges with probability 1 to a vector with one 1
and the rest 0.

- Does not always converge to the optimal strategy; but by
decreasing « we decrease the probability of error.

- Linear reward-penalty: same thing, but unsuccessful actions get
punished (i.e, all the rest get a reward).

INTERVAL ESTIMATES

- One way to apply the optimism under uncertainty heuristic.

- Store the statistics n and w for every action, compute
confidence interval with confidence 1 — a, use the upper bound.

- Example: Bernoulli trials (coin tossing). With probability .95 the
average lies in the interval

(x —1.96—— .7 + 1.96s> 7

vn vn
where 1.96 is taken from Student’s ¢ distribution, n is the
number of trials, s = |/ 2@=2)*,

- A great method if the assumptions hold (which is often unclear).

INCREMENTAL UPDATES

- How do we recompute @, (a) = < when new information

arrives?

Ty +'“+7'k
k(l

- Easy:

L | k
Qrr1 = m;ﬁ =] lrm +Zri1 =

g=il

1 1
“rr1 (Tir1 +EQy) = Qp + — Er1 (Thr1 — Q) -

1

INCREMENTAL UPDATES

- This is a special case of a general rule:
NewEstimate := OldEstimate + StepSize [Target — OldEstimate].

- For the average, the step size is not constant: ay,(a) = 2.

- Changing the sequence of steps, we can achieve other effects.

1

NONSTATIONARY CASE

- What if the payoffs change with time?

- We should value recent information highly and outdated
information low.

- Example: for an update rule
Qi1 = Qp + [y — Q]
with constant a the weights decay exponentially:
Qr=Qp 1 +afr,—Qpql=ar,+(1-a)Q_1 =

k
= arpt(l—a)ar, 1 +(1-0)?Qpp = (1—(1)"'@0-1-2 a(l—a)*ir,

Bo
i=1

NONSTATIONARY CASE

- This update rule does not necessarily converge, which is good:
we want to follow new averages.

- General result — an update rule converges if the sequence of
weights satisfies

Zozk(a) =oco and Zai(a) < 0.
k=1 k=1

- BEg, for oy (a) = & it does.

OPTIMISM AGAIN

- We can simplify the search if we begin with optimistic initial
values.

- Start with large Q,(a), so that any real value is “disappointing”.

- But not too large — we need @, to average out with the real r;.

REINFORCEMENT COMPARISON

- The intuition for reinforcement comparison is to look for “large”
payoffs; what is “large”?

- Let's compare with average over all arms.

- These methods usually do not have action values @, only

preferences p,(a); probabilities can be obtained, e.g., with
softmax:
ept,(a/)

Z , ept(a/) '
a

m(a) =

14

REINFORCEMENT COMPARISON

- And on every step we update both preference and average:

Typ1 =Ty +a(ry —7y),

Pe1(a) =pilay) + B(ry — 7).

14

PURSUIT METHODS

- Pursuit methods store both expectation estimates and action
preferences, and preferences “follow” averages.

- E.g, m(a) is the probability to choose a at time ¢; after step ¢ we
look for a greedy strategy

ay;; = argmax Q. q(a)
and change 7 towards the greedy strategy:

7Tt+1(a1*s+1) = ﬂt(a;‘:—l) + B [1 - ﬂ't(aj‘fﬂ)])

Ty1(a) = m(a) + B0 —my(a)].

DYNAMIC PROGRAMMING

- Assume finite horizon of h steps.
- We use the Bayesian approach to find the optimal strategy.

- Begin with random parameters {p,}, e.g., uniform; compute the
mapping from belief states (after several rounds) to actions.

- A state is expressed as § = {ny, wy, ..., ny, w; }, where each
bandit i has been run n, times with w; positive (binary) results.

16

DYNAMIC PROGRAMMING

- V*(8) — expected remaining payoff.
- Recursion: if Zle n;, = h, V*(8) = 0 since there's no time left.

- If we know V* for all states when ¢ time slots are left, we can
recompute for ¢ + 1:

V*(nlawla ankawk> =

=max (p,(1+V*(...,n; +1L,w, +1,...))+

(1—=p)V*(eeoyn; + Lw,, ...)),

where p, is the posterior probability of action ¢ to be rewarded

(if p, had uniform priors then Laplace rule applies: p;, = ”:E)

16

GENERAL PROBLEM SETTING

GENERAL CASE

- We now go back to the multi-state model.
- Agent and environment, the agent is rewarded by the
environment on every step: r,, 7,4, .
- Two different problems:
- learn the environment;
- find out the optimal way to operate in it.

- We begin by solving them separately and then unite.

WHAT IS VIRTUE?

- But what is “good” in the long run? How do we evaluate an
algorithm?

- Episodic task: fixed finite horizon (a game of chess), we can
simply maximize the reward per episode (until terminal state).

- But what about continuous problems?

19

DIFFERENT MODELS

- Finite horizon: agent only looks at the next h steps: E [Z?:o rt].

- Infinite horizon: we'd like to account for the entire future but it's
better to have a dollar today than tomorrow. How do we account
for it?

20

DIFFERENT MODELS

- Finite horizon: agent only looks at the next h steps: E [Z?:o rt].

- Infinite horizon: we'd like to account for the entire future but it's
better to have a dollar today than tomorrow. How do we account
for it?

E li ’Ytrt‘|)
t=0

where v is a constant discount factor.

20

DIFFERENT MODELS

- Finite horizon: agent only looks at the next h steps: E [Z?:o rt].

- Infinite horizon: we'd like to account for the entire future but it's
better to have a dollar today than tomorrow. How do we account
for it?

E li ’Ytrt‘|)
t=0

where v is a constant discount factor.

- Average reward model:

1
lim F | —

h—o0

>
-
”MF
o

20

DIFFERENT MODELS

- The infinite horizon model is the most common.

- Besides, it can be generalized to episodic problems: let v =1
and add one extra terminal state with reward 0 which is closed
to itself.

- So we will always assume

oo
_ k
R, = E VTt kt1-
k=0

- Estimating quality of an algorithm:
- convergence itself;

- rate of convergence (to a fixed share of optimality of after fixed
time);
- regret (the best but also the hardest measure).

21

MARKOV PROCESSES

- Markov decision process:

- set of states S;

- set of actions A;

- reward function R: S x A — R; expected reward when passing
from s to s” after action a is R%_,;

- transition functions between states p?_, : S x A — TI(S), where
I1(S) is the set of probability distributions over S; the probability
to get from s to s” after a is P?,.

- The model is Markov if transitions do not depend on the history
of transitions.

22

THE MARKOV PROPERTY

- The Markov property:
p(sii1 = S/,T‘t+1 =7T]84,a4,.,80,a0) = P(Sp41 = S/,T‘t+1 =718y, a4).

- Does not seem to be relevant: don’t we almost always need to
account for history?

- Well, yes, but we can still consider Markov processes. Why?

23

THE MARKOV PROPERTY

- The Markov property:
P(spp1 =8 Tpa1 =7 | 84,4, ,80,00) = P(Sp1 =8 Tpe1 =7 | 4, a4)-
- Does not seem to be relevant: don’t we almost always need to
account for history?
- Well, yes, but we can still consider Markov processes. Why?

- Because we will simply define states S so that each state holds
all relevant information.

- What is the state in chess? in poker?

23

VALUE FUNCTION AND BELLMAN
EQUATIONS

REWARD FUNCTION AND VALUE FUNCTION

- Main difference compared to bandits - the difference between
reward function (immediate reinforcement) and value function
(total expected reinforcement if we start from this state).

- The essence of many reinforcement learning algorithms is to
estimate and optimize the value function.

- For Markov processes we can formally define

V™(s)=E_[R,| s, =s] = lZW Pompnn st—sl .

25

REWARD FUNCTION AND VALUE FUNCTION

- Orin even more detail — general reinforcement which is
expected if we start from state s and action a:

Q"(s,a) =E_ [R, | s, =s,a, =a] =

_ k _ _
=E; E VT bk | sy =s,a,=a
k=0

- Functions V and @ are exactly what we need to estimate; if we
knew them we could simply choose a that maximizes Q(s, a).

25

REWARD FUNCTION AND VALUE FUNCTION

- For a known strategy =, V' satisfies Bellman equations:

V7(s) =E,[R; | s, =] lZ'V Teykil | 8¢ = 51

=E

i
k=0

— S n(s,0) Y P2, (Rfjs, 4 AE, [Z R 5,1)
a s’ k=0
= > (s,0) Y Pa, (Rey, +9V7(s))).

Tip1 T VZW%MH | sy = 51

25

TWO MAIN PROBLEMS

- If we know the model, the problem is to find the optimal
strategy.

- In a real situation, we don't know the model, and we don’t know
the strategy.

- We begin with the first (easier) problem.

26

OPTIMAL STATE VALUES

- Optimal state value is the expected total reward for an agent
that starts in this state and follows the optimal strategy:

V*(s) = max E [Z ”ytrt} .
T =0

27

OPTIMAL STATE VALUES

- Also satisfies similar Bellman equations:

V7™(s) =max Q™ (s,a) = maxE_. [R, | s, = s,a, = d]

o0

_ k _ —

= m(?XEw* [5 Vi | 80 = 8,0, = a‘|
k=0

oo
Beo — . _
Tyt +’Y§ 0l ’t+k+2|stéaata]

= max E,.
k=0

= mC?XE [re1 YV (5441) | 8¢ = 5,0, = q]

= IngX Z Pgs/ (R?S/ + ’yv*(s’)) .

27

OPTIMAL STATE VALUES

- l.e, V*(s) can be defined as a solution of the system

V*(s) =max » P2, (R%, +9V*(s)),

s’eS

and then choose the optimal strategy as

7*(s) = arg max_ Z P2, (R%, +vV*(s)).

s’eS

- How can we solve these equations?

27

POLICY EVALUATION

- To compute value functions for a given strategy, we can simply
iteratively recompute Bellman equations:

V(s) = Z 7(s,a) Z o, +4V(s)),

s’eS

until convergence.

- Accordingly, for the optimal V* we solve equations with max:

V*(—mdePa (R, +~V*(s")).
s’eS

28

VALUE ITERATION

- The same for (Q — repeat until convergence:

Q(s,a) := Z P2, (Rgs, —&—vzw(s,a/)Q(s,a’)) .

s’eS

- And then simply set V(s) := max, Q(s, a).

- Itis also easy to find optimal Q*(s, a):

Q*(s,a) == Z P2, (Rgs/ + ymax Q*(s,a’)) .

s’eS

29

STOCHASTIC VERSION

- The recomputation in the previous algorithm uses information
from all preceding states:

Q(s,a) := Z P2, (Rgs/ + ymax Q(s,d)) .

s’eS

- We can make a stochastic version: for a current transition we
update

Q(s,a) == Q(s,a) + ar + ymax Q(s",a’) — Q(s, a)).
- It works (theorem) if every pair (s,a) occurs an infinite number

of times, s is chosen from distribution P%,, and r is sampled
with mean R(s,a) and bounded variance.

30

WHAT'S THE PROBLEM?

- We have seen a simple algorithm that works well and converges
rapidly.

- What's the problem? Have we solved reinforcement learning (in
a known model)?

31

WHAT'S THE PROBLEM?

- We have seen a simple algorithm that works well and converges
rapidly.

- What's the problem? Have we solved reinforcement learning (in
a known model)?

- Problem: huge number of states, even larger number of
state-action pairs.

- So we will have to approximate these equations and try to limit
search space.

- But first let’s talk some more about general approaches.

31

POLICY IMPROVEMENT

- How can we improve a strategy? For a strategy m, is it beneficial
to change the action for a given state s?

- If we choose a new action «a at state s and then follow 7, we get
Q(s,0) = >_ P& (R +9V7(s))).
S/

- Policy improvement theorem: if, for some strategies = and =/, for

all s
Q" (s,m'(s)) 2 V7 (s),

then 7’ is better: for all s V™ (s) > V7(s).
- Proof: left as an exercise for rewriting Bellman equations.

32

POLICY IMPROVEMENT

- This gives a natural greedy algorithm (policy iteration):
- compute V~;
* update 7'(s) = argmax_Q" (s, a);
- repeat.

- We will improve the strategy until it stops improving.

- Why does it stop, by the way?

32

VALUE ITERATION

+ Two-step process: V -1 —V — ...

- It may be hard to estimate V. Let us stochastically stop after
one step; value iteration:

Vit1(s) = m(‘?‘XE[rt+1 +VVi(8441) | 8¢ = 5,0, = a] =

=max Y P% (R, +~Vi(s)).

s’

- It's the same as solving Bellman equations with the max.

33

POLICY ITERATION

- We can look for the optimal strategy with a simple iterative
algorithm.
- PolicyIteration:

- Initialize .
+ Repeat:
- compute state values for strategy = by solving a system of linear
equations

Vi(s) = R(s,m(s) +7 Y PTV(s"),
s’eS

- improve the strategy on every state:

7’ (s) = argmax (R(s,a) +v Z PS“S,VTF(S/)> g

s'eS

- untilw # 7.

34

POLICY ITERATION

- Why does it converge?

35

POLICY ITERATION

- Why does it converge?

- On every step it strictly improves the objective function, and
there is a finite number (| A|'Sl) of strategies.

- There are other versions; the common theme is to recompute =
and V until convergence.

starting
Vr

35

THANK YOU!

Thank you for your attention!

36

	Multiarmed bandits
	General problem setting
	Value function and Bellman equations
	Monte Carlo methods and TD-learning
	Representing the value function
	Deep Q-Learning
	Policy gradient and robotics
	AlphaGo

