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1. Introduction

In this article, we consider Shared Memory (SM) switch architecture. In SM
switches output queues are dynamically allocated from a shared memory pool.
Although memory sharing can provide a better queuing performance, by taking
advantage of the statistical multiplexing, it requires careful design of the buffer
management policy in order to guarantee a fair and robust operation. Irland [1978]
demonstrated that SM switches with complete sharing (i.e., a packet is accepted
if there is enough available space) perform poorly under overload conditions. The
problem is that a single output port can take over most of the memory, preventing
packets destined for other output ports from gaining access, which causes the total
switch throughput to drop. An important task of a buffer management policy is to
avoid starvation, for example by restricting the amount of buffering an output port
can use, which makes buffer space available to the less utilized ports and hopefully
increases the total switch throughput.

The buffer management policy has to decide for each incoming packet whether
to accept or reject it. In addition, the buffer management policy may have the ability
to preempt packets that have been already accepted. Clearly, the buffer management
policy has to ensure that at any point of time the memory consumed does not exceed
the total shared memory capacity. The buffer management policies are traditionally
classified to two categories: preemptive and nonpreemptive, according to whether
they utilize the preempt action. It is worth to note that nonpreemptive policies
with simple threshold-type controls can be implemented in a distributed fashion.
The tradeoff here is between ease of implementation and hardware (where nonpre-
emptive policies have an advantage) and higher performance (where preemptive
policies have an advantage). Both types of policies have been widely considered in
the networking literature. For a good survey of shared-memory buffer management
policies, the reader can refer to Arpaci and Copeland [2000].

The main class of nonpreemptive scheduling policies, which are also called static
threshold schemes, was considered by Irland [1978]. In sharing with maximum
queue lengths (SMXQ) scheme, each output queue has a static bound on its length
and a packet is accepted if there is a free space in the buffer and the corresponding
bound is not violated. In some schemes, like sharing with a maximum queue and
minimum allocation (SMQMA) due to Kamoun and Kleinrock [1980], each port
always has access to a minimum allocated space. The main problem of the static
threshold schemes is that they are not adaptive. When many queues are active
and the sum of their thresholds exceeds the buffer capacity, the buffer may fill up
completely, even though all queues are obeying the threshold constraints. Thus,
some queues can be starved, which leads to underutilization of the switch. On the
other hand, when very few queues are active, they are denied access to the idle
buffer space beyond the sum of their thresholds. This creates higher packet loss
rate for the active queues (see Choudhury and Hahne [1998]).

Another class of nonpreemptive policies includes dynamic threshold schemes. In
the Dynamic Threshold policy due to Choudhury and Hahne [1998], the threshold
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on a queue length at any instant of time is proportional to the current amount of
unused buffering in the switch multiplied by some constant. Packet arrivals for
an output port are blocked whenever the corresponding queue length equals or
exceeds the current threshold value. The main idea is that the Dynamic Threshold
policy deliberately holds a small amount of buffer space in reserve and divides the
remaining buffer space equally among the active output queues.

The class of preemptive policies has been also studied extensively. A delayed
resolution policy (DRP) was proposed by Thareja and Agrawala [1984]. The DRP
does not discard an arriving packet if there is space in the common buffer. If a packet
arrives and the common buffer is full, the arriving packet, or some other packet that
was already accepted, is discarded. The decision to drop a packet from a certain
queue of an output port can be made based on the state of the system or based on
different priority classes. Wei et al. [1991] propose to drop from the longest queue
in the switch, when the memory is full. A comparison of preemptive policies has
been provided by Kroner [1990].

We consider a N × N switch with shared memory of size M . A buffer man-
agement policy is presented with packet arrivals and has to serve packets online,
that is, without knowledge of future arrivals. The goal of the buffer management
policy is to maximize the number of packets sent, subject to the memory capac-
ity constraint. We use competitive analysis [Sleator and Tarjan 1985; Borodin and
El-Yaniv 1998], to study our policies. In competitive analysis the online policy is
compared with an optimal offline policy, which knows the entire input sequence
in advance. The advantage of competitive analysis is that a uniform performance
guarantee is provided over all input instances.

Our Results. We show that the well-known preemptive Longest Queue Drop
(LQD) policy due to Wei et al. [1991] is 2-competitive. We also demonstrate a
general lower bound of 4/3 on the performance of any deterministic online policy,
and a lower bound of

√
2 on the competitive ratio of the LQD policy. We fur-

ther analyze some popular nonpreemptive policies including Complete Partition,
Complete Sharing, Static Threshold and Dynamic Threshold. We establish that the
competitive ratio of the Complete Partition and the Complete Sharing policies is
O(N ) and this bound is approximately tight. Then, we demonstrate that a more so-
phisticated Static Threshold policy achieves a competitive ratio of of O(

√
N ) and

this bound is also nearly tight. Finally, we derive a lower bound of �(
√

N/ log N )
on the competitive ratio of the Dynamic Threshold policy under the default setting
of parameters (to be defined later), where the memory size M = �(N ).

Related Work. This work is most closely related to the work of Kesselman
and Mansour [2004], which considers nonpreemptive buffer management policies
for shared memory switches. The work of Kesselman and Mansour [2004] pro-
poses a new buffer management policy called Harmonic whose competitive ratio
is O(log N ) and establishes a lower bound of �(log N/ log log N ) on the perfor-
mance of any online nonpreemptive deterministic policy. In contrast to Kesselman
and Mansour [2004], in this article, we demonstrate that preemptive policies can
achieve a constant competitive ratio.

Azar and Richter [2005] consider a weighted multi-queue switch problem with
FIFO buffers and present a 4-competitive algorithm. An improved 3-competitive
algorithm is given by Azar and Richter [2004]. Albers and Schmidt [2005] develop
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a deterministic 1.89-competitive algorithm for the case of unit-value packets. In a
recent paper, Azar and Litichevskey [2006] derived a 1.58-competitive algorithm
for switches with large buffers.

Kesselman and Rosén [2006] study CIOQ switches with FIFO buffers. For the
case of packets with unit values, they present a switch policy that is 3-competitive
for any speedup. For the case of packets with variable values, they propose two
switch policies achieving a competitive ratio of 4S and 8 min(k, 2 log β), where S
is the speedup of the switch, k is the number of distinct packet values and β is the
ratio between the largest and the smallest value. Azar and Richter [2006] obtain a
8-competitive algorithm for CIOQ switches with FIFO buffers for the latter case.

The problem of throughput maximization in the context of a single buffer has
been explored extensively in recent years (see Epstein and Stee [2004] for a good
survey). Aiello et al. [2005] concentrate on the case where one cannot preempt
packets already in the buffer and consider the special case of two different packet
values. This model is extended to the case of variable value packets by Andelman
et al. [2003]. Kesselman et al. [2004] study preemptive policies for FIFO buffers
and introduce a new bounded-delay model.

The rest of the article is organized as follows. The model description appears in
Section 2. Section 3 contains analysis of the LQD policy. Analysis of alternative
policies appears in Section 4. We conclude with Section 5.

2. Model Description

We consider a N × N switch with shared memory of size M (see Figure 1). Packets,
of equal size, arrive at input ports, and each packet is labeled with the output port
on which it has to leave the switch. All the packets destined to a given output port
are organized in a First-In-First-Out (FIFO) queue.

Time is slotted. We divide each time step into two phases. The first phase is
the transmission phase during which the first packet from every non-empty output
queue is sent on the corresponding output link. The second phase is the arrival
phase during which at most one new packet may arrive at each input port. However,
our upper bounds will also hold for a bursty arrivals process, where multiple packets
may arrive simultaneously. During the arrival phase the input ports are served in
a fixed order from input port 1 to input port N . The buffer management policy
processes packets in the same order and the decision of whether to admit the packet
arriving at input port i depends only on the state of the buffer after processing the
arrivals at input ports 1, . . . , i − 1.

A buffer management policy determines how the shared memory is used by in-
dividual output ports of the switch. More specifically, when a packet arrives the
buffer management policy decides whether to accept or reject it. The accepted
packet can be later preempted, that is, dropped from the buffer. We consider mem-
oryless policies, whose decisions depend solely on the instantaneous state of the
buffer.

Next we introduce a few useful definitions. Let ALG be the buffer management
policy. It would be convenient to argue about the position of a packet p in the FIFO
order, that is, the number of packets preceding p in the queue.

Definition 2.1. We denote the position of a packet p in the FIFO order at the
end of time slot t by post

ALG(p).
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FIG. 1. An example of SM switch.

Definition 2.2. We denote by Lt
ALG(q) the length of output queue q at the end

of time slot t .

The buffer management policy accrues a unit value for each packet successfully
transmitted and gains no value on dropped packets. The aim of the buffer man-
agement policy is that of maximizing the total number of packets sent. Let σ be a
sequence of packets arriving at the inputs of the switch. Let VALG(σ ) and VOPT(σ ) be
the number of packets transmitted by an online policy ALG and an optimal offline
policy OPT, respectively. The throughput-competitive ratio is defined as follows.

Definition 2.3. An online buffer management policy ALG is c throughput-
competitive iff for every sequence of packets σ , VOPT(σ ) ≤ c · VALG(σ ) + a, where
a is a constant independent of σ .

Finally, we define a burst of packets, which will be extensively used in our lower
bound constructions.

Definition 2.4. We denote by burst a set of packets that arrive at the same or
at consequent time slots from different input ports and are all destined to the same
output port.

3. Analysis of Preemptive Policies

In this section, we first present a general lower bound and then analyze the LQD
policy.

3.1. GENERAL LOWER BOUND. We show that no deterministic online policy
can achieve throughput-competitive ratio better than 4/3.

THEOREM 3.1. The competitive ratio of any deterministic online policy is at
least 4/3 for sufficiently large N.

PROOF. Suppose that the buffer is controlled by a deterministic online policy
ALG. Consider the following scenario in which there are only two active output
ports. At time t = 0 the memory is empty and during the following �2M/(N − 2)�
time slots two bursts arrive. Each burst contains N/2 packets destined to output
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FIG. 2. Utilization of the queue of output port 1.

FIG. 3. Longest Queue Drop Policy (LQD).

ports 1 and 2, respectively. It must be the case that at time t = �2M/(N − 2)�,
ALG retains in its memory at most M/2 packets destined to either output port 1 or
2. WLOG, assume that it is output port 1. During the following M time slots, one
packet destined to output port 2 arrives every time slot.

Consider the time interval I = [0, �2M/(N − 2)� + M] (see Figure 2). On
the one hand, ALG is able to transmit at most �M(3N + 2)/(2(N − 2))� packets:
�4M/(N − 2)� packets during the first �2M/(N − 2)� time slots and M/2 and M
packets from output ports 1 and 2 during the following M time slots. On the other
hand, OPT buffers at time t = �2M/(N − 2)�, M packets destined to output port
1 and transmits �2M N/(N − 2)� packets: �4M/(N − 2)� packets during the first
�2M/(N − 2)� time slots and M and M packets from output ports 1 and 2 during
the following M time slots.

At time t +�2M/(N − 2)�+ M + 1 we repeat the scenario and so on. For a long
run the ratio between the number of packets sent by OPT and that of ALG, that is

4N
3N+2 , asymptotically approaches to 4/3, and the theorem follows.

3.2. ANALYSIS OF LQD POLICY. We demonstrate that the competitive ratio of
LQD is at most 2 and at least

√
2. The LQD policy is presented on Figure 3. Roughly

speaking, LQD tries to balance the throughput of all output ports.
In what follows, we assume a given input packet sequence σ . To analyze the

throughput of the LQD policy, we introduce some helpful definitions. The next
definition concerns packets that OPT delivers during a time slot while LQD does
not.

Definition 3.2. A packet transmitted by OPT at time slot t from output queue
q is an extra packet if at this time the corresponding output queue of LQD is idle.
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FIG. 4. A matching example.

FIG. 5. The matching routine for LQD.

Note that all extra packets sent by OPT should eventually appear in an output
queue of OPT when the corresponding LQD queue is empty. Now we introduce a
notion of potential extra packets.

Definition 3.3. We call a packet p in output queue q of OPT at time slot t a
potential extra packet if post

OPT(p) > Lt
LQD(q).

In order to prove that LQD achieves the competitive ratio of 2, we will match
each extra packet of OPT to a packet sent by LQD, in a way that each LQD packet
is matched at most once (see Figure 4).

The matching routine presented in Figure 5 guarantees that all potential extra
packets are matched to packets sent by LQD (this will be proved in what follows).
Note that all extra packets became at some point of time prior to their transmission
potential extra packets. The intuition is that we try to match potential extra packets
as early as they appear, which guarantees that all extra packets are also matched at
time they are sent by OPT. The matching routine is executed each time slot during
the arrival phase, and adds some matchings according to the actions of LQD and
OPT.

OBSERVATION 3.4. All extra packets are matched before they are transmitted.

We will show that the matching routine is feasible. First, we demonstrate a
technical yet important property, that is, for any pair of matched packets, the LQD,
packet is in a lower position in the memory than the OPT packet. This will guarantee
that for any pair of matched packets the LQD packet is sent before the OPT packet.
Observe that the two matched packets can be destined to different output ports.
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OBSERVATION 3.5. If at time slot t an OPT packet p from output queue q is
matched to an LQD packet p′, p′ �= p, then the LQD memory is full and some
packets from output queue q of LQD are dropped.

Since p is not matched by Step (2)(a), some packets from output queue q of LQD
are dropped. This also implies that the LQD memory is full.

We now show that the position of the matched packets is smaller in LQD than in
OPT.

CLAIM 3.6. Suppose at time slot t a packet p in OPT in output queue q, is
matched to packet p′ in LQD. Then post

OPT(p) ≥ post
LQD(p′).

PROOF. Suppose that p and p′ are matched at time t ′ ≤ t . First, note that if
post ′

OPT(p) ≥ post ′
LQD(p′) then post

OPT(p) ≥ post
LQD(p′), since both OPT and LQD

transmit packets at the same speed. It remains to prove that the claim holds at time
t ′, which will be done by considering the three possible cases for matching.

Step (1). The first case is when LQD preempts at time t ′ another packet p′′,
which is matched to p, and accepts p′. This implies that post ′

LQD(p′) ≤ post ′
LQD(p′′),

because LQD always preempts packets from the longest queue. Thus, the position
property remains satisfied through preemption.

Step (2)(a). The second case is when p arrives at time t ′ and is matched to itself.
By the definition of the matching, we have that

post ′
OPT(p) > Lt ′

LQD(q) ≥ post ′
LQD(p).

Note that we consider that same output queue in OPT and in LQD.
Step (2)(b). The third case is when p is matched to an arbitrary packet in the

LQD memory. By Observation 3.5, the memory of LQD is full at time t ′ and q
is the longest queue in the memory of LQD. By the definition of the matching,
post ′

OPT(p) > Lt ′
LQD(q). But the position of any packet in the LQD memory is at most

Lt ′
LQD(q). We obtain that

post ′
OPT(p) > Lt ′

LQD(q) ≥ post ′
LQD(p′).

Now we use the position property to show that we can always find an unmatched
packet in LQD to match to a potential extra OPT packet, when needed.

LEMMA 3.7. The matching process never fails.

PROOF. Consider the switch configuration at the end of a time slot t . If all
packets are matched by Step (1) or Step (2)(a) of the matching routine, we are
done. Otherwise, we will show that the number of unmatched potential extra OPT
packets is bounded by the number of unmatched LQD packets. By Observation 3.5,
the memory of LQD is full. Let the number of matched packets in OPT be x and the
number of matched packets in LQD be y. According to Claim 3.6, matched LQD
packets are scheduled not later than their OPT mates, which implies that x ≥ y.
Thus, the number of unmatched packets in OPT is bounded by M − x , which is
at most the number of unmatched packets in LQD, that is M − y. Therefore, Step
(2)(b) of the matching routine always succeeds.

Now we are ready to derive an upper bound the competitive ratio of LQD.
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THEOREM 3.8. The competitive ratio of the Longest Queue Drop policy is at
most 2.

PROOF. The number of packets transmitted by OPT is bounded by the number
of packets transmitted by LQD plus the number of extra packets. In accordance
with Lemma 3.7, the matching routine is feasible. This implies that the number
of extra packets is bounded by the number of packets sent by LQD. Therefore,
VOPT(σ ) ≤ 2VLQD(σ ).

We now derive a specific lower bound of
√

2 on the competitive ratio of the LQD
policy (improving upon a general lower bound of 4/3).

THEOREM 3.9. The competitive ratio of the Longest Queue Drop policy is at
least

√
2 for M > (N/3)2.

PROOF. Let us consider a 3A × 3A switch with memory equal M = L(A −
1)/2 + A, where L > A >> 1. We assume that L is a multiple of A. We divide the
output ports into three classes: Active, Overloaded, and Idle. Each class contains
A output ports. The idle output ports are not used in the analysis, but we need extra
input ports to produce packet arrivals for the active and overloaded output ports
(recall that the switch is N × N ).

Consider the following arrival pattern. Active output ports have an average load
of 1, and this load is periodic and very bursty. The period length is L and it starts
with a burst of L packets that arrive over A input ports in L/A successive time
slots. Then, there are no arrivals to that output port for L − L/A time slots. Bursts
to the various active output ports are evenly staggered in time, with a new one
starting every L/A time slots, just as the previous burst completes. Thus, given
enough buffering, A fully utilized input ports will keep the A active output ports
completely busy. Overloaded output ports receive exactly 2 packets every time slot.
(Recall that we have 2A available input ports that are not deployed in generating
packets for active output ports. We use these input ports to generate packets for the
overloaded output ports.)

Now we will analyze the performance of OPT and LQD for this system. First, let
us describe the optimal policy. For each overloaded output port at each time slot,
OPT admits only one of the two arriving packets. This maintains a queue of one
packet for each overloaded output port. OPT also accepts all the packets destined
to the active output ports. The queue length at an active output port will form a
sawtooth waveform over time, with a fast linear rise at rate A − 1 for L/A time
slots, then a slow linear fall at rate 1 for L − L/A time slots (see Figure 6). The
total queue length, summed over all active output ports, will be fixed and equal to
L(A − 1)/2. Hence, the total queue length over all output ports is L(A − 1)/2 + A.
This exactly equals the buffer size M . Thus, OPT ensures that both the active and
overloaded output ports are completely utilized (i.e., they send a packet each time
slot), so OPT’s throughput at each time slot is exactly 2A. Note that the buffer is
completely full all the time.

Now let us consider the performance of LQD. In contrast with OPT, LQD allows
the overloaded output ports to take up a substantial amount of memory space.
This keeps the active output ports from getting all the buffering they need for
their bursty loads. With LQD, the maximum queue length in the system (i.e., the
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FIG. 6. Active output port utilization.

length of any overloaded port) is approximately constant.1 The maximum queue
length fluctuates near x L , with ripples of amplitude L/A. Since 1/A << x , these
ripples are a small fraction of the maximum queue length. We will show shortly that
x ≈ (

√
2 − 1) ≈ 0.41. The queue length at each active output port will resemble a

clipped sawtooth waveform over time, with a fast linear rise at rate A − 1 to level
x L , then a nearly flat plateau at x L for (L/A) − x L/(A − 1) time slots, then a
slow linear fall at rate 1 for x L time slots, then steady value of 0 for the remaining
L − (L/A) − x L time slots (see Figure 6).

To solve for x , let us take a snapshot of the system at the end of a burst to an
active output port. Each of the A overloaded output ports and the single active
port that received the latest burst have length x L . Of the A active output ports, x A
of them have positive queue lengths, evenly staggered and ranging from x L to 0
(viz., x L , x L − (L/A), x L − (2L/A), x L − (3L/A),...). The other (1 − x)A active
ports have no packets queued. The total memory space consumed by the active
output ports is approximately x2 AL/2; to see this, approximate the sum with an
integral, which amounts to taking the area of a right triangle with width x A and
height x L . The total memory space consumed by the overloaded output ports is
approximately x AL . We set the sum of these two quantities equal to the memory
size M = L(A − 1)/2 + A. Recalling that L > A >> 1 and solving for x yields:
x ≈ (

√
2 − 1) ≈ 0.41.

Now let us figure the throughput of LQD. In every period of L time slots, the
number of packets served at any active output port is the sum of the L/A packets
served while that port’s burst is arriving, plus the x L packets served from the queue
after the burst has stopped. Since 1/A << x , the throughput rate is approximately
x . Thus, the total throughput of the active output ports is approximately (

√
2−1)A,

and the total system average throughput of LQD is approximately (
√

2−1)A+ A =√
2 · A. Comparing this with OPT’s average throughput of 2A, we obtain that the

competitive ratio of LQD is at least (2 · A)/(
√

2 · A) = √
2.

1The overall system is periodic with period L , but the maximum queue length repeats more frequently,
with period L/A, corresponding to the length of successive bursts to successive active output ports.
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4. Analysis of Alternative Policies

In this section, we consider alternative scheduling policies. We show that most of
the policies have very poor competitive performance. One can expect such results
because we compare preemptive LQD policy with nonpreemptive policies. It is
worth to note that there is a correlation between the competitiveness of the policies
derived here and their performance observed by Choudhury and Hahne [1998] (the
better the competitive ratio, the higher the performance).

4.1. SIMPLE POLICIES. In this section, we consider the Complete Partition and
the Complete Sharing policies. The Complete Partition policy allocates to each
output port exactly 1/N fraction of the buffer space. On the other hand, the Complete
Sharing policy admits packets if there is some free space in the buffer allowing an
output port to monopolize the whole memory. We demonstrate that the Complete
Partition and Complete Sharing policies are O(N )-competitive and these bounds
are almost tight.

We start with the analysis of Complete Partition. In the next theorem, we derive
an upper bound on the competitive ratio of the Complete Partition policy.

THEOREM 4.1. The competitive ratio of the Complete Partition policy is at most
N .

PROOF. Obviously, for each output port Complete Partition admits at least 1/N
fraction of packets accepted by OPT since it is allocated a queue of size M/N and
packets are transmitted at full speed. The theorem follows.

The following theorem establishes a lower bound on the performance of the
Complete Partition policy.

THEOREM 4.2. The competitive ratio of the Complete Partition policy is at least
N/2 for sufficiently large N.

PROOF. Consider the following scenario. At time t = 0 the buffer is empty and
during each of the following �M/(N−1)� time slots arrives a burst of N packets des-
tined to output port 1. Throughout the next M time slots there are no packet arrivals.

OPT, has its buffer full at time t = �M/(N − 1)� fully utilizing output port
1 during the interval I = [0, �M/(N − 1)� + M]. On the other hand, under the
Complete Partition policy at time t = �M/(N − 1)� the queue of output port 1
contains �M/N� packets and thus at most �M/(N − 1) + M/N� packets are trans-
mitted throughout I. At time t = �M/(N − 1)� + M + 1 the scenario is repeated
and so on. Therefore, the competitive ratio of the Complete Partition policy is at
least

M/(N − 1) + M
M/(N − 1) + M/N

= N 2

2N − 1
.

Now we proceed to analyze the Complete Sharing policy. The next theorem
shows an upper bound on the performance of the Complete Sharing policy.

THEOREM 4.3. The competitive ratio of the Complete Sharing policy is at most
N + 1.

PROOF. We construct a matching between extra packets from OPT and packets
sent by the Complete Sharing policy. Note that the number of potential extra OPT
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FIG. 7. General Threshold Drop policy.

packet does not change if no packets are dropped by the Complete Sharing policy
during the arrival phase. When Complete Sharing drops some packets, the length
of the longest queue in its buffer is at least M/N . At the same time, the number
of packets in the OPT buffer with position less than or equal to l (1 ≤ l ≤ M) is
bounded by l N while the total number of packets is at most M . Hence, one can
match each potential extra OPT packet to a packet in the Complete Sharing buffer
with smaller or equal position so that no Complete Sharing packet is matched more
than N times. The theorem follows.

In the following theorem, we demonstrate a lower bound on the competitive ratio
of the Complete Sharing policy.

THEOREM 4.4. The competitive ratio of the Complete Sharing policy is at least
N .

PROOF. Consider the following scenario. At time t = 0 the buffer is empty
and during each of the following �M/(N − 1)� time slots arrives a burst of N
packets destined to output port 1. Then, during a sufficiently long time interval
I = [�M/(N − 1)� + 1, T ], every time slot arrives a packet for output port 1
followed by N − 1 packets, one for each other output port.

Note that OPT will transmit at least �N (T − M/(N − 1))� packets, by admitting
N packets destined to all output ports every time slot t > �M/(N − 1)�. On the
other hand, under the Complete Sharing policy arrivals for all output ports, but 1,
will be blocked. Hence, the throughput of the Complete Sharing policy is bounded
by T + M .

4.2. THRESHOLD-TYPE CONTROL POLICIES. In this section we study the Static
Threshold and the Dynamic Threshold policies. In both of these policies a packet
is admitted into the buffer if there is a free space and the corresponding threshold
on the queue length is not exceeded (see Figure 7). The Static Threshold policy sets
this threshold to the fraction f of the total memory while for Dynamic Threshold
it equals the current amount of free memory multiplied by a parameter α.

We first consider the Static Threshold policy and demonstrate that its competitive
ratio is at most

√
N + 1 and this bound is almost tight (up to a constant factor).

Then, we proceed to the Dynamic Threshold policy and show that for α = 1
its competitive ratio is bounded from below by �(

√
N/ log N ) for M = �(N ).

Note that one can still obtain better bounds for the Dynamic Threshold policy with
properly tuned or variable α.

The next theorem shows that the competitive ratio of the Static Threshold policy
is at least �(max(1/ f, f N )).

THEOREM 4.5. The competitive ratio of the Static Threshold policy is at least
�(max(1/ f, f N )) for sufficiently large N.
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PROOF. These bounds are obtained using scenarios that are analogous to that
of Theorem 4.2 and Theorem 4.4, respectively.

To derive the first bound, consider the following scenario. At time t = 0 the
buffer is empty and during each of the following �M/(N − 1)� time slots arrives
a burst of N packets destined to output port 1. Throughout the next M time slots,
there are no packet arrivals. OPT has its buffer full at time t = �M/(N − 1)� fully
utilizing output port 1 during the interval I = [0, �M/(N −1)�+ M]. On the other
hand, under the Static Threshold policy at time t = �M/(N − 1)� the queue of
output port 1 contains � f M� packets and thus at most �M/(N −1)+ f M� packets
are transmitted throughout I. At time t = �M/(N − 1)� + M + 1 the scenario is
repeated and so on. Therefore, the competitive ratio of the Static Threshold policy
is at least

M/(N − 1) + M
M/(N − 1) + f M

,

which is �(1/ f ) for sufficiently large N .
To derive the second bound, consider the following scenario. At time t = 0 the

buffer is empty and during each of the following �M/(N −1/ f )� time slots arrives a
burst of � f M+M/(N−1/ f )�packets destined to each of output ports 1, . . . , �1/ f �.
Then, during a sufficiently long time interval I = [�M/(N − 1/ f )� + 1, T ], every
time slot arrive �1/ f � packets for output ports 1, . . . , �1/ f � followed by N −�1/ f �
packets for output ports �1/ f � + 1, . . . , N . Note that OPT will transmit at least
�M/( f (N − 1/ f )) + N (T − M/(N − 1/ f ))� packets, by admitting N packets
destined to all output ports every time slot t > �M/(N −1/ f )�. On the other hand,
under the Static Threshold policy arrivals for all output ports, but 1, . . . , �1/ f �,
will be blocked. Hence, the throughput of the Complete Sharing policy is bounded
by M/( f (N − 1/ f )) + T/ f + M . Henceforth, the competitive ratio of the Static
Threshold policy is at least

M/( f (N − 1/ f )) + N (T − M/(N − 1/ f ))

M/( f (N − 1/ f )) + T/ f + M
,

which is �( f N ) for sufficiently large T .

Observe that the minimal bound of �(
√

N ) is achieved when f = 1/
√

N . Now
we show that for this value of f the Static Threshold policy is indeed O(

√
N )-

competitive.

THEOREM 4.6. The competitive ratio of the Static Threshold policy with f =
1/

√
N is at most

√
N + 1.

PROOF. We construct a matching between extra OPT packets and packets sent
by Static Threshold so that each Static Threshold packet is image of at most

√
N

packets in OPT. All potential extra OPT packets are matched immediately to pack-
ets in the Static Threshold buffer with smaller or equal position. We consider
two cases.

—If the matching is done in time of Static Threshold buffer overflow, the number
of packets in the buffer of Static Threshold with position at most l (for 1 ≤ l ≤
M/

√
N ) is at least l

√
N .
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—If the matching is done when the buffer of Static Threshold is not full, all packets
in OPT to be matched have position greater than M/

√
N and at least one queue

in Static Threshold has length of at least M/
√

N .

It follows that in both cases there exists a feasible matching of potential ex-
tra packets in OPT so that each Static Threshold packet is matched at most

√
N

times.

Next we study the Dynamic Threshold policy and present a few lower bounds
on its competitive ratio for α = 1.

THEOREM 4.7. The competitive ratio of the Dynamic Threshold policy for α =
1 is at least �(

√
N/ log N ) for M = �(N ).

PROOF. Consider the following scenario. At time t = 0 the buffer is empty
and during the following �M/N� time slots arrive bursts of size M/2i (i =
1, . . . , log M) that are destined to output ports 1, . . . , log M . Then, between
t = �M/N� and t = �M/N + √

N/ log M�, every time slot arrive N packets
destined to all output ports. At time t = �M/N + √

N/ log M� + 1 we stop all
arrivals.

Throughout time interval [0, �M/N� − 1] OPT transmits at least M/N packets
from output ports 1, . . . , log M . Then, each time slot between t = M/N and
t = �M/N + √

N/ log M� it will accept and send N packets to all output ports.
Therefore, during time interval I = [0, �M/N + √

N/ log M�], the throughput of
OPT is at least �M/N + N

√
N/ log M�. On the other hand, the Dynamic Threshold

policy admits all packets arriving starting from t = 0 and up to t = �M/N�. At this
time, Dynamic Threshold buffer contains at least M − � M

N log M� packets. During
each of the following �√N/ log M� time slots, there will appear at most log M
additional free memory slots to accommodate new packets. Hence, starting from
t = �M/N� and up to t = �M/N + √

N/ log M�, the Dynamic Threshold policy
could accept at most⌈(

2
M
N

log M +
√

N/ log M log M
) √

N/ log M/2

⌉

additional packets. Notice that the number of packets destined to output ports
1, . . . , log M buffered before t = �M/N� that is transmitted by the Dynamic
Threshold policy is at most M . Thus, the total throughput of the Dynamic Threshold
policy during I is bounded from above by⌈

M +
(

2
M
N

log M +
√

N/ log M log M
) √

N/ log M/2

⌉
.

Therefore, the competitive ratio of the Dynamic Threshold policy is at most

M/N + N
√

N/ log M

M + (2 M
N log M + √

N/ log M log M)
√

N/ log M/2
,

which is �(
√

N/ log N ) for M = �(N ). When all the queues are drained out, we
repeat the scenario and so on.
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5. Concluding Remarks

In this article, we study the performance of buffer management policies for shared
memory packet switches using competitive analysis. We show that preemptive
policies are able to achieve a constant competitive ratio. That is in contrast to
nonpreemptive policies, whose competitive ratio is bounded away from a constant.
We also analyze some popular nonpreemptive policies and demonstrate that one
can differentiate between them by means of competitive analysis.

An open problem is whether it is possible to achieve a constant competitive
ratio for the case of variable value packets. Another open question is whether one
can prove a nontrivial upper bound (better than N ) on the competitive ratio of the
Dynamic Threshold policy or prove a lower bound that does not depend on α.
Finally, the gap between the upper and the lower bounds on the competitive ratio
of the LQD policy is yet to be closed.
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