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Competitive Queueing Policies for QoS Switches 

Nir Andelman* Yishay Mansour t An Zhu t 

A b s t r a c t  

We consider packet scheduling in a network providing differ- 
entiated services, where each packet is assigned a value. We 
study various queueing models for supporting QoS (Quality 
of Service). In the nonpreemptive model, packets accepted 
to the queue will be transmitted eventually and cannot be 
dropped. The FIFO preemptive model allows packets ac- 
cepted to the queue to be preempted (dropped) prior to their 
departure, while ensuring that transmitted packets are sent 
in the order of arrival. In the bounded delay model, packets 
must be transmitted before a certain deadline, otherwise it is 
lost (while transmission ordering is allowed to be arbitrary). 
In all models the goal of the buffer policy is to maximize the 
total value of the accepted packets. 
Let a be the ratio between the maximal and minimal value. 
For the non-preemptive model we derive a O(loga) com- 
petitive ratio, both exhibiting a buffer policy and a general 
lower bound. For the interesting case of two distinct values, 
we give an 2~-1 competitive buffer policy, which exactly 

ce  

matches the lower bound. We also analyze a RED-like pol- 
icy and derive its competitive ratio, which is approximately 
2~-0.5 for two values and O(loga) for multiple values. In 

c t  

addition we improve the previous known lower and upper 
bounds of the Fixed Partition and Flexible Partition poli- 
cies. 
For the FIFO preemptive model, we improve the general 
lower bound and show a tight bound for the special case of 
queue size 2. We prove that the bounded delay model with 
uniform delay 2 is equivalent to a modified FIFO preemp- 
tive model with queue size 2. We then give improved upper 
and lower bounds on the 2-uniform bounded delay model. 
We also give lower bound for the 2-variable bounded delay 
model, which matches the previously known upper bound. 

1 I n t r o d u c t i o n  

Currently, the Internet infrastructure provides "best ef- 
fort" service for all traffic streams. The uncertainty 
of the actual performance is not satisfactory for many 
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applications. The widely foreseen next-generation net- 
works will provide guaranteed services to meet various 
user demands. This gives rise to the recent interest in 
the Quality of Service (QoS) feature. 

This vision has been around the networking com- 
munity for more than a decade [15]. For instance, ATM 
networks serve as an example of a unified architecture 
that supports a diverse set of service classes. Of late, 
there has been termendous interest in IP in providing 
differentiated services via QoS guarantees. The basic 
methodology of QoS is rather intuitive - -  commit re- 
sources to each admitted connection. Thus, the net- 
work is capable of providing different users with dif- 
ferent classes of service. In particular, a contract be- 
tween users and service providers ensures that the net- 
work maintains the performance guarantees provided 
the users stick to their commitments about traffic gen- 
eration. 

However, due to a variety of reasons, the incom- 
ing traffic patterns may not coincide with that  speci- 
fied in the service contract. A typical example is that  
the traffic from the user does not conform to the pat- 
terns defined in the contract. The difficult situation 
is when the traffic exceeds the allocated bandwidth at 
some point. Another equally serious problem is that  
by guaranteeing the worst-case performance, the QoS 
network might not be efficient due to its conservative 
policy, as network traffic tends to be bursty. Recog- 
nizing this phenomenon, most modern QoS networks 
allow some "overbooking," employing the policy pop- 
ularly known as statistical multiplexing [8]. In either 
case, QoS networks must resolve the unavoidable issue 
of overloading. This paper analyzes queueing policies 
under overloading using competitive analysis. 

In the past few years the networking community 
has had an increasing interest in QoS networks [6, 12, 
13, 14]. A major new paradigm suggested is that  of 
assured service [5]. This service has a loose guarantee 
in which traffic conforming to the specified pattern is 
much less likely to be dropped in the network. This 
approach leads to two types of packets in the system: 
those of high priority (conformed traffic) and those of 
low priority (uncolfformed traffic). 

We can now abstract the problem as follows. We 
assign a value to each packet: value 1 for the low priority 
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packets, and value a > 1 for the high priority packets. 
This is called the 2-value model. For differing network 
requirements, we can adjust a to achieve the desired 
performance guarantee. Later we will also consider the 
extension where packets take on arbitrary values in the 
range [1, a]. We assume that  the queue can hold a 
maximum of B packets. Packets can arrive at any time, 
but  are sent out at integer times only. The goal is to 
maximize the total  value of the packets transmitted. In 
terms of competitive analysis [4], we compare the total 
value of the packets t ransmit ted by an online algorithm 
to the total  value of the optimal offiine algorithm. We 
say that  an online algorithm has a competitive ratio of 
j3, if for any input sequence, the total  value transmit ted 
is at least a ~ fraction of the offline optimal. 

We concentrate on three different queueing policies. 
The nonpreemptive policy transmits all packets admit- 
ted into the queue; observe, under this policy, the queue 
can easily maintain a FIFO order. 

The FIFO preemptive policy is allowed to drop 
packets already admit ted to the queue. The bounded 
delay model, on the other hand, transmits packets in 
any order, but  each packet must be transmit ted before 
a fixed deadline or else the packet is lost. 

The nonpreemptive model for the 2-value model 
was first proposed by Aiello et al [1], who studied four 
different queueing policies. Each of the four policies has 
competitive ratio strictly worse than the known lower 
bound of 2~-1. We present a practical online algorithm 
and prove that  its competitive ratio is precisely 2~-1 
thereby completely solving the problem for this case. 
We also derive a fairly natural  online buffer policy called 
Selective Barrier Policy, which is a RED-like policy [7], 
and whose competitive ratio is min{a, 1 + x/1 1/~}. 
Note that  for a > 1.62 the second bound dominates, and 
for large values of a it is approximately 2~-0.5 which 

Ot 

is near optimal. Additionally, we improve both lower 
and upper bounds for the Fixed and Flexible Part i t ion 
policies studied in [1]. For the general model, where 
the packet values lie in the range [1,a], we establish 
matching upper and lower bounds of O(loga) .  We 
derive a 1 + In a lower bound for any online policy 
and exhibit two online policies that  are at most e ln(a) 
competitive. 

The FIFO preemptive policy has been studied ex- 
tensively. The 2-value model was considered by Kessel- 
man and Mansour [9], who provided approximately op- 
timal performance for large values of a and B. We 
concentrate on the general model, for which previous 
lower and upper bounds were developed by Kesselman 
et al [8]; in particular, the lower bound is 1.281, and 
the upper bound is ~2~ for a natural greedy algorithm. 
The greedy algorithm accepts a packet if possible, oth- 

erwise preempts the lowest value packet. Intuitively, it 
would seem bet ter  to sometimes reject low value pack- 
ets. We confirm this intuition by establishing tight up- 
per and lower bounds of ~ ~ 1.434 for the case 
where B = 21. As a byproduct of our techniques, we 
improve the general lower bound for this problem to 
v/2 ~ 1.414. 

Our techniques for the FIFO preemptive model are 
quite general and apply to the bounded-delay model 
as well. In particular, we show that  a modified FIFO 
preemptive model with queue size 2 is equivalent to the 
2-uniform bounded-delay model, where each arriving 
packet must be sent out within the next 2 time units. 
We establish upper and lower bounds of 1.414 and 1.366, 
respectively. This is an improvement upon the previous 
bounds of 1.434 and 1.25, respectively, due to Kesselman 
et al [8]. For the model where some of the arriving 
packets must be sent out within one time unit (the 2- 
variable bounded delay), we establish a lower bound of 
1.618. This is an improvement of the previous lower 
bound of 1.414 and matches the upper bound due to 
Kesselman et al [8]. 

The rest of the paper is organized as follows, Section 
2 gives a tight analysis for nonpreemptive queueing 
policies, Section 3 deals with FIFO preemptive queueing 
policies. Finally, Section 4 presents our results for the 
bounded-delay model. 

2 Nonpreemptive Queueing policy 
We first consider the 2-value nonpreemptive model. 
Consider a switch buffer (queue) with enough memory 
to hold B packets. Between time (i - 1, i) (i E Z+), 
a set of packets arrive. The queueing policy (online 
algorithm) has to decide whether or not to accept a 
packet into the queue when it arrives. Packets tha t  
are accepted to the queue stay in the queue, and get 
t ransmit ted at a rate of 1 packet per t ime unit. A low 
priority packet has benefit 1, while a high priority packet 
has benefit a > 1. The aim of the queueing policy is to 
maximize the sum of the benefits of all packets tha t  get 
transmitted. 

Aiello et al [1] showed that  for a particular value 
of a ,  there is a general lower bound of - ~  for any 
online algorithm (deterministic or randomized). Here 
we present the Ratio Part i t ion (RP) policy, which 
builds on early policies given in [1], and show that  it's 
competitive ratio is indeed L ~ ! ,  matching the lower 
bound. 

We use OPT to denote the optimal algorithm, and 
RP to denote the Ratio Part i t ion algorithm. And for 

~ o r  B = 1, an online algorithm can simply send the most 
valuable packet at each time, which is easily seen to be optimal. 
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convenience, we use H.P. to denote "high priority," and 
L.P. to denote "low priority." R P  sets the threshold 
parameter  r to be ~-2~. Whenever a H.P. packet is 
arrived, it is accepted as long as the queue is not full 
(there is free slot). The accepted H.P. packet is then 
matched to ~ -1  unmatched L.P. packets currently in 
the queue, s tart ing with the earliest. When a L.P. 
packet arrives, RP only accepts it (as an unmatched 
L.P. packet) if including that  packet, the total  number  
of unmatched L.P. packet vs. the total  number  of free 

c~ 2 slots is at most  r -- a - l "  
Before analyzing RP, we first bring more structure 

to O P T  without changing its optimality. 

LEMMA 2.1. We can rearrange the packets admitted to 
O P T ' s  queue at any time, without changing the total 
values of the packets transmitted by O P T .  

LEMMA 2.2. f f  O P T  is idle at time t, then any online 
algorithm must also be idle at time t. 

LEMMA 2.3. We can modify O P T  so that it accepts all 
the H.P. packets that R P  accepts, without changing its 
optimal value. 

LEMMA 2.4. I f  we restrict the sequence to only consist 
of the packets that either O P T  or R P  accepts, neither 
value of O P T  nor that of R P  will change. 

We let S denote this restricted sequence and our 
analysis will only concentrate on O P T  and RP ' s  be- 
havior on S. In particular, from lemma 2.3, we know 
tha t  the H.P. packets in S are exactly the ones tha t  
O P T  accepted. We further restrict OPT' s  behavior as 
follows. 

LEMMA 2.5. If at time t, R P  accepts a L.P. packet p 
but O P T  rejects, we may instead let O P T  accept p, 
provided O P T  accepts some L.P. packets later on before 
O P T ' s  queue is full. 

Proof. We look into the future t ' ,  where the queue 
for O P T  is full for the first t ime since t. If  prior to 
that ,  O P T  also accepted some other L.P. packet p ' ,  we 
make O P T  accept p instead and reject p '  as p '  arrives. 
Since the queue was never full before t ' ,  this exchange 
will guarantee that  the modified OPT's  queue is never 
overflown till t ' ,  when it contains the same packets as 
the original one. Obviously, this does not change the 
optimal solution. Note that  if before t', O P T  only 
accepts H.P. packets, accepting p will interfere with the 
H.P. packets, then O P T  must reject p. [] 

2-Notice that inevitably, we will encounter some roundoff errors 
due to the inability to split some queue space, but this is minor, 
and not considered here. 

We now are ready for the analysis of R P .  We imag- 
ine the sequence of packets accepted by an algorithm is 
placed on a one-way infinite tape  T from left to right. 
The tape ' s  index s tar t  at 0, we use T[i] to denote the 
tape position with index i. Packets arrive between t ime 
(t, t + 1) can only be placed at or after Tit], and at or 
before position Tit  + B - 1]. A packet is pushed to as 
far left as possible. Thus Tit] denotes the packet trans- 
mit ted at the end of t ime t (or simply t + 1). The total  
value of the packets t ransmit ted is the total  value of the 
packets being placed on the tape.  Our analysis breaks 
down the tape into pieces, and compares the tape con- 
tent between two consecutive break down points. We 
use TOPT[i,j] (TRP[i,jD to denote the total  value of 
packets from T[i] to T[j] on O P T  (RP) ' s  tape.  

LEMMA 2.6. At  any time we have that l x (a - 1) _< 
f x v~, where l is the number of unmatched L.P. packets 
in the queue and f is the number of free slots in the 
queue. 

Proof. When a L.P. packet is accepted, by the defini- 
tion, the number of umnatched L.P. packet is not more 
than ~ times the total  number of the free space, so 
the bound trivially holds. When a H.P. packet is ac- 
cepted, by definition, the free slot decrease by 1, but  
the number of unmatched L.P. packets is decreased by 
dz l ,  or there is no unmatched L.P. packet at the end, 
which we are again happy. Notice tha t  a H.P. packet 
hp is always matched to some L.P. packets that  arrives 
before hp. So when a packet departs,  the bound still 
holds. [] 

COROLLARY 2.1. When a queue is .full in R P ,  all the 
packets are matched in the queue. 

THEOREM 2.1. We can break down the tape at 
some selected m positions bpl, bp2, . . . , bpm, such that 
T °  PT [bpl ,bpi + l - l ] 2ot-I 
TRP[bpl,bp~+l_l ] ~ C, where C = a 

Proof. We will use induction, assume now we are start-  
ing from some position bpi and there are exactly the 
same packets stored currently in position bpi and af- 
terwards, plus all the unmatched L.P. packets in the 
current queue is at or after the breaking point. 3 The 
breaking point could be somewhere in the middle of the 
current queue, and the end of queue marker is at bpi + s ,  
where 0 < s < B - 1. Note that  this is true for bpl  ---- 0, 
and we will make sure such condition is met  as we do 
the induction. 

We examine the packets admit ted to the queue by 
both O P T  and RP.  Assume at t ime t"  > bpi, O P T  and 

~ ~  is very important to make the whole analysis work and 
not double charging some L.P. packets. 
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R P  make different decisions for the first time. There are 
only four general situations: 

1. O P T  accepted a H.P. packets, while R P  rejected 
the packet. This cannot happen, since the queue 
content prior to t"  is the same for O P T  and RP.  
R P  employs greedy strategy for H.P packets, and 
so if O P T  accepts, R P  accepts as well. 

2. R P  accepts a H.P. packet, while O P T  rejects. This 
cannot happen due to lemma 2.3. 

3. O P T  rejects a L.P. packet, while R P  accepts. 

4. R P  rejects a L.P. packet, while O P T  accepts. 

We will deal with the last two situation separately 
and show that  in either case, we can find a breaking 
point and maintain the hypothesis invariance.[] 

Let 's consider situation 3. Assume everything is 
the same for O P T  and R P  from bp~ on up to time 
t ' .  At time t ' ,  O P T  rejects a L.P. packet sp, while 
R P  accepts. Then by Lemma 2.5, there is a time 
t' > t ' ,  such that  O P T  only accepts H.P. packets 
between time t" and t', and at t', OPT ' s  queue is full 4. 
We then set bpi+i = t '  + B at t ime t', and we compare 
TRP[bpi, bp~+i - 11 with T°PT[bpi, bpi+l - 1]. 

LEMMA 2.7. Both O P T ' s  and R P ' s  queue is full at 
time t ~. 

Proof. At time t ' ,  R P  used up more queue spaces than 
O P T  by accepting some additional L.P. packets. R P  is 
greedy in terms of H.P. packets, so unless RP ' s  queue 
is full, it will always accept the same number of H.P. 
packets O P T  accepts. So RP ' s  queue will always have 
more or equal packets compared to OPT' s  until time t'. 
This implies that  at t ime t', RP ' s  queue is full. [] 

Note at t ime t', the end of the queue for O P T  and 
R P  is at t '  + B - 1, exactly the position of bp~+i - 1. So 
it makes sense to set bpi+i = t' + B,  the same free slot 
for O P T  and R P  at time t '  + 1. Plus all L.P. packets 
are matched up to Tit '  + B - 1] in the current queue 
by Corollary 2.1. By default, all unmatched L.P. packet 
will arrive a t /af ter  the new breaking point. 

We have that  up to time t", R P  and O P T  accepted 
exactly the same packets. We now compare the rest of 
the packets R P  and O P T  accepted, till Tit '  + B - 1]. 
There must be equal number of such packets, since the 
packets occupy T[t" + k] to Tit '  + B - 1], where t"  + k 
is the position of sp in the tape. And during this time, 
neither queue is idle. Ideally, we want to claim that  

4Without  loss of generality, we extend t '  till just  before the 
next transmission, i.e., t '  is integral. 

the L.P. packets accepted by R P  during this period are 
matched eventually. This will immediately imply the 
bound, since that  means at least a - i  fraction of the 
the packets are H.P. packets. However, this is not true 
in general. To fix this, we give a virtual marking of 
H.P. packets to L.P. packets as follows: for the H.P. 
packets that  arrive after position t"  + k, it will mark 
up to ~ - i  unmarked L.P. packets starting only from 
position t"  + k on if there is any. And we treat  all 
the packets before sp as being marked already. So this 
scheme differs from our real matching scheme in that  
now we pair H.P. packets together with L.P. packets 
starting from sp and afterwards. 

LEMMA 2.8. From time t" on, at any time we have that 
l × (c~ - 1) < f × v~, where l is the number of unmarked 
L.P. packets in the queue and f is the number of free 
slots in the queue. 

This in particular means, when the R P ' s  queue is 
full, all the L.P. packets are marked. This lemma allows 
us to prove that  all the L.P. packets after sp are marked, 
which imply the following. 

LEMMA 2.9. At  least ~ fraction of the the packets 

between TRP[t '' + k] and TRP[t '] are H.P. packets. 

T°PT[bpi,bpi+1-1] 2~--1.  
The above lemma implies TRV[bpi,bp~+i_l] 

Now let's deal with the last situation 4. Assume at some 
time t ' ,  O P T  accepted a L.P. packet, while R P  rejected 
it. Then we look at the first t ime t '  when RP ' s  queue 
contains the same number of packets as OPT ' s  does. 
We set bpi+i = [t'J at time #, i.e., we only compare 
packets t ransmit ted up to but  not including T[ [#J ]. 

LEMMA 2.10. We can rearrange O P T ' s  queue content 
from time t" on so that the prefix of its queue matches 
the entire R P ' s  queue content. To be more specific, at 
any time, 

1. The number of packets in O P T ' s  queue is always 
more than the number of packets in R P ' s  queue 
before time t'. 

2. The H.P. packets in O P T ' s  queue match in position 
to those H.P. packets in R P ' s  queue. In particular, 
that means the number of H.P. packets in either 
queue is the same. 

That  means RP ' s  H.P. packet is synchronized with 
that  of O PT ' s  all the time. So the total  number of 
H.P. packets for O P T  and R P  is even. We just have 
to bound the loss of L.P. packets for R P .  We use the 
unmatched L.P. packets to account such loss. 

We introduce the following virtual counting scheme. 
Every L.P. packet contributes another a - i  virtual L.P. 
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packet to RP's queue, while it enters the queue. In 
particular, we have that  if the L.P. packet is currently 
in the queue, its virtual part is also in the current queue 
(we allow the virtual packets to overflow the queue). 
The virtual packet is always shifted to the end of the 
real packets in RP's queue. R P  always transmits a real 
packet as normal, but when it's idle, we let R P  transmit 
a virtual packet if there is any. 

LEMMA 2.11. At any time, the total number of packets 
in RP's  queue, including the virtual packets, is always 
no less than the total number of packets in OPT's  queue 
until t'. 

Since we have H.P. packets all lined up, that  means 
that  including the virtual L.P. packets generated by 
packets between T[bpi] and T[bpi+l -1], R P  transmitted 
as many as OPT did during that  period. So the total 
number of L.P. packet RP transmitted is at least 
of the total number of L.P. packet OPT transmitted. 

T°PTtbp,,bpi+i-1 ] 2~--1. 
Hence the ratio "TgP[bpl,bpi+l_l] _< 

At time t '  we know that  by rearranging OPT's 
queue, the two queues looks exactly the same. By 
setting breaking point bpi+l = t', our next step will pick 
up from time t' with R P  and OPT have the same entire 
queue content. We thus obtain the following theorem. 

THEOREM 2.2. R P  is ~-~-competitive. 

2.1 Improved Bounds for Policies 
In this section we improve the both upper and lower 

bounds from [1] for the Fixed and Flexible Partition 
Policies. 

2.1.1 Fixed Partit ion Pol icy 
The Fixed Partition Policy partitions the queue 

between the low and high packet values values, using 
a variable 0 < x < 1 such that  xB is integer. The Fixed 
Partition Policy accepts a L.P. (H.P.) packet if including 
this packet, there are at most xB L.P. packets ((1 - x ) B  
H.P. packets) in the queue. 

We prove the following lower and upper bounds 
for the competitive ratio of the Fixed Partition Policy 
(proofs omitted): 

THEOREM 2.3. The competitive ratio of the Fixed Par- 
tition Policy PEP is at most: 

pEP<rain x /2+1 ,  3 2c~+1 

THEOREM 2.4. The competitive ratio of the Fixed Par- 
tition Policy pEP is at least: 

{ 1 ~ 1 t } 
PFP _ > m a x  2, 1 -- ~ + 2 -- ~ -- + 

We derive the lower bound by comparing the perfor- 
mance of F P P  to OPT among the following scenarios: 

1. B L.P. packets arrive. 

2. B H.P. packets arrive. 

3. B L.P. packets followed by B H.P. packets arrive. 
After xB time units xB H.P. packets arrive. 

2.1.2 Flexible  Partit ion Pol icy 
Similarly to the Fixed Partition Policy, the Flexible 

Partition Policy partitions the queue between the low 
and high value packets, using a variable 0 < x < 1 such 
that  xB is integer. The difference is that  in the Flexible 
Partition Policy we allow H.P. packets enter the queue 
allocation of L.P. packets, since this will intuitively only 
improve the total benefit. Specifically, it accepts a 
L.P. packet if including this packet, the number of L.P. 
packets in the queue is at most xB, and accepts a H.P. 
packet if the queue is not full. 

We prove the following lower and upper bounds for 
the competitive ratio of the Flexible Partition Policy 
(proofs omitted): 

THEOREM 2.5. The competitive ratio of the Flexible 
Partition Policy PFPP is at most: 

pFpp _~ min {o~, X/~ + l } 

THEOREM 2.6. The competitive ratio of the Flexible 
Partition Policy PFPP is at least: 

pFPp>_min{a,  1 2 - - - -  
2+1 1} 

+ 1 -  gg 

We derive the lower bound by comparing the per- 
formance of F P P  to OPT between the following two 
scenarios: 

1. B L.P. packets arrive. 

2. B L.P. packets followed by B H.P. packets arrive. 
After xB time units xB low packets followed by xB 
high packets arrive, and after (1 - x)B additional 
time units, (1 - x)B low packets arrive. 

2.2 Generalizations of  the Nonpreempt ive  
Queue Model  

We now generalize the 2-value model to allow 
packets take on arbitrary values in [1, c~]. We prove 
O(log c~) upper and lower bounds for this model. 

2.2.1 Lower Bound 
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THEOREM 2.7. There exists a set V of n values such 
that any online scheduling policy has a competitive ratio 

n-if a-(n-i)  
of at least ~_~,~ 

Proof. Let  "1) = {1, 1 + e, (1 + e)2 , . . . ,  (1 + e) ~-1 = a} ,  
where  e = " - ~ / ~ -  1. Consider  the  following n scenarios,  

defined recursively: 
In  the  first scenario,  B packets  of the  lowest value (i.e., 
1) arrive. T h e  online policy accepts  x l B ,  thus  reaching 
a benefi t  of V1 = x l B .  Since the  op t ima l  policy m a y  
accept  all B packets,  we have a compet i t ive  ra t io  of 

p l  ---- X l .  

In  the  k - th  scenario,  the  packets  f rom scenario k - 1 
arrive, followed by  B packets  of value (1 + e) k-1.  
Initially, the  online pol icy accepts  the  same  packets  as in 
scenario k -  1, and  adds  xkB  addi t ional  packets  of  value 
( l + e )  k - l ,  reaching a benefi t  of  Vk = V k - l - b X k ( 1 - b £ )  k - 1 .  

An op t ima l  offiine schedule would have accep ted  all of  
the  last  B packets,  therefore  the  compet i t ive  ra t io  is 

V~_l+xk( l+e)  k-1 pk-1 
Pk = ( l + e ) k - ~  ---- l + e  + Xk.  

Our  lower bound  would be the  max ima l  value of 
p = m i n { p l , p 2 , . . . , p n }  under  the  restr ict ions xi >_ 0 
for 1 _< i <_ n, and  Ep=lxi < 1. T h e  m a x i m u m  is 
achieved when  pl  = p2 . . . . .  Pn and E~=lxi = 1. The  
solut ion to  the  set  of  the  equat ions  is x2 = x3 . . . . .  
Xn = -~-Xl+~ 1. Since a = (1 + e) n - l ,  i.e. e = ~-~/a - 1, 
and  the  m a x i m u m  is reached when: 

X i (n - 1) + 1+___~ ne + 1 

~-~/a - 1 ( i  2 , 3 , . . .  , n )  
 -,Va - ( n  - 1 )  

~-~/~ 
X 1 ---- n n--~/~ __ (n -- 1) 

1 < x l  the  t h e o r e m  follows. [] Since a _ 

Next  we derive the  dependance  on the  n u m b e r  if 

dis t inct  values. 

THEOREM 2.8. For any fixed n and any 5 > 0 there 
n--1 exists a series of values V = {eej}j= o such that the 

competitive ratio of any online policy A is at least n - 5. 

Proof. By T h e o r e m  2.7 we have: 

n ~ - ~ / ~  - ( n  - 1 )  n - 1 
p( A ) _> ~_~/~ = n - - - = ~ .  

For a _> ( -~A)  ~-1 the  t heo rem follows. [] 

T h e  following t heo rem generalizes the  lower bound  
to  the  case of  infinite n u m b e r  of possible  values. 

THEOREM 2.9. For arbitrary packet values between 1 
and a, any online scheduling policy has a competitive 

ratio of at least (1 + In a )  

Proof. For contradic t ion,  assume t h a t  there  exists a 
pol icy A, such t h a t  p(A) < 1 + ( l na ) (1  - e). Le t  

1 ln a ,  hence ~-~/~ = e ~. B y  T h e o r e m  2.7 n = l + ~  
we have: 

n "-~/~ - (n - 1) (1 + ¼ l n a ) e  ~ - ¼ l n a  

p >_ ~ - ~ / g  - e~ 

½(lnc~)(e ~ - 1) 
= 1 +  = 1 + (lnoe)l-(e ~ - 1)e -~ 

e e e 

Since for any  e > 0 we have e e > 1 + e and  e -e  > 1 - e, 

therefore,  

p(A) > (lnc~)e~(1 - e) = 1 + ( l na ) (1  ( ) ,  

which cont radic ts  our  assumpt ion .  [] 

2 .2 .2  U p p e r  B o u n d  
We analyze  the  R o u n d  Robin  Policy t h a t  equally 

divides the  buffer into n par t i t ions  of size s -g, where  n is 

the  n u m b e r  of different packet  values. Each  par t i t ion  is 
assigned a different value, and  only packets  of this value 
are accepted  into this par t i t ion ,  in a greedy manner .  
T h e  par t i t ions  take  tu rns  in sending packets.  I f  a 
pa r t i t ion ' s  t u rn  to  send a packet  arrives,  bu t  it is empty ,  
its t u r n  passes to  the  next  par t i t ion .  

We can s imula te  the  R o u n d  Robin  m e t h o d  using 
a single queue as follows. We v i r tua l ly  keep t rack  of 
the  cur rent  s t a te  of the  R o u n d  Rob in  me thod ,  use the  
v i r tua l  s t a te  to  decide whe the r  or  not  to  accept  the  
cur ren t ly  incoming packets .  Since the  R o u n d  Rob in  
m e t h o d  t r a n s m i t s  1 packet  per  t ime  s tep  in total ,  the  
real queue  size coincides wi th  t h a t  of the  v i r tua l  queue 
size, and  b o t h  queues accept  the  same  set  of  packets.  

THEOREM 2.10.  The competitive ratio of the Round 

Robin policy is n. 

For large values of  n the  compet i t ive  ra t io  of  the  
R o u n d  Rob in  policy is unbounded ,  however,  the  com- 
pet i t ive  ra t io  is independent  of a .  T h e  pe r fo rmance  of 
the  Round  Rob in  policy can  be  improved  for large val- 
ues of n by  par t i t ion ing  the  buffer into k pa r t s  of size ~-, 
each pa r t  accepts  only  packets  wi th  values in a cer ta in  
range.  This  implies t ha t  we split  the  interval  [1, a] into 
k sub- intervals  [1 = cm, a l ) [ c q , a 2 ) - - - [ a k - l , C ~ k  = c~]. 
Each  sub- in terval  accepts  in a greedy manne r  packets  
wi th  values f rom this sub-interval .  As in the  orig- 
inal policy, par t i t ions  take  tu rns  in sending packets.  
Exponent ia l - In te rva l s  R o u n d  Rob in  using k par t i t ions  
sets a j  = og i l k .  
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LEMMA 2.12. The competitive ratio of the Exponential- 
Interval Round Robin policy, using k partitions is ka 1/k, 
and for any Round Robin Policy using k partitions, the 
competitive ratio is at least kv~ 1/k. 

We can derive the following corollary for the case of 
infinite number of values. 

COROLLARY 2.2. The competitive ratio of the 
Exponential-Interval Round Robin with k = [ln a] 
partitions is e [ln a ] .  

The Round-Robin Policy's actions might be counter 
intuitive, since it equally prefers packets of all types and 
may reject packets of one value in order to save place 
for packets of a lower value. Intuitively, we would prefer 
a policy that  discriminates between packets of different 
values, preferring those of higher value. We introduce 
the Selective Barrier (SB) Policy (which can be viewed 
as a deterministic variant of RED (Random Early 
Detection) [7]) and preserves the same upper bound that  
was reached by the Round Robin Policy. 

The Selective Barrier Policy uses a function 9C(x) : 
[1, c~] H [0, 1], to accept packets with value v iff the 
queue contains less than iTZ(v)B packets (of any vahm). 
Naturally, .~(x) should be monotone and ~ ( a )  = 1. 

LEMMA 2.13. The Selective Barrier Policy with n val- 
ues and ~(oei) = i has a competitive ratio of at most 

n 

n .  

Next we derive a bound for an unbounded number of 
values. 

THEOREM 2.11. For any k > 1, the competitive ratio 
of the Selective Barrier Policy is at most koe 1/k. 

By Theorem 2.11, we reach the best bound for 
the competitive ratio when k • { [ln a] ,  [ln c~] }, and is 
approximately e In a. 

2.3 Se lec t ive  B a r r i e r :  2 va lues  For the two value 
case, we prove tight bounds for the competitive ratio of 
the Selective Barrier Policy. 

THEOREM 2.12. The competitive ratio of the Selective 
Barrier Policy with two values is: 

min{o~, 1 + X/1 - 1/oz} 

For a > ¢ ~ 1.62, the competitive ratio is 1 + 
v/1 - 1/a, which is approximately _~_q~9~_~, i.e. very near 
to the best possible competitive ratio. 

We denote the value of F(1)  by x, i.e. SB accepts 
high value packets greedily and low value packets as 

long as the queue contains less than xB packets. When 
a < ¢, we simply set x = 1 and greedily accept all the 
packets until the queue is full, hence we have a trivial 
bound of a. 

For the case of a > ¢, we derive the lower bound 
by comparing the performance of SB to OPT between 
the following two scenarios: 

1. B L.P. packets arrive. 

2. B L.P. packets followed by B H.P. packets arrive. 
After (1 - x)B t ime units, (1 - x)B L.P. packets 
arrive. 

To prove the upper bound, we generate OPT 
by changing SB's schedule, and bound the difference 
between the schedules. OPT is generated by two steps: 

1. SWAP : For every L.P. packet SB  accepted, if reject- 
ing it allows to accept latter a H.P. packet, then 
swap the actions. 

2. ADD_LOW: For every L.P. packet SB rejected, accept 
if it doesn't  interfere with future H.P. packets. 

LEMMA 2.14. Applying SWAP and ADD.L0W to SB gen- 
erates an optimal schedule. 

We use the following notations in order to refer to 
sets of packets: LM denotes the L.P. packets replaced in 
the SWAP step, and HM denotes the extra H.P. packets 
OPT accepts. L denotes the L.P. packets added to OPT 
in the ADD.L0W step. BOT denotes L.P. and H.P. packets 
that  entered the queue of SB before it was xB full, while 
TOP denotes the H.P. packets accepted by SB when its 
queue already contained at least xB packets. 

We define time intervals starting and ending at 
the events of the queue of SB being either empty 
or full. Then, we divide the packets into two sets, 
according to the interval they arrived in. Afterwards, 
we analyze each type of packets separately, according to 
this division. 

DEFINITION 2.1. Let Ti = [t/-1,ti] be successive time 
intervals, where ti are the time points where the queue 
of SB just became either empty or full. Let Gi be the 
packets that arrived during the interval Ti. Let GE be 
the union of sets Gi such that the queue of SB  is empty 
both at ti-1 and at ti. Let GF be the union of sets Gi 
such that the queue of SB  is full at either ti-1 or ti. 

Since the queue never gets full at GE intervals, we 
need to consider only hDD_LOW when analyzing GE. In 
each interval, OPT can accept at most (1 - x)B L.P. 
packets due to the hDDi0W step, because the queue of 
SB is already at least xB full when such packets arrive. 
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On the other hand, if such packets arrived, we have a 
lower bound of x B  on the number of packets tha t  S B  
accepted before the queue was x B  full (these are either 
low value packets, or high value packets tha t  would still 
be accepted even if their value was low). 

L E M M A  2 . 1 5 .  xlL n GEl _< (1 -- x ) I ( B O T  \ LM) N GEl 

To analyze GF, we bound the number  of additional 
high packets O P T  accepts by the number  of high 
packets the S B  accepts. If there were swaps, then the 
queue was full at the end of the interval, meaning at 
least (1 - x ) B  high value packets arrived after the queue 
was at least x B  full. On the other hand, at most x B  
swaps were done in this interval, since the swapped low 
value packets arrive only when the queue is less tha t  x B  
full. 

L E M M A  2.16. ( 1 - - x ) [ L M N G F I  = (1--x)IHMAGF I < 
x [ T O P  n GFI 

If the interval contains packets from ADD_LOW, then 
there were at most  (1 - x ) B  packets. In this case, 
the endpoint where the queue was full must  be the 
beginning of the interval, which means tha t  at least 
( 1 - x ) B  high value packets were in the end of the queue. 

LEMMA 2.17. IL n GF[ ~ [TOP n GF[. 

By choosing x = 1 + ~ / ~ - ~ ,  we combine the 

previous lemmas to prove the upper  bound of S B  
separately GE and GF, thus deriving Theorem 2.12. 

3 Preempt ive  Queueing pol icy 

Preemptive queueing policy gives online algorithms the 
ability to preempt  (drop) packets already accepted to 
the queue, hence bet ter  performance ratios can be 
derived. To maintain the FIFO order, packets are 
always added to the end of the queue, and t ransmit ted  
from the beginning of the queue. In addition, a packet 
can be dropped from the middle of the queue and the 
packets behind it shift forwards. 

We concentrate on the model where packets can 
take on values in the range [1,a]. We first consider 

the case B = 2. We show the - ~  ~ 1.434 upper  and 
lower bounds. 

3.1 Lower Bound Construct ion 
We star t  with some intuition via simple construc- 

tions tha t  give loose bounds. 
The basic intuition behind the lower bound is of 

the following: suppose the online algorithm currently 
have two packets in the queue, with values p and q. 
Suppose p < q and p has to be t ransmit ted  before q. 

Without  knowing future arrivals, the online algorithm 
faces a dilemma: either to t ransmit  p and buffer q, 
which puts the online algorithm in danger of discarding 
q later on; or discard p and t ransmit  q, which puts the 
online algorithm in danger of being idle the next t ime 
unit. Thus the adversary will t ry  to balance these two 
situations in order to maximize the lower bound. 

We introduce the following notat ion for packet 
arrival sequence: Packet values axe listed in their arrival 
order, with packets arrived within the same t ime unit 
grouped into parentheses. 5 

Consider the following sequence: (1, a > 1), if the 
online algorithm transmits  a ,  then the sequence ends. 
O P T  transmits  both  1 and a in two t ime units. The  
ratio is then l+a Otherwise the online algorithm can 

Ot " 

t ransmit  1 and put  a in the queue, then the whole 
sequence becomes (1, a ) ( a ,  a) .  O P T  transmits  all three 
a-valued packets, while the online algorithm has to 
discard one such packet during the second t ime unit. 
So the ratio becomes 3~ 2 ~ "  Balancing the two ratios, 

3+vff5 and the bound is approximately  we have a -- 2 ' 
1.303. 

Now we may consider to improve the bound, via 
extending the sequence to (1, a l ) ( a l ,  a2)(a2,  a2). If at 
t ime 1 online t ransmits  a l ,  then the sequence stops 
and no new packets arrive, with the ratio being 1+al 
Otherwise, let 's consider t ime 2. If  online t ransmits  
a2, then the sequence again stops, with the ratio being 
al+al+a2 Otherwise, then at t ime 4, the ratio becomes l+a2  " 

. . . .  37{- vf5 9+4x/~ °~l-1-°~2-I-a2"~-°z2 We then have a l  = a2 - 
1 + Oq-+'O~2"-~-a2 " 2 ' 2 ' 

and the bound is approximately 1.382. 
Thus if we continue the trend, we can improve the 

bound further. Consider the following general sequence 
(a0 = 1, a l ) ( a l ,  a 2 ) . . .  (ak_l, a k ) ( a k ,  a k ) .  We then 
again have to balance the following equations, derived 
from various scenarios similar to the two previous 
constructions: 

(3.1) 
a0 + a l  a l  + a l  + a2 a l  + a2 + a2 + a3 

a l  + a2 
ao + a2 ao + oa + a3 

Jr . . .  -Jr ak_  1 --~ ak_  1 -~- a k 

ao + a l  + . . .  + ak -2  + ak 
a l  + a2 + . . .  + ak-~ + ak + ak + ak 

ao + a l  + . . .  + ak-2  + ak-1  + ak + ak 

Solving the above equations, we have a i  = 
!(vqh+5~i + _2(~/i~-1V and as k -~ co, the final ratio 
3 \  2 ] 3~ 2 / 

~ o r  instance,  (a, b)(c, d) means  packets  valued a and b arrived 
dur ing the  first t ime unit ,  wi th  a in front of  b. Similar s i tuat ion 
applies to  packets  valued c and d, which arrive dur ing the  second 
t ime unit .  
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R A T I O  
1 
2 
3 
4 
5 
6 
7 
8 

For the arrival of a new packet p at t ime t. 
I F p  < V1 t a n d p  < V] 

DROP p 
E L S E  

DROP the smaller of B~ and B~ 
ACCEPT p into the queue, so now B~ = p 
IF Yg/Y: > 

DROP B~, so now B~ = p 

Figure 1: Pseudo-code for the RATIO Algorithm 

--~ ~ ~ 1.434. 

THEOREM 3.1. No deterministic online algorithm can 
achieve a competitive ratio better than V'i~+56 - e, for 
any constant e _> O. 

3.2 T h e  RATIO A l g o r i t h m  
The ai  series provides much insight on designing 

the matching online algorithm. The determining critical 

ratio is ~ 2  , as _m_~_~ converges to this value. The 

other ratio ~ / i n  the expression is only used by the 
adversary to make sure the early equations' values are 
large enough to match the convergent ratio. The online 
algorithm thus has much less work to do and is strikingly 
simple. Let r denote the constant V~5+5 We use B~ 2 " 
to denote the first packet in the queue at time t, and 
B~ the second packet. Similarly V~ t and V~ refer to the 
values of the packets. The RATIO algorithm looks at 
all packets that  arrived between time (t, t + 1), and the 
two most valuable packets will be considered. If the 
second packet has value more than r times that  of the 
first packet, the first packet will be dropped and only 
the second one will be transmitted. Otherwise the first 
packet will be transmitted, while the second is held in 
the queue .  Figure 1 shows the Pseudo-code. 

We describe the analysis at a high level, which is 
motivated by the lower bound construction. There are 
two situations where we could claim RATIO transmit- 
ted enough packets: 

1. When RATIO t ransmitted the second higher val- 
ued packet and discarded the first packet. 

2. When RATIO finished transmitting both packets 
that  was once in the queue together. 

The difficult situation is that  RATIO always trans- 
mits the first smaller valued packet and drops the second 
packet later. OPT instead transmits the higher valued 
packet, which maybe r times more valuable. Thus, the 
analysis has to take care of this escalating effect. In- 
deed, one should expect to deal with long expressions 

similar to the equations in the lower bound construc- 
tion. This makes the analysis quite involved. Detailed 
proofs are deferred to the full version of the paper. 

THEOREM 3.2. The RATIO algorithm is 5+vT5 6 
competitive. 

3.3 L o w e r  B o u n d  for t h e  G e n e r a l  M o d e l  
We now briefly discuss the generalization of our 

lower bound construction to arbitrary queue sizes. In 
particular, for a queue of size B, consider the following 
general sequence (where Z < B is some constant to be 
determined later): 

(1, i ,  . . . ,  1, ~)(-~)(~i)... (cq)j~, ~1, . . . ,  ~ l , a ~  
Y 

z-i 

Z-i B 

B Z 

)( ) . . .  
8 

At times 1 through Z, if the online algorithm 
decides to transmit any one of the cq packets, then 
the adversary will stop the sequence after time Z. The 
online algorithm transmits no more than ( Z -  1 )+  Zcq,  
while O P T  transmits all of the packets. Thus the ratio 
is then no less than s-l+zc,~ The adversary then start  

Z-i+Zo~i " 

from the beginning of the sequence again. 
Otherwise, the online algorithm then at the best 

transmitted Z packets of value i during times 1 through 
Z. OPT instead transmitted Z packets of value ~i 
during the same period, while discarding the earlier 
packets with value I. The adversary then make B - 1 
packets of value o~i and another packet of value ~2 to 
arrive one by one after time Z, and then repeat the 
strategy as during times 1 through Z. If such situation 
continues, the adversary will end the sequence at c~k. 

To maximize the lower bound, we need not 
only to balance the ratios in all cases, but also 
to pick a value Z that maximizes the terms. We 
have the following final result6: Z = L~J, ~i -- 

B 1 (2B+I+~/~B2+2B+i)i JC 1 ~ (  and 
1-~B 

the final bound is 5+WB2+2B+l 5+~/(v~S+l/'/~) 2 B+4 > B+4 > 

THEOREM 3.3. With Z = [gJ ,  the lower bound ratio 
approaches x/2, for queue size B. 

6These  express ions  are for even B. We omi t  the  express ions  
for odd  B for simplici ty.  
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4 Bounded-delay Queueing Policy 
We first discuss the connection of the FIFO preemptive 
model to the uniform bounded-delay model. In partic- 
ular, we consider the FIFO preemptive model proposed 
in [8]. The model to be discussed in this section differs 
from our previous definition in tha t  the online algorithm 
is allowed to reorder the packets that  arrive at the same 
t ime unit. The 5-uniform bounded delay model requires 
every packet to be t ransmit ted  within 5 t ime units after 
its arrival, or otherwise it is lost. The packets can be 
t ransmit ted  out of order. 

Clearly, any FIFO preemptive online algorithm with 
queue size B delays each packet by at most 5 = B t ime 
unit, hence also an online algorithm for the bounded 
delay model. However, the converse is not always true. 
We show here tha t  the converse is true for B = 2. 7 

THEOREM 4.1. For B = 5 = 2, the optimal 2-uniform 
bounded delay online algorithm needs a buffer with size 
no more than 2 and can serve packets in FIFO order. 

THEOREM 4.2. For B = 2 or equivalently 5 = 2, the 
competitive ratio is between 1.366 and 1.~1~. 

The 2-variable model allows two types of packets: 
the ones tha t  must  be sent the next t ime unit (with 
delay 1), and the ones tha t  can be delayed for 1 extra  
t ime unit (with delay 2). The bad situation for the 
online algorithm would be a smaller valued packet has 
an early deadline against a higher valued packet. The 
idea here is again to repeat  the bad situation many  
t ime units and prove some convergence result. Consider 
the following general sequence (the number  in brackets 
denotes the allowed delay for tha t  packet): 

(1[11, a l [2]) (a l [ l ] ,  a212]). . .  ( ak - l [ l ] ,  ak[2l)(ak[1]). 
The calculation uses the same techniques and is omit- 
ted here. We thus obtain the following result, which 
matches the previous deterministic upper  bound. 

THEOREM 4.3. For the 2-variable bounded delay model, 
no deterministic online algorithm can achieve a compet- 

itive ratio better than _ ~ A  _ e, for  any constant e > O. 
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