
761

Competitive Queueing Policies for QoS Switches

Nir Andelman* Yishay Mansour t An Zhu t

A b s t r a c t

We consider packet scheduling in a network providing differ-
entiated services, where each packet is assigned a value. We
study various queueing models for supporting QoS (Quality
of Service). In the nonpreemptive model, packets accepted
to the queue will be transmitted eventually and cannot be
dropped. The FIFO preemptive model allows packets ac-
cepted to the queue to be preempted (dropped) prior to their
departure, while ensuring that transmitted packets are sent
in the order of arrival. In the bounded delay model, packets
must be transmitted before a certain deadline, otherwise it is
lost (while transmission ordering is allowed to be arbitrary).
In all models the goal of the buffer policy is to maximize the
total value of the accepted packets.
Let a be the ratio between the maximal and minimal value.
For the non-preemptive model we derive a O(loga) com-
petitive ratio, both exhibiting a buffer policy and a general
lower bound. For the interesting case of two distinct values,
we give an 2~-1 competitive buffer policy, which exactly

ce

matches the lower bound. We also analyze a RED-like pol-
icy and derive its competitive ratio, which is approximately
2~-0.5 for two values and O(loga) for multiple values. In

c t

addition we improve the previous known lower and upper
bounds of the Fixed Partition and Flexible Partition poli-
cies.
For the FIFO preemptive model, we improve the general
lower bound and show a tight bound for the special case of
queue size 2. We prove that the bounded delay model with
uniform delay 2 is equivalent to a modified FIFO preemp-
tive model with queue size 2. We then give improved upper
and lower bounds on the 2-uniform bounded delay model.
We also give lower bound for the 2-variable bounded delay
model, which matches the previously known upper bound.

1 I n t r o d u c t i o n

Currently, the Internet infrastructure provides "best ef-
fort" service for all traffic streams. The uncertainty
of the actual performance is not satisfactory for many

- - W o o l of Computer Science, Tel-Aviv University, Tel-Aviv,
Israel. E-mail : andeJ.mazl@cs.tau.ac, il.

tSchool of Computer Science, Tel-Aviv University, Tel-Aviv,
Israel. E--mail : maasottr@cs, tau. ac. il.

SDepartment of Computer Science, Stanford University, Stan-
ford, CA 94305. Supported by a GRPW fellowship from Bell
Labs, Lucent Technologies. E-mail : emzhu@cs, s taaford.edu.

applications. The widely foreseen next-generation net-
works will provide guaranteed services to meet various
user demands. This gives rise to the recent interest in
the Quality of Service (QoS) feature.

This vision has been around the networking com-
munity for more than a decade [15]. For instance, ATM
networks serve as an example of a unified architecture
that supports a diverse set of service classes. Of late,
there has been termendous interest in IP in providing
differentiated services via QoS guarantees. The basic
methodology of QoS is rather intuitive - - commit re-
sources to each admitted connection. Thus, the net-
work is capable of providing different users with dif-
ferent classes of service. In particular, a contract be-
tween users and service providers ensures that the net-
work maintains the performance guarantees provided
the users stick to their commitments about traffic gen-
eration.

However, due to a variety of reasons, the incom-
ing traffic patterns may not coincide with that speci-
fied in the service contract. A typical example is that
the traffic from the user does not conform to the pat-
terns defined in the contract. The difficult situation
is when the traffic exceeds the allocated bandwidth at
some point. Another equally serious problem is that
by guaranteeing the worst-case performance, the QoS
network might not be efficient due to its conservative
policy, as network traffic tends to be bursty. Recog-
nizing this phenomenon, most modern QoS networks
allow some "overbooking," employing the policy pop-
ularly known as statistical multiplexing [8]. In either
case, QoS networks must resolve the unavoidable issue
of overloading. This paper analyzes queueing policies
under overloading using competitive analysis.

In the past few years the networking community
has had an increasing interest in QoS networks [6, 12,
13, 14]. A major new paradigm suggested is that of
assured service [5]. This service has a loose guarantee
in which traffic conforming to the specified pattern is
much less likely to be dropped in the network. This
approach leads to two types of packets in the system:
those of high priority (conformed traffic) and those of
low priority (uncolfformed traffic).

We can now abstract the problem as follows. We
assign a value to each packet: value 1 for the low priority

762

packets, and value a > 1 for the high priority packets.
This is called the 2-value model. For differing network
requirements, we can adjust a to achieve the desired
performance guarantee. Later we will also consider the
extension where packets take on arbitrary values in the
range [1, a]. We assume that the queue can hold a
maximum of B packets. Packets can arrive at any time,
but are sent out at integer times only. The goal is to
maximize the total value of the packets transmitted. In
terms of competitive analysis [4], we compare the total
value of the packets t ransmit ted by an online algorithm
to the total value of the optimal offiine algorithm. We
say that an online algorithm has a competitive ratio of
j3, if for any input sequence, the total value transmit ted
is at least a ~ fraction of the offline optimal.

We concentrate on three different queueing policies.
The nonpreemptive policy transmits all packets admit-
ted into the queue; observe, under this policy, the queue
can easily maintain a FIFO order.

The FIFO preemptive policy is allowed to drop
packets already admit ted to the queue. The bounded
delay model, on the other hand, transmits packets in
any order, but each packet must be transmit ted before
a fixed deadline or else the packet is lost.

The nonpreemptive model for the 2-value model
was first proposed by Aiello et al [1], who studied four
different queueing policies. Each of the four policies has
competitive ratio strictly worse than the known lower
bound of 2~-1. We present a practical online algorithm
and prove that its competitive ratio is precisely 2~-1
thereby completely solving the problem for this case.
We also derive a fairly natural online buffer policy called
Selective Barrier Policy, which is a RED-like policy [7],
and whose competitive ratio is min{a, 1 + x/1 1/~}.
Note that for a > 1.62 the second bound dominates, and
for large values of a it is approximately 2~-0.5 which

Ot

is near optimal. Additionally, we improve both lower
and upper bounds for the Fixed and Flexible Part i t ion
policies studied in [1]. For the general model, where
the packet values lie in the range [1,a], we establish
matching upper and lower bounds of O(loga) . We
derive a 1 + In a lower bound for any online policy
and exhibit two online policies that are at most e ln(a)
competitive.

The FIFO preemptive policy has been studied ex-
tensively. The 2-value model was considered by Kessel-
man and Mansour [9], who provided approximately op-
timal performance for large values of a and B. We
concentrate on the general model, for which previous
lower and upper bounds were developed by Kesselman
et al [8]; in particular, the lower bound is 1.281, and
the upper bound is ~2~ for a natural greedy algorithm.
The greedy algorithm accepts a packet if possible, oth-

erwise preempts the lowest value packet. Intuitively, it
would seem bet ter to sometimes reject low value pack-
ets. We confirm this intuition by establishing tight up-
per and lower bounds of ~ ~ 1.434 for the case
where B = 21. As a byproduct of our techniques, we
improve the general lower bound for this problem to
v/2 ~ 1.414.

Our techniques for the FIFO preemptive model are
quite general and apply to the bounded-delay model
as well. In particular, we show that a modified FIFO
preemptive model with queue size 2 is equivalent to the
2-uniform bounded-delay model, where each arriving
packet must be sent out within the next 2 time units.
We establish upper and lower bounds of 1.414 and 1.366,
respectively. This is an improvement upon the previous
bounds of 1.434 and 1.25, respectively, due to Kesselman
et al [8]. For the model where some of the arriving
packets must be sent out within one time unit (the 2-
variable bounded delay), we establish a lower bound of
1.618. This is an improvement of the previous lower
bound of 1.414 and matches the upper bound due to
Kesselman et al [8].

The rest of the paper is organized as follows, Section
2 gives a tight analysis for nonpreemptive queueing
policies, Section 3 deals with FIFO preemptive queueing
policies. Finally, Section 4 presents our results for the
bounded-delay model.

2 Nonpreemptive Queueing policy
We first consider the 2-value nonpreemptive model.
Consider a switch buffer (queue) with enough memory
to hold B packets. Between time (i - 1, i) (i E Z+),
a set of packets arrive. The queueing policy (online
algorithm) has to decide whether or not to accept a
packet into the queue when it arrives. Packets tha t
are accepted to the queue stay in the queue, and get
t ransmit ted at a rate of 1 packet per t ime unit. A low
priority packet has benefit 1, while a high priority packet
has benefit a > 1. The aim of the queueing policy is to
maximize the sum of the benefits of all packets tha t get
transmitted.

Aiello et al [1] showed that for a particular value
of a , there is a general lower bound of - ~ for any
online algorithm (deterministic or randomized). Here
we present the Ratio Part i t ion (RP) policy, which
builds on early policies given in [1], and show that it's
competitive ratio is indeed L ~ ! , matching the lower
bound.

We use OPT to denote the optimal algorithm, and
RP to denote the Ratio Part i t ion algorithm. And for

~ o r B = 1, an online algorithm can simply send the most
valuable packet at each time, which is easily seen to be optimal.

7 6 3

convenience, we use H.P. to denote "high priority," and
L.P. to denote "low priority." R P sets the threshold
parameter r to be ~-2~. Whenever a H.P. packet is
arrived, it is accepted as long as the queue is not full
(there is free slot). The accepted H.P. packet is then
matched to ~ -1 unmatched L.P. packets currently in
the queue, s tart ing with the earliest. When a L.P.
packet arrives, RP only accepts it (as an unmatched
L.P. packet) if including that packet, the total number
of unmatched L.P. packet vs. the total number of free

c~ 2 slots is at most r -- a - l "
Before analyzing RP, we first bring more structure

to O P T without changing its optimality.

LEMMA 2.1. We can rearrange the packets admitted to
O P T ' s queue at any time, without changing the total
values of the packets transmitted by O P T .

LEMMA 2.2. f f O P T is idle at time t, then any online
algorithm must also be idle at time t.

LEMMA 2.3. We can modify O P T so that it accepts all
the H.P. packets that R P accepts, without changing its
optimal value.

LEMMA 2.4. I f we restrict the sequence to only consist
of the packets that either O P T or R P accepts, neither
value of O P T nor that of R P will change.

We let S denote this restricted sequence and our
analysis will only concentrate on O P T and RP ' s be-
havior on S. In particular, from lemma 2.3, we know
tha t the H.P. packets in S are exactly the ones tha t
O P T accepted. We further restrict OPT' s behavior as
follows.

LEMMA 2.5. If at time t, R P accepts a L.P. packet p
but O P T rejects, we may instead let O P T accept p,
provided O P T accepts some L.P. packets later on before
O P T ' s queue is full.

Proof. We look into the future t ' , where the queue
for O P T is full for the first t ime since t. If prior to
that , O P T also accepted some other L.P. packet p ' , we
make O P T accept p instead and reject p ' as p ' arrives.
Since the queue was never full before t ' , this exchange
will guarantee that the modified OPT's queue is never
overflown till t ' , when it contains the same packets as
the original one. Obviously, this does not change the
optimal solution. Note that if before t', O P T only
accepts H.P. packets, accepting p will interfere with the
H.P. packets, then O P T must reject p. []

2-Notice that inevitably, we will encounter some roundoff errors
due to the inability to split some queue space, but this is minor,
and not considered here.

We now are ready for the analysis of R P . We imag-
ine the sequence of packets accepted by an algorithm is
placed on a one-way infinite tape T from left to right.
The tape ' s index s tar t at 0, we use T[i] to denote the
tape position with index i. Packets arrive between t ime
(t, t + 1) can only be placed at or after Tit], and at or
before position Tit + B - 1]. A packet is pushed to as
far left as possible. Thus Tit] denotes the packet trans-
mit ted at the end of t ime t (or simply t + 1). The total
value of the packets t ransmit ted is the total value of the
packets being placed on the tape. Our analysis breaks
down the tape into pieces, and compares the tape con-
tent between two consecutive break down points. We
use TOPT[i,j] (TRP[i,jD to denote the total value of
packets from T[i] to T[j] on O P T (RP) ' s tape.

LEMMA 2.6. At any time we have that l x (a - 1) _<
f x v~, where l is the number of unmatched L.P. packets
in the queue and f is the number of free slots in the
queue.

Proof. When a L.P. packet is accepted, by the defini-
tion, the number of umnatched L.P. packet is not more
than ~ times the total number of the free space, so
the bound trivially holds. When a H.P. packet is ac-
cepted, by definition, the free slot decrease by 1, but
the number of unmatched L.P. packets is decreased by
dz l , or there is no unmatched L.P. packet at the end,
which we are again happy. Notice tha t a H.P. packet
hp is always matched to some L.P. packets that arrives
before hp. So when a packet departs, the bound still
holds. []

COROLLARY 2.1. When a queue is .full in R P , all the
packets are matched in the queue.

THEOREM 2.1. We can break down the tape at
some selected m positions bpl, bp2, . . . , bpm, such that
T ° PT [bpl ,bpi + l - l] 2ot-I
TRP[bpl,bp~+l_l] ~ C, where C = a

Proof. We will use induction, assume now we are start-
ing from some position bpi and there are exactly the
same packets stored currently in position bpi and af-
terwards, plus all the unmatched L.P. packets in the
current queue is at or after the breaking point. 3 The
breaking point could be somewhere in the middle of the
current queue, and the end of queue marker is at bpi + s ,
where 0 < s < B - 1. Note that this is true for bpl ---- 0,
and we will make sure such condition is met as we do
the induction.

We examine the packets admit ted to the queue by
both O P T and RP. Assume at t ime t" > bpi, O P T and

~ ~ is very important to make the whole analysis work and
not double charging some L.P. packets.

764

R P make different decisions for the first time. There are
only four general situations:

1. O P T accepted a H.P. packets, while R P rejected
the packet. This cannot happen, since the queue
content prior to t" is the same for O P T and RP.
R P employs greedy strategy for H.P packets, and
so if O P T accepts, R P accepts as well.

2. R P accepts a H.P. packet, while O P T rejects. This
cannot happen due to lemma 2.3.

3. O P T rejects a L.P. packet, while R P accepts.

4. R P rejects a L.P. packet, while O P T accepts.

We will deal with the last two situation separately
and show that in either case, we can find a breaking
point and maintain the hypothesis invariance.[]

Let 's consider situation 3. Assume everything is
the same for O P T and R P from bp~ on up to time
t ' . At time t ' , O P T rejects a L.P. packet sp, while
R P accepts. Then by Lemma 2.5, there is a time
t' > t ' , such that O P T only accepts H.P. packets
between time t" and t', and at t', OPT ' s queue is full 4.
We then set bpi+i = t ' + B at t ime t', and we compare
TRP[bpi, bp~+i - 11 with T°PT[bpi, bpi+l - 1].

LEMMA 2.7. Both O P T ' s and R P ' s queue is full at
time t ~.

Proof. At time t ' , R P used up more queue spaces than
O P T by accepting some additional L.P. packets. R P is
greedy in terms of H.P. packets, so unless RP ' s queue
is full, it will always accept the same number of H.P.
packets O P T accepts. So RP ' s queue will always have
more or equal packets compared to OPT' s until time t'.
This implies that at t ime t', RP ' s queue is full. []

Note at t ime t', the end of the queue for O P T and
R P is at t ' + B - 1, exactly the position of bp~+i - 1. So
it makes sense to set bpi+i = t' + B, the same free slot
for O P T and R P at time t ' + 1. Plus all L.P. packets
are matched up to Tit ' + B - 1] in the current queue
by Corollary 2.1. By default, all unmatched L.P. packet
will arrive a t /af ter the new breaking point.

We have that up to time t", R P and O P T accepted
exactly the same packets. We now compare the rest of
the packets R P and O P T accepted, till Tit ' + B - 1].
There must be equal number of such packets, since the
packets occupy T[t" + k] to Tit ' + B - 1], where t" + k
is the position of sp in the tape. And during this time,
neither queue is idle. Ideally, we want to claim that

4Without loss of generality, we extend t ' till just before the
next transmission, i.e., t ' is integral.

the L.P. packets accepted by R P during this period are
matched eventually. This will immediately imply the
bound, since that means at least a - i fraction of the
the packets are H.P. packets. However, this is not true
in general. To fix this, we give a virtual marking of
H.P. packets to L.P. packets as follows: for the H.P.
packets that arrive after position t" + k, it will mark
up to ~ - i unmarked L.P. packets starting only from
position t" + k on if there is any. And we treat all
the packets before sp as being marked already. So this
scheme differs from our real matching scheme in that
now we pair H.P. packets together with L.P. packets
starting from sp and afterwards.

LEMMA 2.8. From time t" on, at any time we have that
l × (c~ - 1) < f × v~, where l is the number of unmarked
L.P. packets in the queue and f is the number of free
slots in the queue.

This in particular means, when the R P ' s queue is
full, all the L.P. packets are marked. This lemma allows
us to prove that all the L.P. packets after sp are marked,
which imply the following.

LEMMA 2.9. At least ~ fraction of the the packets

between TRP[t '' + k] and TRP[t '] are H.P. packets.

T°PT[bpi,bpi+1-1] 2~--1.
The above lemma implies TRV[bpi,bp~+i_l]

Now let's deal with the last situation 4. Assume at some
time t ' , O P T accepted a L.P. packet, while R P rejected
it. Then we look at the first t ime t ' when RP ' s queue
contains the same number of packets as OPT ' s does.
We set bpi+i = [t'J at time #, i.e., we only compare
packets t ransmit ted up to but not including T[[#J].

LEMMA 2.10. We can rearrange O P T ' s queue content
from time t" on so that the prefix of its queue matches
the entire R P ' s queue content. To be more specific, at
any time,

1. The number of packets in O P T ' s queue is always
more than the number of packets in R P ' s queue
before time t'.

2. The H.P. packets in O P T ' s queue match in position
to those H.P. packets in R P ' s queue. In particular,
that means the number of H.P. packets in either
queue is the same.

That means RP ' s H.P. packet is synchronized with
that of O PT ' s all the time. So the total number of
H.P. packets for O P T and R P is even. We just have
to bound the loss of L.P. packets for R P . We use the
unmatched L.P. packets to account such loss.

We introduce the following virtual counting scheme.
Every L.P. packet contributes another a - i virtual L.P.

765

packet to RP's queue, while it enters the queue. In
particular, we have that if the L.P. packet is currently
in the queue, its virtual part is also in the current queue
(we allow the virtual packets to overflow the queue).
The virtual packet is always shifted to the end of the
real packets in RP's queue. R P always transmits a real
packet as normal, but when it's idle, we let R P transmit
a virtual packet if there is any.

LEMMA 2.11. At any time, the total number of packets
in RP's queue, including the virtual packets, is always
no less than the total number of packets in OPT's queue
until t'.

Since we have H.P. packets all lined up, that means
that including the virtual L.P. packets generated by
packets between T[bpi] and T[bpi+l -1], R P transmitted
as many as OPT did during that period. So the total
number of L.P. packet RP transmitted is at least
of the total number of L.P. packet OPT transmitted.

T°PTtbp,,bpi+i-1] 2~--1.
Hence the ratio "TgP[bpl,bpi+l_l] _<

At time t ' we know that by rearranging OPT's
queue, the two queues looks exactly the same. By
setting breaking point bpi+l = t', our next step will pick
up from time t' with R P and OPT have the same entire
queue content. We thus obtain the following theorem.

THEOREM 2.2. R P is ~-~-competitive.

2.1 Improved Bounds for Policies
In this section we improve the both upper and lower

bounds from [1] for the Fixed and Flexible Partition
Policies.

2.1.1 Fixed Partit ion Pol icy
The Fixed Partition Policy partitions the queue

between the low and high packet values values, using
a variable 0 < x < 1 such that xB is integer. The Fixed
Partition Policy accepts a L.P. (H.P.) packet if including
this packet, there are at most xB L.P. packets ((1 - x) B
H.P. packets) in the queue.

We prove the following lower and upper bounds
for the competitive ratio of the Fixed Partition Policy
(proofs omitted):

THEOREM 2.3. The competitive ratio of the Fixed Par-
tition Policy PEP is at most:

pEP<rain x /2+1 , 3 2c~+1

THEOREM 2.4. The competitive ratio of the Fixed Par-
tition Policy pEP is at least:

{ 1 ~ 1 t }
PFP _ > m a x 2, 1 -- ~ + 2 -- ~ -- +

We derive the lower bound by comparing the perfor-
mance of F P P to OPT among the following scenarios:

1. B L.P. packets arrive.

2. B H.P. packets arrive.

3. B L.P. packets followed by B H.P. packets arrive.
After xB time units xB H.P. packets arrive.

2.1.2 Flexible Partit ion Pol icy
Similarly to the Fixed Partition Policy, the Flexible

Partition Policy partitions the queue between the low
and high value packets, using a variable 0 < x < 1 such
that xB is integer. The difference is that in the Flexible
Partition Policy we allow H.P. packets enter the queue
allocation of L.P. packets, since this will intuitively only
improve the total benefit. Specifically, it accepts a
L.P. packet if including this packet, the number of L.P.
packets in the queue is at most xB, and accepts a H.P.
packet if the queue is not full.

We prove the following lower and upper bounds for
the competitive ratio of the Flexible Partition Policy
(proofs omitted):

THEOREM 2.5. The competitive ratio of the Flexible
Partition Policy PFPP is at most:

pFpp _~ min {o~, X/~ + l }

THEOREM 2.6. The competitive ratio of the Flexible
Partition Policy PFPP is at least:

pFPp>_min{a, 1 2 - - - -
2+1 1}

+ 1 - gg

We derive the lower bound by comparing the per-
formance of F P P to OPT between the following two
scenarios:

1. B L.P. packets arrive.

2. B L.P. packets followed by B H.P. packets arrive.
After xB time units xB low packets followed by xB
high packets arrive, and after (1 - x)B additional
time units, (1 - x)B low packets arrive.

2.2 Generalizations of the Nonpreempt ive
Queue Model

We now generalize the 2-value model to allow
packets take on arbitrary values in [1, c~]. We prove
O(log c~) upper and lower bounds for this model.

2.2.1 Lower Bound

766

THEOREM 2.7. There exists a set V of n values such
that any online scheduling policy has a competitive ratio

n-if a-(n-i)
of at least ~_~,~

Proof. Let "1) = {1, 1 + e, (1 + e)2 , . . . , (1 + e) ~-1 = a} ,
where e = " - ~ / ~ - 1. Consider the following n scenarios,

defined recursively:
In the first scenario, B packets of the lowest value (i.e.,
1) arrive. T h e online policy accepts x l B , thus reaching
a benefi t of V1 = x l B . Since the op t ima l policy m a y
accept all B packets, we have a compet i t ive ra t io of

p l ---- X l .

In the k - th scenario, the packets f rom scenario k - 1
arrive, followed by B packets of value (1 + e) k-1.
Initially, the online pol icy accepts the same packets as in
scenario k - 1, and adds xkB addi t ional packets of value
(l + e) k - l , reaching a benefi t of Vk = V k - l - b X k (1 - b £) k - 1 .

An op t ima l offiine schedule would have accep ted all of
the last B packets, therefore the compet i t ive ra t io is

V~_l+xk(l+e) k-1 pk-1
Pk = (l + e) k - ~ ---- l + e + Xk.

Our lower bound would be the max ima l value of
p = m i n { p l , p 2 , . . . , p n } under the restr ict ions xi >_ 0
for 1 _< i <_ n, and Ep=lxi < 1. T h e m a x i m u m is
achieved when pl = p2 Pn and E~=lxi = 1. The
solut ion to the set of the equat ions is x2 = x3
Xn = -~-Xl+~ 1. Since a = (1 + e) n - l , i.e. e = ~-~/a - 1,
and the m a x i m u m is reached when:

X i (n - 1) + 1+___~ ne + 1

~-~/a - 1 (i 2 , 3 , . . . , n)
 -,Va - (n - 1)

~-~/~
X 1 ---- n n--~/~ __ (n -- 1)

1 < x l the t h e o r e m follows. [] Since a _

Next we derive the dependance on the n u m b e r if

dis t inct values.

THEOREM 2.8. For any fixed n and any 5 > 0 there
n--1 exists a series of values V = {eej}j= o such that the

competitive ratio of any online policy A is at least n - 5.

Proof. By T h e o r e m 2.7 we have:

n ~ - ~ / ~ - (n - 1) n - 1
p(A) _> ~_~/~ = n - - - = ~ .

For a _> (-~A) ~-1 the t heo rem follows. []

T h e following t heo rem generalizes the lower bound
to the case of infinite n u m b e r of possible values.

THEOREM 2.9. For arbitrary packet values between 1
and a, any online scheduling policy has a competitive

ratio of at least (1 + In a)

Proof. For contradic t ion, assume t h a t there exists a
pol icy A, such t h a t p(A) < 1 + (l na) (1 - e). Le t

1 ln a , hence ~-~/~ = e ~. B y T h e o r e m 2.7 n = l + ~
we have:

n "-~/~ - (n - 1) (1 + ¼ l n a) e ~ - ¼ l n a

p >_ ~ - ~ / g - e~

½(lnc~)(e ~ - 1)
= 1 + = 1 + (lnoe)l-(e ~ - 1)e -~

e e e

Since for any e > 0 we have e e > 1 + e and e -e > 1 - e,

therefore,

p(A) > (lnc~)e~(1 - e) = 1 + (l na) (1 () ,

which cont radic ts our assumpt ion . []

2 .2 .2 U p p e r B o u n d
We analyze the R o u n d Robin Policy t h a t equally

divides the buffer into n par t i t ions of size s -g, where n is

the n u m b e r of different packet values. Each par t i t ion is
assigned a different value, and only packets of this value
are accepted into this par t i t ion , in a greedy manner .
T h e par t i t ions take tu rns in sending packets. I f a
pa r t i t ion ' s t u rn to send a packet arrives, bu t it is empty ,
its t u r n passes to the next par t i t ion .

We can s imula te the R o u n d Robin m e t h o d using
a single queue as follows. We v i r tua l ly keep t rack of
the cur rent s t a te of the R o u n d Rob in me thod , use the
v i r tua l s t a te to decide whe the r or not to accept the
cur ren t ly incoming packets . Since the R o u n d Rob in
m e t h o d t r a n s m i t s 1 packet per t ime s tep in total , the
real queue size coincides wi th t h a t of the v i r tua l queue
size, and b o t h queues accept the same set of packets.

THEOREM 2.10. The competitive ratio of the Round

Robin policy is n.

For large values of n the compet i t ive ra t io of the
R o u n d Rob in policy is unbounded , however, the com-
pet i t ive ra t io is independent of a . T h e pe r fo rmance of
the Round Rob in policy can be improved for large val-
ues of n by par t i t ion ing the buffer into k pa r t s of size ~-,
each pa r t accepts only packets wi th values in a cer ta in
range. This implies t ha t we split the interval [1, a] into
k sub- intervals [1 = cm, a l) [c q , a 2) - - - [a k - l , C ~ k = c~].
Each sub- in terval accepts in a greedy manne r packets
wi th values f rom this sub-interval . As in the orig-
inal policy, par t i t ions take tu rns in sending packets.
Exponent ia l - In te rva l s R o u n d Rob in using k par t i t ions
sets a j = og i l k .

7 6 7

LEMMA 2.12. The competitive ratio of the Exponential-
Interval Round Robin policy, using k partitions is ka 1/k,
and for any Round Robin Policy using k partitions, the
competitive ratio is at least kv~ 1/k.

We can derive the following corollary for the case of
infinite number of values.

COROLLARY 2.2. The competitive ratio of the
Exponential-Interval Round Robin with k = [ln a]
partitions is e [ln a] .

The Round-Robin Policy's actions might be counter
intuitive, since it equally prefers packets of all types and
may reject packets of one value in order to save place
for packets of a lower value. Intuitively, we would prefer
a policy that discriminates between packets of different
values, preferring those of higher value. We introduce
the Selective Barrier (SB) Policy (which can be viewed
as a deterministic variant of RED (Random Early
Detection) [7]) and preserves the same upper bound that
was reached by the Round Robin Policy.

The Selective Barrier Policy uses a function 9C(x) :
[1, c~] H [0, 1], to accept packets with value v iff the
queue contains less than iTZ(v)B packets (of any vahm).
Naturally, .~(x) should be monotone and ~ (a) = 1.

LEMMA 2.13. The Selective Barrier Policy with n val-
ues and ~(oei) = i has a competitive ratio of at most

n

n .

Next we derive a bound for an unbounded number of
values.

THEOREM 2.11. For any k > 1, the competitive ratio
of the Selective Barrier Policy is at most koe 1/k.

By Theorem 2.11, we reach the best bound for
the competitive ratio when k • { [ln a] , [ln c~] }, and is
approximately e In a.

2.3 Se lec t ive B a r r i e r : 2 va lues For the two value
case, we prove tight bounds for the competitive ratio of
the Selective Barrier Policy.

THEOREM 2.12. The competitive ratio of the Selective
Barrier Policy with two values is:

min{o~, 1 + X/1 - 1/oz}

For a > ¢ ~ 1.62, the competitive ratio is 1 +
v/1 - 1/a, which is approximately _~_q~9~_~, i.e. very near
to the best possible competitive ratio.

We denote the value of F(1) by x, i.e. SB accepts
high value packets greedily and low value packets as

long as the queue contains less than xB packets. When
a < ¢, we simply set x = 1 and greedily accept all the
packets until the queue is full, hence we have a trivial
bound of a.

For the case of a > ¢, we derive the lower bound
by comparing the performance of SB to OPT between
the following two scenarios:

1. B L.P. packets arrive.

2. B L.P. packets followed by B H.P. packets arrive.
After (1 - x)B t ime units, (1 - x)B L.P. packets
arrive.

To prove the upper bound, we generate OPT
by changing SB's schedule, and bound the difference
between the schedules. OPT is generated by two steps:

1. SWAP : For every L.P. packet SB accepted, if reject-
ing it allows to accept latter a H.P. packet, then
swap the actions.

2. ADD_LOW: For every L.P. packet SB rejected, accept
if it doesn't interfere with future H.P. packets.

LEMMA 2.14. Applying SWAP and ADD.L0W to SB gen-
erates an optimal schedule.

We use the following notations in order to refer to
sets of packets: LM denotes the L.P. packets replaced in
the SWAP step, and HM denotes the extra H.P. packets
OPT accepts. L denotes the L.P. packets added to OPT
in the ADD.L0W step. BOT denotes L.P. and H.P. packets
that entered the queue of SB before it was xB full, while
TOP denotes the H.P. packets accepted by SB when its
queue already contained at least xB packets.

We define time intervals starting and ending at
the events of the queue of SB being either empty
or full. Then, we divide the packets into two sets,
according to the interval they arrived in. Afterwards,
we analyze each type of packets separately, according to
this division.

DEFINITION 2.1. Let Ti = [t/-1,ti] be successive time
intervals, where ti are the time points where the queue
of SB just became either empty or full. Let Gi be the
packets that arrived during the interval Ti. Let GE be
the union of sets Gi such that the queue of SB is empty
both at ti-1 and at ti. Let GF be the union of sets Gi
such that the queue of SB is full at either ti-1 or ti.

Since the queue never gets full at GE intervals, we
need to consider only hDD_LOW when analyzing GE. In
each interval, OPT can accept at most (1 - x)B L.P.
packets due to the hDDi0W step, because the queue of
SB is already at least xB full when such packets arrive.

768

On the other hand, if such packets arrived, we have a
lower bound of x B on the number of packets tha t S B
accepted before the queue was x B full (these are either
low value packets, or high value packets tha t would still
be accepted even if their value was low).

L E M M A 2 . 1 5 . xlL n GEl _< (1 -- x) I (B O T \ LM) N GEl

To analyze GF, we bound the number of additional
high packets O P T accepts by the number of high
packets the S B accepts. If there were swaps, then the
queue was full at the end of the interval, meaning at
least (1 - x) B high value packets arrived after the queue
was at least x B full. On the other hand, at most x B
swaps were done in this interval, since the swapped low
value packets arrive only when the queue is less tha t x B
full.

L E M M A 2.16. (1 - - x) [L M N G F I = (1--x)IHMAGF I <
x [T O P n GFI

If the interval contains packets from ADD_LOW, then
there were at most (1 - x) B packets. In this case,
the endpoint where the queue was full must be the
beginning of the interval, which means tha t at least
(1 - x) B high value packets were in the end of the queue.

LEMMA 2.17. IL n GF[~ [TOP n GF[.

By choosing x = 1 + ~ / ~ - ~ , we combine the

previous lemmas to prove the upper bound of S B
separately GE and GF, thus deriving Theorem 2.12.

3 Preempt ive Queueing pol icy

Preemptive queueing policy gives online algorithms the
ability to preempt (drop) packets already accepted to
the queue, hence bet ter performance ratios can be
derived. To maintain the FIFO order, packets are
always added to the end of the queue, and t ransmit ted
from the beginning of the queue. In addition, a packet
can be dropped from the middle of the queue and the
packets behind it shift forwards.

We concentrate on the model where packets can
take on values in the range [1,a]. We first consider

the case B = 2. We show the - ~ ~ 1.434 upper and
lower bounds.

3.1 Lower Bound Construct ion
We star t with some intuition via simple construc-

tions tha t give loose bounds.
The basic intuition behind the lower bound is of

the following: suppose the online algorithm currently
have two packets in the queue, with values p and q.
Suppose p < q and p has to be t ransmit ted before q.

Without knowing future arrivals, the online algorithm
faces a dilemma: either to t ransmit p and buffer q,
which puts the online algorithm in danger of discarding
q later on; or discard p and t ransmit q, which puts the
online algorithm in danger of being idle the next t ime
unit. Thus the adversary will t ry to balance these two
situations in order to maximize the lower bound.

We introduce the following notat ion for packet
arrival sequence: Packet values axe listed in their arrival
order, with packets arrived within the same t ime unit
grouped into parentheses. 5

Consider the following sequence: (1, a > 1), if the
online algorithm transmits a , then the sequence ends.
O P T transmits both 1 and a in two t ime units. The
ratio is then l+a Otherwise the online algorithm can

Ot "

t ransmit 1 and put a in the queue, then the whole
sequence becomes (1, a) (a , a) . O P T transmits all three
a-valued packets, while the online algorithm has to
discard one such packet during the second t ime unit.
So the ratio becomes 3~ 2 ~ " Balancing the two ratios,

3+vff5 and the bound is approximately we have a -- 2 '
1.303.

Now we may consider to improve the bound, via
extending the sequence to (1, a l) (a l , a2)(a2, a2). If at
t ime 1 online t ransmits a l , then the sequence stops
and no new packets arrive, with the ratio being 1+al
Otherwise, let 's consider t ime 2. If online t ransmits
a2, then the sequence again stops, with the ratio being
al+al+a2 Otherwise, then at t ime 4, the ratio becomes l+a2 "

. . . . 37{- vf5 9+4x/~ °~l-1-°~2-I-a2"~-°z2 We then have a l = a2 -
1 + Oq-+'O~2"-~-a2 " 2 ' 2 '

and the bound is approximately 1.382.
Thus if we continue the trend, we can improve the

bound further. Consider the following general sequence
(a0 = 1, a l) (a l , a 2) . . . (ak_l, a k) (a k , a k) . We then
again have to balance the following equations, derived
from various scenarios similar to the two previous
constructions:

(3.1)
a0 + a l a l + a l + a2 a l + a2 + a2 + a3

a l + a2
ao + a2 ao + oa + a3

Jr . . . -Jr ak_ 1 --~ ak_ 1 -~- a k

ao + a l + . . . + ak -2 + ak
a l + a2 + . . . + ak-~ + ak + ak + ak

ao + a l + . . . + ak-2 + ak-1 + ak + ak

Solving the above equations, we have a i =
!(vqh+5~i + _2(~/i~-1V and as k -~ co, the final ratio
3 \ 2] 3~ 2 /

~ o r instance, (a, b)(c, d) means packets valued a and b arrived
dur ing the first t ime unit , wi th a in front of b. Similar s i tuat ion
applies to packets valued c and d, which arrive dur ing the second
t ime unit .

769

R A T I O
1
2
3
4
5
6
7
8

For the arrival of a new packet p at t ime t.
I F p < V1 t a n d p < V]

DROP p
E L S E

DROP the smaller of B~ and B~
ACCEPT p into the queue, so now B~ = p
IF Yg/Y: >

DROP B~, so now B~ = p

Figure 1: Pseudo-code for the RATIO Algorithm

--~ ~ ~ 1.434.

THEOREM 3.1. No deterministic online algorithm can
achieve a competitive ratio better than V'i~+56 - e, for
any constant e _> O.

3.2 T h e RATIO A l g o r i t h m
The ai series provides much insight on designing

the matching online algorithm. The determining critical

ratio is ~ 2 , as _m_~_~ converges to this value. The

other ratio ~ / i n the expression is only used by the
adversary to make sure the early equations' values are
large enough to match the convergent ratio. The online
algorithm thus has much less work to do and is strikingly
simple. Let r denote the constant V~5+5 We use B~ 2 "
to denote the first packet in the queue at time t, and
B~ the second packet. Similarly V~ t and V~ refer to the
values of the packets. The RATIO algorithm looks at
all packets that arrived between time (t, t + 1), and the
two most valuable packets will be considered. If the
second packet has value more than r times that of the
first packet, the first packet will be dropped and only
the second one will be transmitted. Otherwise the first
packet will be transmitted, while the second is held in
the queue . Figure 1 shows the Pseudo-code.

We describe the analysis at a high level, which is
motivated by the lower bound construction. There are
two situations where we could claim RATIO transmit-
ted enough packets:

1. When RATIO t ransmitted the second higher val-
ued packet and discarded the first packet.

2. When RATIO finished transmitting both packets
that was once in the queue together.

The difficult situation is that RATIO always trans-
mits the first smaller valued packet and drops the second
packet later. OPT instead transmits the higher valued
packet, which maybe r times more valuable. Thus, the
analysis has to take care of this escalating effect. In-
deed, one should expect to deal with long expressions

similar to the equations in the lower bound construc-
tion. This makes the analysis quite involved. Detailed
proofs are deferred to the full version of the paper.

THEOREM 3.2. The RATIO algorithm is 5+vT5 6
competitive.

3.3 L o w e r B o u n d for t h e G e n e r a l M o d e l
We now briefly discuss the generalization of our

lower bound construction to arbitrary queue sizes. In
particular, for a queue of size B, consider the following
general sequence (where Z < B is some constant to be
determined later):

(1, i , . . . , 1, ~)(-~)(~i)... (cq)j~, ~1, . . . , ~ l , a ~
Y

z-i

Z-i B

B Z

)() . . .
8

At times 1 through Z, if the online algorithm
decides to transmit any one of the cq packets, then
the adversary will stop the sequence after time Z. The
online algorithm transmits no more than (Z - 1)+ Zcq,
while O P T transmits all of the packets. Thus the ratio
is then no less than s-l+zc,~ The adversary then start

Z-i+Zo~i "

from the beginning of the sequence again.
Otherwise, the online algorithm then at the best

transmitted Z packets of value i during times 1 through
Z. OPT instead transmitted Z packets of value ~i
during the same period, while discarding the earlier
packets with value I. The adversary then make B - 1
packets of value o~i and another packet of value ~2 to
arrive one by one after time Z, and then repeat the
strategy as during times 1 through Z. If such situation
continues, the adversary will end the sequence at c~k.

To maximize the lower bound, we need not
only to balance the ratios in all cases, but also
to pick a value Z that maximizes the terms. We
have the following final result6: Z = L~J, ~i --

B 1 (2B+I+~/~B2+2B+i)i JC 1 ~ (and
1-~B

the final bound is 5+WB2+2B+l 5+~/(v~S+l/'/~) 2 B+4 > B+4 >

THEOREM 3.3. With Z = [gJ , the lower bound ratio
approaches x/2, for queue size B.

6These express ions are for even B. We omi t the express ions
for odd B for simplici ty.

770

4 Bounded-delay Queueing Policy
We first discuss the connection of the FIFO preemptive
model to the uniform bounded-delay model. In partic-
ular, we consider the FIFO preemptive model proposed
in [8]. The model to be discussed in this section differs
from our previous definition in tha t the online algorithm
is allowed to reorder the packets that arrive at the same
t ime unit. The 5-uniform bounded delay model requires
every packet to be t ransmit ted within 5 t ime units after
its arrival, or otherwise it is lost. The packets can be
t ransmit ted out of order.

Clearly, any FIFO preemptive online algorithm with
queue size B delays each packet by at most 5 = B t ime
unit, hence also an online algorithm for the bounded
delay model. However, the converse is not always true.
We show here tha t the converse is true for B = 2. 7

THEOREM 4.1. For B = 5 = 2, the optimal 2-uniform
bounded delay online algorithm needs a buffer with size
no more than 2 and can serve packets in FIFO order.

THEOREM 4.2. For B = 2 or equivalently 5 = 2, the
competitive ratio is between 1.366 and 1.~1~.

The 2-variable model allows two types of packets:
the ones tha t must be sent the next t ime unit (with
delay 1), and the ones tha t can be delayed for 1 extra
t ime unit (with delay 2). The bad situation for the
online algorithm would be a smaller valued packet has
an early deadline against a higher valued packet. The
idea here is again to repeat the bad situation many
t ime units and prove some convergence result. Consider
the following general sequence (the number in brackets
denotes the allowed delay for tha t packet):

(1[11, a l [2]) (a l [l] , a212]). . . (ak - l [l] , ak[2l)(ak[1]).
The calculation uses the same techniques and is omit-
ted here. We thus obtain the following result, which
matches the previous deterministic upper bound.

THEOREM 4.3. For the 2-variable bounded delay model,
no deterministic online algorithm can achieve a compet-

itive ratio better than _ ~ A _ e, for any constant e > O.

R e f e r e n c e s

[1] W.A. Aiello, Y. Mansour, S. Rajagopolan, and
A. Rosen. Competitive Queue Policies for Differen-
tiated Services. Proceedings of the IEEE INFOCOM,
2000, pages 431-440.

7We comment that in general, the two problems are not
equivalent. In fact, we believe that for 6 > 3, the best online
algorithm for &uniform bounded delay model will serve the
packets out of order.

[2] The ATM Forum Technical Committee. Traffic man-
agement specification version 4.0. Available from
www.atmforum.com, Apr. 1996.

[3] D. Black, S. Blake, M. Carlson, E. Davies, Z. Wang,
and W. Weiss. An architecture for differentiated
services. Internet RFC 24 75, December 1998.

[4] A. Borodin and R. E1-Yaniv. Online Computation and
Competitive Analysis. Cambridge University Press,
1998.

[5] D. Clark and J. Wroclawski. An approach to service
allocation in the internet. Internet draft, available from
diffserv.lcs.mit.edu, 1997.

[6] C. Dovrolis, D. Stiliadis, and P. Ramanathan. Pro-
portional Differentiated Services: Delay Differentia-
tion and Packet Scheduling. Proceedings of A CM SIG-
COMM, 1999, pages 109-120.

[7] S. Floyd and V. Jacobson. Random early detection
gateways for congestion avoidance. IEEE/A CM Trans-
actions on Networking, 1(1993):397---413.

[8] A. Kesselman, Z. Lotker, Y. Mansour, B. Patt-Shamir,
B. Schieber, and M. Sviridenko. Buffer Overflow
Management in QoS Switches. Proceedings of the 33rd
Annual ACM Symposium on Theory of Computing,
2001, pages 520--529.

[9] A. Kesselman and Y. Mansour. Loss-Bounded Analysis
for Differentiated Services. Proceedings of the 12th An-
nual SIAM-ACM Symposium on Discrete Algorithms,
2001, pages 591-600.

[10] M. May, J.-C. Bolot, A. Jean-Marie, and C. Diot.
Simple performance models of differentiated services
for the internet. Proceedings of IEEE INFOCOM,
1999, pages 1385-1394.

[111 K. Nichols, V. Jacobson, and L. Zhang. A
Two-bit Differentiated Services Architecture for the
Internet. Internet Draft, available from cite-
seer.nj.nec.eom/251975.html, July 1999.

[12] T. Nandagopal, N. Venkitaraman, R. Sivakumar, and
V. Bharghavan. Relative Delay Differentiation and
Delay Class Adaptation in Core-Stateless Networks.
Proceedings of IEEE INFOCOM, 2000, pages 421-430.

[13] N. Semret, R.R.-F. Liao, A.T. Campbell, and
A.A. Lazar. Peering and Provisioning of Differenti-
ated Internet Services. Proceedings of IEEE INFO-
COM, 2000, pages 414-420.

[14] I. Stoica and H. Zhang. Providing Guaranteed Ser-
vices without Per Flow Management. Proceedings of
SIGCOMM, 1999, pages 81-94.

[15] J.S. Turner. New directions in communications. IEEE
Communications Magazine, 24(1986):8-15.

