
Management of Multi-Queue Switches In QoS Networks

Yossi Azar
∗

School of Computer Science
Tel-Aviv University

Tel-Aviv, Israel

azar@tau.ac.il

Yossi Richter
†

School of Computer Science
Tel-Aviv University

Tel-Aviv, Israel

yo@tau.ac.il

ABSTRACT
The concept of Quality of Service (QoS) networks has gained
growing attention recently, as the traffic volume in the Inter-
net constantly increases, and QoS guarantees are essential to
ensure proper operation of most communication based appli-
cations. A QoS switch serves m incoming queues by trans-
mitting packets arriving at these queues through one output
port, one packet per time unit. Each packet is marked with
a value indicating its guaranteed quality of service. Since
the queues have bounded capacity and the rate of arriv-
ing packets can be much higher than the transmission rate,
packets can be lost due to insufficient queue space. The
goal is to maximize the total value of transmitted packets.
This problem encapsulates two dependent questions: ad-
mission control, namely which packets to discard in case of
queue overflow, and scheduling, i.e. which queue to use for
transmission in each time unit. We use competitive anal-
ysis to study online switch performance in QoS based net-
works. Specifically, we provide a novel generic technique
that decouples the admission control and scheduling prob-
lems. Our technique transforms any single queue admis-
sion control strategy (preemptive or nonpreemptive) to a
scheduling and admission control algorithm for our general
m queues model, whose competitive ratio is at most twice
the competitive ratio of the given admission control strat-
egy. We use our technique to derive concrete algorithms for
the general preemptive and nonpreemptive cases, as well as
for the interesting special cases of the 2-value model and the
unit value model. To the best of our knowledge this is the
first result combining both scheduling and admission con-
trol decisions for arbitrary packets sequences in multi-queue
switches. We also provide a 1.58-competitive randomized
algorithm for the unit value case. This case is interesting by
itself since most current networks (e.g. IP networks) only

∗Research supported in part by the Israeli Ministry of in-
dustry and trade and by the Israel Science Foundation.
†Research supported in part by the Israeli Ministry of in-
dustry and trade.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’03, June 9–11, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-674-9/03/0006 ...$5.00.

support a best-effort service in which all packets streams are
treated equally.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols—Routing protocols; F.2.2 [Analysis of Algo-
rithms and Problem Complexity]: Nonnumerical Al-
gorithms and Problems

General Terms
Algorithms, Theory

Keywords
On-line, Competitive, QoS, Switch

1. INTRODUCTION

1.1 Overview:
During recent years, network traffic has increased steadily,

mainly due to the constant growing use of the Internet for
both commercial and personal purposes. This phenomenon,
combined with the fact that Internet traffic tends to fluc-
tuate constantly, frequently overloads networking systems
causing considerable degradation in the quality of commu-
nication based applications. As a result, the concept of net-
works supporting guaranteed Quality of Service (QoS) to
each traffic stream, in terms of bandwidth, latency, maxi-
mum drop rate etc., has received growing attention lately
within the communication community. Since network over-
loads are frequent, QoS switches often have to cope with in-
creasing amounts of overloaded traffic, while attempting to
maximize the weighted throughput, where the weights cor-
respond to the required quality of service for each packet.
Hence, the quality of the decisions made by the switch can
be measured by considering the total weight of packets it
managed to pass through.

We model the problem of maximizing switch through-
put in QoS networks as follows. A switch has m incom-
ing FIFO queues and one output port. At each time unit
new packets arrive to the queues, each packet marked with
a value that corresponds to its guaranteed quality of ser-
vice. Additionally, at each time unit the switch selects one
non-empty queue and transmits the packet at the head of
the queue through the output port. Since the m incoming
queues have bounded capacities, arriving packets can over-
flow the queues, and some packets must be discarded. The

82



goal is to maximize the total value of transmitted packets.
We consider both the nonpreemptive model and the pre-
emptive model, where packets stored in the queues can be
discarded in order to free space for new packets. Tradition-
ally, similar problems were analyzed while assuming either
some constant structure of the sequence of arriving pack-
ets, or a specific distribution of the arrival rates (see e.g.
[4, 13]). We avoid any assumptions on the input and use
competitive analysis to compare the performance of online
algorithms to the optimal solution. In our work we face the
combination of two dependent problems: admission control,
namely which packets to discard in case of queue overflow,
and scheduling, i.e. from which queue to transmit in every
time unit. We present a generic technique that decouples
the above problems and transforms any admission control
strategy for a single queue (both preemptive and nonpre-
emptive) to an algorithm for our general model (preemptive
or nonpreemptive, respectively). The competitive ratio of
the constructed algorithm is at most twice the competitive
ratio of the given admission control strategy. We therefore
generalize known results [1, 2, 9, 10, 12] for preemptive and
nonpreemptive single queue admission control to the general
model of m queues.

In addition, we also study the special case where all pack-
ets have unit value, and the goal is to maximize the number
of transmitted packets. This model is interesting by itself,
since the majority of current networks (most notably, IP
networks) do not yet integrate full QoS capabilities, and
provide a “best effort” service, where packets belonging to
different traffic streams are treated equally within interme-
diate switches. We show a randomized algorithm and lower
bounds for this special case.

1.2 Our results:

• Our main contribution is a generic technique to trans-
form an admission control strategy for a single queue
(both preemptive and nonpreemptive) to a scheduling
and admission control algorithm (preemptive or non-
preemptive, respectively) for a switch with m queues.
The competitive ratio of the constructed algorithm is
at most twice the competitive ratio of the original sin-
gle queue admission control algorithm.

• We use our generic technique to devise a 4-competitive
algorithm for our general m queues preemptive model
with packets of arbitrary values.

• In addition we employ our technique to construct the
following algorithms:

– A (2e�ln α�)-competitive algorithm for the gen-
eral nonpreemptive model where α is the ratio
between the largest value to the smallest one.

– An approximately 2.6-competitive algorithm for
the preemptive 2-value model.

– A (4 − 2
α
)-competitive algorithm for the nonpre-

emptive 2-value model where the values are re-
stricted to 1 and α.

– We show that any “reasonable” online algorithm
(defined later) is 2-competitive for the special case
of unit value packets.

• We present a ( e
e−1

)-competitive randomized algorithm
for the unit value case. We also show deterministic and
randomized lower bounds in this model.

We prove our upper bounds while assuming that all the
queues in the switch are of equal size. We note that this
is done for simplicity of notation only. The algorithms we
present, including their bounds and analysis, remain the
same when the queues have different sizes.

1.3 Our techniques:
For our generic technique, we begin by considering a relax-

ation of our preemptive m queues model, in which packets
can be transmitted in any order out of the queues, not neces-
sarily FIFO. We present a natural algorithm in this preemp-
tive relaxed model and analyze its performance by using a
potential function. We then formulate our generic algorithm
which is given a single queue admission control strategy as
a parameter. The algorithm uses the given strategy for ad-
mission control in all m queues. In addition, the algorithm
runs a simulation of the algorithm in the relaxed preemptive
model and adopts its scheduling decisions. We prove that
the simulation we use allows us to analyze our algorithm’s
performance in each queue separately.

We also investigate the special case of unit value packets.
We construct a reduction to the problem of finding a maxi-
mum matching in a bipartite graph, whose unique property
is its independence of the switching algorithm. This method
can be combined with the techniques provided in [8] to
produce a randomized algorithm which is 1.58-competitive.
This is in contrast to a natural randomized algorithm that
turns out to be no better than (2 − o(1))-competitive. The
randomized lower bound is proved by modelling the problem
as a Markov chain (which corresponds to a non-uniform ran-
dom walk). A careful analysis of this Markov chain provides
the lower bound.

1.4 Related results:
The online problem of throughput maximization in switches

supporting QoS has been studied extensively during recent
years. Aiello et al. [1] initiated the study of different queu-
ing policies for the 2-value nonpreemptive model in which
the switch has a single queue, preemption is not allowed and
each packet has a value of either 1 or α. Recently, Andel-
man et al.[2] showed tight bounds for this case. The pre-
emptive 2-value single queue model was initially studied by
Kesselman and Mansour [10], followed by Lotker and Patt-
Shamir [12] who showed almost tight bounds. The general
preemptive single queue model, where packets can take arbi-
trary values, was investigated by Kesselman et al. [9], who
proved that the natural greedy algorithm is 2-competitive
(specifically 2α/(1 + α)-competitive where α ≥ 1 is the ra-
tio between the largest value to the smallest one). Our work
generalizes all the above results for the general m queues
model. An alternative model to ours is the shared memory
QoS switch, in which memory is shared among all queues.
Hahne et al. [7] studied buffer management policies in this
model while focusing on deriving upper and lower bounds
for the natural Longest Queue Drop policy.

Koga [11] and Bar-Noy et al. [3] investigated the online
problem of minimizing the length of the longest queue in a
switch, which is in some sense the dual to the unit value
case we study. In their model queues are unbounded in
size, hence packets are not lost. Koga [11] proved that the

83



natural greedy algorithm that always empties the longest
queue is Θ(log m)-competitive. Bar-Noy et al. [3] suggested
a different algorithm that simulates the greedy algorithm
in the continuous model and is also Θ(log m)-competitive.
Chrobak et al. [6] studied the more general problem of min-
imizing the length of the longest queue where queues can be
emptied subject to conflicts constraints.
Paper structure: Section 2 includes formal definitions and
notations. Our generic technique is shown in Section 3. In
section 4 we present our randomized algorithm for the unit
value case. Section 5 contains deterministic and randomized
lower bounds for the unit value problem.

2. DEFINITIONS AND NOTATIONS
We model the switch throughput maximization problem

as follows. We are given a switch with m FIFO queues,
where queue i has size Bi, and one output port. Packets are
arriving online, each packet is destined to one of the queues
and is associated with a non-negative value. We denote the
online packets sequence by σ. Initially, the m queues are
empty. We assume that time is discrete, and each time unit
t ≥ 0 is divided to two phases: at the beginning of the first
phase of time t a set σ(t) of packets arrive to the queues.
Packets can be inserted to each queue without exceeding
its capacity. Remaining packets must be discarded. In the
second phase of time t, the switching algorithm may select
one of the non-empty queues and transmit the packet at the
head of the queue. The goal is to maximize the total value of
transmitted packets. We consider both the nonpreemptive
model and the preemptive model, in which previously stored
packets can be discarded from the queues. We also study
two interesting special cases of our model: the 2-value case,
in which packets values are restricted to 1 and α, and the
unit value model in which all packets have unit value.

Given an online switching algorithm A we denote by A(σ)
the value of A given the sequence σ, and by At(σ) the value
of A until time t (inclusive). We denote the optimal (off-line)
algorithm by OPT , and use similar notations for it.

A deterministic online algorithm A is c-competitive for
a problem iff for every instance of the problem and every
packets sequence σ we have: OPT (σ) ≤ c · A(σ). We say
that a randomized online algorithm A is c-competitive iff for
every sequence σ the following holds: OPT (σ) ≤ c ·E[A(σ)].
We claim that a problem has a lower bound c if no algorithm
can achieve a competitive ratio strictly lower than c. Given
an online algorithm A, we denote its competitive ratio by
CA.

We often focus on algorithms that transmit a packet every
time a packet is available. We refer to such algorithms as
reasonable online algorithms. One can easily verify that any
online algorithm A can be transformed into a reasonable
online algorithm A′ such that CA′ ≥ CA.

3. COMPETITIVE ALGORITHMS FOR QOS
SWITCH MANAGEMENT

In this section we present a generic technique that de-
couples the admission control and the scheduling problems
and transforms any admission control strategy for a single
queue (for both the preemptive and nonpreemptive models)
to a competitive algorithm for the general m queues model.
We use our generic technique to construct concrete compet-

itive algorithms for both the preemptive and nonpreemptive
cases.

We begin by defining a natural greedy preemptive admis-
sion control strategy for a single queue.
Algorithm GREEDY
Enqueue a new packet if:

• The queue is not full.

• Or the packet with the smallest value in the queue has
a lower value than the current packet. In this case
the smallest packet is discarded and the new packet is
enqueued.

We now turn to consider a relaxation of our preemptive
model, in which packets can be transmitted from each queue
in any order, not necessarily FIFO. We note that although
this relaxation adds considerable strength to the online al-
gorithm, the optimal solution remains the same. Therefore,
when referring to the optimal solution we do not distinguish
between the original FIFO model and its relaxation. We
present the following natural greedy online algorithm for
the preemptive relaxed model.

Algorithm TransmitLargest (TL)

1. Admission control: use algorithm GREEDY for
admission control in all m incoming queues.

2. Scheduling: at each time unit, transmit the packet
with the largest value among all packets stored in the
queues.

We return to our original FIFO model and present our
generic technique GenericSwitch (abbreviated GS) for both
the preemptive and nonpreemptive models. We focus on
asynchronous admission control strategies for a single queue,
defined as follows.

Definition 1. An admission control strategy for a single
FIFO queue is called asynchronous if it can handle arrival
of packets at continuous time.

To the best of our knowledge, all known admission control
strategies for a single queue are asynchronous. We next
present the definition of GS with an asynchronous admission
control strategy A as a parameter.

Algorithm GSA:

1. Admission control: apply admission control strat-
egy A to all m incoming queues.

2. Scheduling: run a simulation of algorithm TL (in
the preemptive relaxed model) with the online input
sequence σ. At each time unit transmit the packet at
the head of the queue used by TL simulation.

In GSA, admission control is carried out by exercising the
asynchronous admission control strategy A on all queues.
Consequently, algorithm GSA is preemptive only if A itself
is preemptive, and nonpreemptive otherwise. Scheduling is
handled independently by simulating the operation of algo-
rithm TL (which is defined in the preemptive relaxed model)
on the online input sequence σ, and adopting all its schedul-
ing decisions, with no regard to the values of the packets
transmitted by TL or the packets residing in its queues. It
is crucial to note that we use the simulation of TL in the
preemptive relaxed model even when we generate a nonpre-
emptive algorithm GSA from a single queue nonpreemptive

84



admission control strategy A. Our main result is that the
competitive ratio of GSA is at most twice the competitive
ratio of A.

We begin our analysis by bounding the performance of
algorithm TL.

Theorem 1. Algorithm TL is 2-competitive in the pre-
emptive relaxed model.

Proof. For every i = 1, . . . , m denote by {vt
ij} the values

of the packets stored in queue i at time t in TL, sorted from
largest to smallest. Similarly, denote by {v̄t

ij} the sorted
values in queue i at time t in OPT . For simplicity of nota-
tion, we often omit the superscript t when meaning is clear,
and we always consider 1 ≤ j ≤ B, and pad the sequences
with 0’s, if necessary. Note that as a consequence, every
time a packet is inserted to queue i, a value is discarded
from the corresponding sorted sequence. We may view it
as though we virtually extend the sorted sequence to B + 1
entries, where entry B + 1 holds the discarded value (which
may be a padded ’0’ entry). If a packet is inserted to the
queue upon its arrival we refer to it as an accepted packet,
otherwise we refer to it as a rejected packet. Recall that
whenever algorithm TL discards a packet, it is the packet
with the smallest value in the queue. The following obser-
vation argues the same with regard to the optimal solution.

Observation 1. Whenever OPT discards a packet in the
relaxed model, it is the packet with the smallest value in the
queue.

For every queue i and time t we define dt
i =

�B
j=1(v̄

t
ij −

vt
ij)+, where x+ = max{x, 0}. We define the following po-

tential function: Φt =
�m

i=1 dt
i. Note that Φt ≥ 0 for every

t.

Lemma 1. For every packets sequence σ and time unit
t ≥ 0 the following inequality holds:
OPT t(σ) + Φt ≤ 2 · TLt(σ).

Proof. We prove the lemma by induction on the time
units. For t = 0 the inequality clearly holds. We assume
correctness by the end of time unit t − 1 and prove that
the inequality holds when time unit t is finished. Denote by
∆x the change incurred in the value of x when an operation
takes place in the system, i.e. a packet arrives or a packet
is transmitted. The next two claims prove that the inequal-
ity holds for every single operation occurring in the system
during time t.

Claim 1. For each packet arriving at the first phase of
time t we have: ∆OPT + ∆Φ ≤ 2 · ∆TL.

Proof. In the first phase of each time unit, packets are
not transmitted, therefore ∆OPT = ∆TL = 0. Consider
any packet arriving at time t. Let i be the queue to which
the packet is destined. We examine the possible cases and
prove that for all of them ∆Φ ≤ 0. Clearly, ∆dj = 0 for all
j �= i, hence it suffices to check ∆di. Note that we use here
{vij} and {v̄ij} to denote the sorted values sequences after
the insertion.

1. The packet is accepted by both ��� and ��.
Let k ≤ B be the index of the new packet in the se-
quence of sorted values of queue i in OPT . Let l ≤ B
be the corresponding index for TL. We check the pos-
sible cases:

(a) � � �:

∆di =

B�
j=k

(v̄ij − vij)+

−
�
� l�

j=k+1

(v̄ij − vi(j−1))+ +
B+1�

j=l+1

(v̄ij − vij)+

�
�

≤
B�

j=k

(v̄ij − vij)+

−
�
� l�

j=k+1

(v̄ij − vi(j−1))+ +

B�
j=l+1

(v̄ij − vij)+

�
�

=
l�

j=k

(v̄ij − vij)+ −
l�

j=k+1

(v̄ij − vi(j−1))+ = 0,

where the last equality results from the fact that
v̄ij1 ≤ vij2 for every k ≤ j1, j2 ≤ l.

(b) � � �:

∆di =

B�
j=l

(v̄ij − vij)+

−
�
�k−1�

j=l

(v̄ij − vi(j+1))+ +
B+1�

j=k+1

(v̄ij − vij)+

�
�

≤
B�

j=l

(v̄ij − vij)+

−
�
�k−1�

j=l

(v̄ij − vi(j+1))+ +

B�
j=k+1

(v̄ij − vij)+

�
�

=
k�

j=l

(v̄ij − vij)+ −
k−1�
j=l

(v̄ij − vi(j+1))+

=
k�

j=l

(v̄ij − vij)+ −
k−1�
j=l

(v̄ij − vi(j+1)) (1)

=

k�
j=l

(v̄ij − vij)+

−
�
� k�

j=l

(v̄ij − vij) − v̄ik + vil

�
� (2)

=

k�
j=l

(v̄ij − vij)+ −
k�

j=l

(v̄ij − vij)+ = 0, (3)

where in (2) v̄ik = vil and (1) and (3) follow from
the fact that v̄ij1 ≥ vij2 for every l ≤ j1, j2 ≤ k.

85



2. The packet is accepted by ��� , rejected by
��. Let k be the index of the new packet in the list
of sorted values in queue i in OPT . We have:

∆Φ = ∆di =

B�
j=k

(v̄ij − vij)+ −
B+1�

j=k+1

(v̄ij − vi(j−1))+

≤
B�

j=k

(v̄ij − vij)+ = 0,

where the last equality results from the fact that v̄ij1 ≤
vij2 for every k ≤ j1, j2 ≤ B, since TL rejected the new
packet.

3. The packet is accepted by ��, rejected by ��� .
Let l be the index of the new packet in the list of sorted
values in queue i in TL. We get:

∆Φ = ∆di =
B�

j=l

(v̄ij − vij)+ −
B�

j=l

(v̄ij − vi(j+1))+ ≤ 0,

where the last inequality follows from the fact that
(v̄ij − vij)+ ≤ (v̄ij − vi(j+1))+ for every l ≤ j ≤ B.

4. The packet is rejected by both ��� and ��.
Clearly, ∆Φ = 0.

Claim 2. For the transmission phase in time t the fol-
lowing holds: ∆OPT + ∆Φ ≤ 2 · ∆TL.

Proof. In this context we denote by {vij} and {v̄ij} the
sorted values sequences before the transmission takes place.
Let r be the queue from which TL takes a packet for trans-
mission. Define vr(B+1) = 0. We have:

∆dr =
B�

j=1

(v̄rj − vr(j+1))+ −
B�

j=1

(v̄rj − vrj)+

≤
B�

j=1

[(v̄rj − vrj)+ + (vrj − vr(j+1))] −
B�

j=1

(v̄rj − vrj)+

=
B�

j=1

(vrj − vr(j+1)) = vr1 − vr(B+1)

= vr1 = ∆TL.

Let s be the queue from which OPT takes the packet with
the kth largest value for transmission (of course r = s is pos-
sible, and then {vsj} is the sequence after the first change).
We have:

∆ds =
B�

j=k+1

(v̄sj − vs(j−1))+ −
B�

j=k

(v̄sj − vsj)+

≤
B�

j=k+1

(v̄sj − vsj)+ −
B�

j=k+1

(v̄sj − vsj)+ − (v̄sk − vsk)

≤ −(∆OPT − ∆TL),

where the last inequality results from vsk ≤ ∆TL. Putting
it all together we get:

∆OPT + ∆Φ = ∆OPT + ∆dr + ∆ds

≤ ∆OPT + ∆TL − (∆OPT − ∆TL)

= 2 · ∆TL.

Claims 1 and 2 imply that the inequality holds when time t
is finished. This completes the proof of Lemma 1.

Theorem 1 follows directly from Lemma 1.

We now return to our original FIFO model and analyze
the performance of GS. Before we proceed we wish to elab-
orate on the intuition behind our generic algorithm. Al-
gorithm GS uses the simulation of algorithm TL to decide
at each time unit which queue to use. This enables us to
compare our algorithm’s throughput with TL’s throughput
for each queue separately. Informally, this means that we
can forget about the scheduling problem, lose a competitive
factor of 2 since we use TL that is 2-competitive, and focus
on our performance in each queue separately. We are now
ready to state the main theorem of the paper.

Theorem 2. Let GSA denote the algorithm obtained by
running algorithm GS with the asynchronous single queue
admission control strategy A (preemptive or nonpreemptive).
Then CGSA ≤ 2 · CA.

Proof. We begin by introducing some new definitions
and notations. Given the input sequence σ, denote by σi

(i = 1, . . . , m) the sequence of packets arriving at queue i.
For a given input sequence σ, define τk

i to be the time unit
at which algorithm TL transmits a packet from queue i for
the k-th time (τk

i = ∞ if queue i is used less than k times).
We now define a more compact representation of σi, denoted
by σ̂i, which relies on TL operation. We consider only time
units in which queue i was used for transmission, and de-
fine σ̂i(t) = (σi(τ

t−1
i +1), . . . , σi(τ

t
i )), where we concatenate

packets arriving between time units τ t−1
i and τ t

i and assign
them all to the latter time unit. Consider an algorithm
ALG, that exercises an independent asynchronous admis-
sion control policy in each queue (denote by Ai the policy
used in queue i) and makes the same scheduling decisions as
TL. Then, we can decouple admission control and schedul-
ing and obtain : ALG(σ) =

�m
i=1 Ai(σ̂i). Specifically, we

have: GSA(σ) =
�m

i=1 A(σ̂i) and TL(σ) =
�m

i=1 TL(σ̂i),
where we denote by TL both the algorithm for m queues
and the restriction to a single queue.

We can now prove the desired competitive ratio:

OPT (σ) ≤ 2 · TL(σ) = 2

m�
i=1

TL(σ̂i) ≤ 2

m�
i=1

OPT (σ̂i)

≤ 2
m�

i=1

CA · A(σ̂i) = 2 · CA · GSA(σ),

where the first inequality follows from Theorem 1, the third
inequality follows from the fact that the optimal solution is
at least as good as TL for σ̂i and the forth inequality follows
from the fact that the optimal solution is the same for the
preemptive and the nonpreemptive models.

We now show how to combine our generic technique with
known admission control algorithms for a single queue, in
order to construct specific preemptive and nonpreemptive
algorithms for our general m queues FIFO model. These
examples demonstrate both the flexibility and the strength
of our generic technique. All the following theorems are
derived directly from Theorem 2.
General preemptive model: Kesselman et al. [9] proved
that algorithm GREEDY is 2-competitive in the single queue
preemptive model. There follows:

86



Theorem 3. Algorithm GSGREEDY in the general pre-
emptive model is 4-competitive.

General nonpreemptive model: Andelman et al. [2]
recently presented a nonpreemptive admission control al-
gorithm for a single queue called Exponential-Interval
Round Robin (abbreviated EIRR), which is (e�ln α�)-
competitive, where α denotes the ratio between the largest
value in the packets sequence σ and the smallest one . There-
fore:

Theorem 4. Algorithm GSEIRR for the general nonpre-
emptive model is (2e�ln α�)-competitive .

2-value preemptive model: In this special case, stud-
ied in [10, 12], the values of the packets are restricted to
two values, 1 and α. Lotker and Patt-Shamir [12] presented
their mf (abbreviation for mark&flush) single queue pre-
emptive admission control algorithm for the problem whose
competitive ratio is approximately 1.3. Combined with GS
we obtain:

Theorem 5. Algorithm GSmf for the 2-value preemptive
model is approximately 2.6-competitive.

2-value nonpreemptive model: Andelman et al. [2] pre-
sented a single queue nonpreemptive algorithm called Ratio
Partition (abbreviated RP ) for this case, with competitive
ratio 2 − 1

α
, where α denotes the ratio between the largest

value in the packets sequence σ and the smallest one. We
obtain:

Theorem 6. Algorithm GSRP for the 2-value nonpre-
emptive model is (4 − 2

α
)-competitive.

Unit value packets: In this special case all packets have
unit values and the goal is to maximize the number of trans-
mitted packets. This model correspond to networks lacking
QoS capabilities, most notably IP networks.

Theorem 7. Every reasonable online algorithm is 2 com-
petitive in the unit value model.

Proof. Note that algorithm GREEDY is 1-competitive
in the unit value model. Combined with Theorem 2 we
obtain that algorithm GSGREEDY is 2 competitive. More-
over, since all packets have unit values algorithm TL (which
dictates GS scheduling decisions) can use any non-empty
queue at each time unit, hence every reasonable algorithm
is 2-competitive.

4. RANDOMIZED ALGORITHM FOR UNIT
VALUE PACKETS

We present the following randomized algorithm for the
unit value model.

Algorithm RandomSchedule (RS):

1. The algorithm uses m auxiliary queues, each of size
B. These queues contain real numbers from the range
(0, 1), where each number is labelled as either marked
or unmarked. Initially these queues are empty. To
avoid confusion between the auxiliary queues and the
switch queues holding the packets, denote the former
by Q1, . . . , Qm and the latter by q1, . . . , qm.

2. Consider the packets arrival phase in each time unit.
Suppose a new packet arrives at queue qi. The al-
gorithm chooses uniformly at random a real number
from the range (0, 1), that is inserted to queue Qi and
labelled as unmarked. If queue Qi was full when the
packet arrived, the number at the head of the queue is
deleted prior to the insertion of the new number.

3. During the transmission phase in every time unit, we
check whether queues Q1, . . . , Qm contain any unmarked
number. If there are unmarked numbers, let Qi be the
queue containing the largest unmarked number. We
change the label of the largest number to ’marked’ and
select queue qi for transmission in this time unit. Oth-
erwise (no unmarked numbers), we transmit a packet
from any non-empty queue, if such exists.

Theorem 8. For every sequence σ, OPT (σ)
E[RS(σ)]

≤ e
e−1

+

o(1) ≈ 1.58.

Proof. We begin by introducing a translation of our
problem to the problem of finding a maximum matching
in a bipartite graph. We then prove the competitive ratio of
algorithm RS by a reduction to the online algorithm for bi-
partite matching shown in [8]. We note that in the unit value
model, there is no admission control question, since there is
no reason to prefer one packet over the other. Therefore, we
deal with the scheduling problem alone.

Given a sequence σ, we translate it to the bipartite graph
Gσ = (U, V, E), which is defined as follows.

• Let T denote the latest time unit in σ in which a
packet arrives. We define the set of time nodes as
U = {u1, . . . , uT+mB}.

• Let P be the total number of packets specified in σ.
We define the set of packet nodes as V = {v1, . . . , vP }.

• Let P t
i denote the set of the last B packets that ar-

rive to queue qi until time t (inclusive). Define P t =�m
i=1 P t

i . We define the set of edges in Gσ as follows:
E = {(ut, vp)|p ∈ P t}.

Before we proceed we introduce some new definitions.

Definition 2. A schedule S for a sequence of arriving
packets σ is a set of pairs of the form (t, qi), where queue
qi is scheduled for transmission at time t. The size of the
schedule, denoted |S|, is the size of the set.

Definition 3. A schedule S for a sequence σ is called
legal if for every pair (t, qi), queue qi is not empty at time
t.

The following lemmas connect bipartite matching to our
problem.

Lemma 2. Every legal schedule S for the sequence σ can
be mapped to a matching M in Gσ such that |S| = |M |.

Proof. Let S be a legal schedule for σ. We construct
the desired matching M incrementally while moving ahead
in time. For each pair (t, qi) ∈ S, we connect node ut to
node vj , where j = min{1 ≤ k ≤ P | vk ∈ P t

i , vk �∈ M}. A
simple induction proves that for each time t and queue qi the
number of unmatched nodes in P t

i is equal to the number of
packets residing in queue qi at time t according to S. Hence,
every transmitted packet can be mapped to an edge in M .
Clearly, by the construction |S| = |M |.

87



Lemma 3. Every matching M in Gσ can be translated
in polynomial time to a legal schedule S for σ such that
|S| = |M |.

Proof. Let M be a matching in Gσ. We construct a
legal schedule S for σ incrementally, while going over the
nodes in U , starting from u1. Let node ut be connected in
M to node vj ∈ P t

i . Then we add the pair (t, qi) to the
schedule S. A simple induction shows that for every i and
t, the number of nodes from P t

i that are included in M is
at most the number of packets residing in queue qi at time
t according to S. Therefore, we can always translate an
edge in M to a packet transmission in S, and our obtained
schedule is legal. Clearly, this translation takes polynomial
time and by the construction |S| = |M |.

The following corollaries directly result from Lemmas 2
and 3.

Corollary 1. For any sequence σ, the size of the opti-
mal schedule for σ is equal to the size of a maximum match-
ing in Gσ.

Corollary 2. For any sequence σ, an optimal schedule
can be found (off-line) in polynomial time.

Consider algorithm RS as an algorithm for finding a match-
ing in Gσ. The algorithm essentially maintains an order on
the nodes in P t, and connects node ut to the first node from
P t (according to the maintained order) that has not been
used yet. In fact, algorithm RS operates on Gσ exactly as
the algorithm presented in [8] for the online maximum bipar-
tite matching problem. Hence, the ratio between the size of
the maximum matching in Gσ and the size of the matching
constructed by algorithm RS is at most e

e−1
+o(1). Clearly,

by the algorithm’s operation (step 3), for every 1 ≤ i ≤ m,
the number of packets in queue qi is at least the number
of unmarked elements in Qi. Therefore, there is always
an available packet in qi when the algorithm chooses it for
transmission (step 3 in RS). In fact, it is worthwhile to note
that the number of transmitted packets can be larger than
the size of the constructed matching. Hence, according to
corollary 1, RS is ( e

e−1
)-competitive

5. LOWER BOUNDS FOR THE UNIT VALUE
MODEL

In the following theorems we prove deterministic and ran-
domized lower bounds for the unit value case.

Theorem 9. Every deterministic online algorithm for the
unit value case has competitive ratio at least 2 − 1/m.

Proof. Fix any online algorithm A. We consider the case
of unit size queues, i.e. B = 1. The adversary constructs
the following sequence σ:

• At time t = 0, m packets arrive, one for each queue.

• Immediately before any time t = 1, . . . , m−1, A has at
least one full queue. At time t = 1, . . . , m − 1 the ad-
versary generates a packet destined to queue it, where
it is an index of one of the full queues in A. Clearly, A
can not accept a single packet from this sequence. At
time t (t = 0, . . . , m − 2) OPT empties queue it+1, so
it can accept all packets in the sequence.

• At the end of time unit t = m − 1, all queues in OPT
are full except one, and all queues in A are empty.
From this time on, no packets arrive, hence only pack-
ets currently stored will be transmitted.

Clearly: OPT (σ)
A(σ)

= 2m−1
m

= 2 − 1
m

.

In the above lower bound we set B = 1. The next theorem
shows a lower bound for any specific value of B.

Theorem 10. For any specific value of B, every deter-
ministic online algorithm for the unit value case has com-
petitive ratio at least 1.366 − Θ(1/m).

Proof. Consider any specific value for B and fix any
online algorithm A. We prove the theorem for any number
of queues. We distinguish between two possible cases:
� � �: Let us assume that B divides m (note that since
the adversary can reduce the number of active queues, this
assumption is w.l.o.g). The sequence σ produced by the
adversary is as follows:

• At time t = 0, B packets arrive at each queue.

• The sequence consists of (k · m
B

− 1) B-phases, each
composed of B consecutive time units. In each B-
phase packets arrive only at the last time unit. Denote
by ij the most loaded queue in A before the last time
unit of B-phase j. At the last time unit of B-phase j,
B new packets arrive at queue ij .

• After the B-phases are finished, no additional packets
arrive.

At the beginning of any time unit 1 ≤ t ≤ mB note that
A holds at least mB − t packets in its queues. Therefore,
A has at least one queue with total load at least B − 
 t

m
�.

For B-phase j (j = 1, . . . (k · m
B

− 1)) OPT empties queue
ij during the first B time units, and hence it accepts all
arriving packets at the end of the phase. We now analyze
the respective throughput of A and OPT :

OPT (σ) = mB + km − B = m(B + k) − B

A(σ) = mB + (
m

B
− 1) · 0 +

m

B
· 1 + . . .

m

B
· (k − 1)

= m

�
B +

k(k − 1)

2B

�
.

Therefore, we get:

OPT (σ)

A(σ)
=

B + k − B
m

B + k2

2B
− k

2B

≥ B + k − 2B
m

B + k2

2B

=
B + k

B + k2

2B

− Θ

�
1

m

�
,

we take k = αB, where α = −1+
√

3 maximizes the expres-
sion. We obtain:

OPT (σ)

A(σ)
≥

√
3

1 + 1
2
(−1 +

√
3)2

− Θ

�
1

m

�

=
1

2
(1 +

√
3) − Θ

�
1

m

�

≈ 1.366 − Θ

�
1

m

�
.

88



We note that although k can be a real number, either 
k�
or �k� obtain our desired ratio.
� � �: The adversary generates a sequence σ similar to
the one used in the previous case, only now it is composed
of k B-phases. From the same considerations as before we
get:

OPT (σ)

A(σ)
=

mB + kB

mB + 
 B
m
� + . . . + 
kB

m
�

≥ m + k

m + k(k+1)
2m

≥ m + k

m + k2

2m

− Θ

�
1

m

�

≥ 1.366 − Θ

�
1

m

�
,

where the last inequality follows from the same calculation
as in the previous case.

Theorem 11. Every randomized online algorithm for the
unit value case has competitive ratio at least 1.46−Θ(1/m).

Proof. We prove the lower bound for unit size queues,
i.e. B = 1. We provide a probability distribution on se-
quences of inputs. We prove the lower bound for any de-
terministic algorithm. Since any randomized algorithm is a
probability distribution on deterministic ones this also pro-
vides a lower bound for any randomized algorithm (see also
[5], chapter 8 for Yao’s theorem). The adversary constructs
the following sequence σ:

• At time t = 0, m packets arrive, one for each queue.

• For every time t = 1, . . . , r a packet arrives to a queue
that is randomly selected according to the uniform dis-
tribution.

• After time r no additional packets arrive.

Clearly, OPT can accept all packets, because it always
transmits a packet from the queue to which the next packet
will arrive. Hence, its throughput is exactly m + r. On
the other hand, the behavior of any online algorithm A can
be described as a Markov chain. The Markov chain has m
states. State i for 0 ≤ i ≤ m − 1 corresponds to a total of i
packets in the queues. Clearly, at the beginning of time t = 1
the algorithm is in state m − 1. Let Xt denote the random
variable that indicates the state of the online determinis-
tic algorithm at time t, and let ∆Xt denote the indicator
random variable with value 1 iff the algorithm changes its
state during time t (clearly, Xt+1 = Xt − ∆Xt). We fur-
ther denote by pt

i the probability of the algorithm to be in
state i at time t. At any time the probability of moving
from state i to state i − 1 is exactly i/m and the probabil-
ity of staying at state i is 1 − i/m. Therefore, E[∆Xt] =
Pr[∆Xt = 1] =

�m−1
i=1

i
m

pt
i. The expected state at time t,

which corresponds to the expected number of packets in the
queues, is: E[Xt] =

�m−1
i=1 i · pt

i = m · E[∆Xt]. As a result,
E[Xt+1] = E[Xt − ∆Xt] = E[Xt] − E[∆Xt] = m−1

m
E[xt].

Hence, after r time units the expected number of packets in
the queues is (m− 1)(1− 1/m)r. Since the online algorithm
transmitted at most one packet at each time unit we con-
clude that the expected throughput of any online algorithm
is at most 1 + r + (m − 1)(1 − 1/m)r. By the appropriate

(optimal) choice of r (i.e. taking r = αm where α = 1.146)
to maximize the ratio m+r

1+r+(m−1)(1−1/m)r we conclude that

the ratio is at least 1.46 − Θ(1/m).

6. REFERENCES
[1] W. A. Aiello, Y. Mansour, S. Rajagopolan, and

A. Rosen. Competitive queue policies for differentiated
services. In Proceedings of the IEEE INFOCOM 2000,
pages 431–440.

[2] N. Andelman, Y. Mansour, and A. Zhu. Competitive
queueing policies for QoS switches. In Proc. 14th
ACM-SIAM Symp. on Discrete Algorithms, pages
761–770, 2003.

[3] A. Bar-Noy, A. Freund, S. Landa, and J. Naor.
Competitive on-line switching policies. In Proc. 13th
ACM-SIAM Symp. on Discrete Algorithms, pages
525–534, 2002.

[4] A. Birman, H. R. Gail, S. L. Hantler, Z. Rosberg, and
M. Sidi. An optimal service policy for buffer systems.
Journal of the Association Computing Machinery
(JACM), 42(3):641–657, 1995.

[5] A. Borodin and R. El-Yaniv. Online Computation and
Competitive Analysis. Cambridge University Press,
1998.

[6] M. Chrobak, J. Csirik, C. Imreh, J. Noga, J. Sgall,
and G. J. Woeginger. The buffer minimization
problem for multiprocessor scheduling with conflicts.
In Proc. 28th International Colloquium on Automata,
Languages, and Programming, pages 862–874, 2001.

[7] E. L. Hahne, A. Kesselman, and Y. Mansour.
Competitive buffer management for shared-memory
switches. In Proceedings of the 13th Annual ACM
Symposium on Parallel Algorithms and Architectures,
pages 53–58, 2001.

[8] R. Karp, U. Vazirani, and V. Vazirani. An optimal
algorithm for on-line bipartite matching. In
Proceedings of 22nd Annual ACM Symposium on
Theory of Computing, pages 352–358, may 1990.

[9] A. Kesselman, Z. Lotker, Y. Mansour, B. Patt-Shamir,
B. Schieber, and M. Sviridenko. Buffer overflow
management in QoS switches. In Proc. 33rd ACM
Symp. on Theory of Computing, pages 520–529, 2001.

[10] A. Kesselman and Y. Mansour. Loss-bounded analysis
for differentiated services. In Proc. 12th ACM-SIAM
Symp. on Discrete Algorithms, pages 591–600, 2001.

[11] H. Koga. Balanced scheduling toward loss-free packet
queuing and delay fairness. In Proc. 12th Annual
International Symposium on Algorithms and
Computation, pages 61–73, 2001.

[12] Z. Lotker and B. Patt-Shamir. Nearly optimal fifo
buffer management for diffserv. In Proc. 21st ACM
Symp. on Principles of Distrib. Computing, pages
134–143, 2002.

[13] M. May, J. C. Bolot, A. Jean-Marie, and C. Diot.
Simple performance models of differentiated services
for the internet. In Proceedings of the IEEE
INFOCOM 1999, pages 1385–1394.

89


