
Priority Queueing with Multiple Packet
Characteristics

Pavel Chuprikov
St. Petersburg Academic University,

St. Petersburg, Russia

Sergey Nikolenko‡§
‡National Research University
Higher School of Economics,

St. Petersburg, Russia
§Steklov Mathematical Institute

at St. Petersburg, Russia

Kirill Kogan
IMDEA Networks Institute,

Madrid, Spain

Abstract—Modern network elements are increasingly required
to deal with heterogeneous traffic. Recent works consider process-
ing policies for buffers that hold packets with different processing
requirement (number of processing cycles needed before a packet
can be transmitted out) but uniform value, aiming to maximize
the throughput, i.e., the number of transmitted packets. Other
developments deal with packets of varying value but uniform
processing requirement (each packet requires one processing
cycle); the objective here is to maximize the total transmitted
value. In this work, we consider a more general problem, com-
bining packets with both nonuniform processing and nonuniform
values in the same queue. We study the properties of various
processing orders in this setting. We show that in the general case
natural processing policies have poor performance guarantees,
with linear lower bounds on their competitive ratio. Moreover,
we show an adversarial lower bound that holds for every online
policy. On the positive side, in the special case when only two
different values are allowed, 1 and V , we present a policy that
achieves competitive ratio

(
1 + W+2

V

)
, where W is the maximal

number of required processing cycles. We also consider copying
costs during admission.

I. INTRODUCTION

Modern networks require implementation of advanced eco-
nomic models that can be represented by desired objectives,
network topology, buffering architecture, and its management
policy. The current Internet architecture is mostly built for
fairness, while consideration of other objectives such as net-
work utilization, throughput, profit and others is required [23],
[26]. For a given network topology and buffering architecture,
design of management policies that optimize a desired objec-
tive is extremely important; a management policy of a single
network element includes admission control and scheduling
policies. Admission control is one of the critical elements
of management policy. Most admission control policies are
based on a simple characteristic such as buffer occupancy,
whereas traffic has additional important characteristics such as
processing requirements or value that are either not taken into
account at all or a separate queue is allocated per traffic type.
Incorporation of new characteristics (e.g., required processing
per packet) in admission decisions and implementation of
additional objectives beyond fairness lead to new challenges
in design and implementation of traditional network elements.

In this work, we consider a single-queue switch where a

buffer of size B is shared among all types of traffic. We do not
assume any specific traffic distribution but rather analyze our
switching policies against adversarial traffic using competitive
analysis [6], [28], which provides a uniform throughput guar-
antee for online algorithms under all possible traffic patterns.
An online algorithm ALG is α-competitive for some α ≥ 1
if for any arrival sequence σ the total value transmitted by
ALG is at least 1/α times the total value transmitted in an
optimal solution obtained by an offline clairvoyant algorithm
(denoted OPT). Note that a lower bound on the competitive
ratio can be proven with a specific hard example while an
upper bound represents a general statement that should hold
over all possible inputs. In practice, the choices of processing
order, implementation of push-out mechanisms etc. are likely
to be made at design time. From this point of view, our study
of worst-case behaviour aims to provide a robust estimate on
the settings that can handle all possible loads.

The purpose of this work is to study the impact of both
packet values and required processing on weighted throughput;
to the best of our knowledge, this is the first attempt to
study such impact. The paper is organized as follows. In
Section II, we formally introduce the model we will use in
this work, a model with both required processing and values.
In Section III, we survey previous work in related buffer
processing algorithms. In Section IV, we introduce several
algorithms based on priority queueing that appear promising
for this setting; these algorithms differ in the way how they
sort packets: by required processing, by value, or by a ratio
of these numbers (i.e., by value per one processing cycle). In
Section IV we begin with a negative result: we show that all
of these algorithms have at least linear competitive ratio in
the general case. Moreover, in Section V we proceed to show
a general lower bound for any online algorithm proven in an
adversarial fashion; this is an important new result for this
model as previously considered special cases (uniform values
with heterogeneous processing and uniform processing with
variable values) allowed for optimal online policies. However,
in Section VI we introduce an important special case when
there are only two different possible values, i.e., packets may
have different required processing but their value is limited
to 1 and V . The maximal number of required processing

cycles is W . In our main result, we present a policy based on
a priority queue that achieves competitive ratio

(
1 + W+2

V

)
.

Note that while it may appear suspicious to compare packet
values with required processing, in fact we are comparing
ratios of the most valuable (resp., heaviest) packet to the
least valuable (resp., lightest) packet because the minimal
required processing and minimal value are always set to 1.
In Section VII, we consider the β-push-out case, which takes
copying cost into account by introducing additional penalties
for push-out. Section VIII presents simulation results where
the proposed algorithms are evaluated with synthesized traces.
Section IX concludes the paper.

II. MODEL DESCRIPTION

We use a model similar to the one introduced in [1], [17]
and subsequently used in [12]–[14], [20]–[22]. Consider a
single queue of size B that handles the arrival of a sequence
of unit-sized packets. A new part of the problem setting in
this work is to combine two different characteristics of a
packet. Namely, we assume that each arriving packet p is
branded with: (1) the number of required processing cycles
(work) w(p) ∈ {1, . . . ,W} and (2) its processing value
v(p) ∈ {1, . . . , V }. These numbers are known for every
arriving packet; for a motivation of why required processing
may be available see [29], and values are usually defined
externally. Although the values of W and V will play a
fundamental role in our analysis, our algorithms will not need
to know W or V in advance. Note that for W = 1 the
model degenerates into a single queue of uniform packets
with nonuinform value, as considered in, e.g., [5], [30], while
for V = 1 it becomes a single queue of unit-valued packets
with different required processing, as considered, e.g., in [19]–
[21]. We will denote a packet with required processing w and
value v by (w | v), and a sequence of n packets with the same
parameters w and v by n× (w | v).

The queue performs three main tasks, namely: (1) buffer
management, i.e., admission control of newly arrived packets;
(2) processing, i.e., deciding which of the currently stored
packets will be processed; (3) transmission, i.e., deciding if
already processed packets should be transmitted and trans-
mitting those that should. A packet is fully processed if the
processing unit has scheduled the packet for processing for at
least its required number of cycles.

We assume discrete slotted time, where each time slot con-
sists of three phases (see Fig. 1 for an illustration): (i) arrival:
new packets arrive, and admission control decides if a packet
should be dropped or, possibly, an already admitted packet
should be pushed out; (ii) processing: one packet is selected
for processing by the scheduling unit; (iii) transmission: at
most one fully processed packet is selected for transmission
and leaves the queue. If a packet is dropped prior to being
transmitted (while it still has a positive number of required
processing cycles), it is lost. A packet may be dropped either
upon arrival or due to a push-out decision while it is stored
in the buffer. A packet contributes its value to the objective
function only upon being successfully transmitted; note that

only one packet may be transmitted per time slot. The goal
is to devise buffer management algorithms that maximize
the overall throughput, i.e., the total value of all packets
transmitted out of the queue.

For an algorithm ALG and time slot t, we denote by IBALG
t

the set of packets stored in ALG’s buffer at time slot t after
arrival but before processing (i.e., the buffer state shown in
the second row of Fig. 1). For every time slot t and every
packet p currently stored in the queue, its number of residual
processing cycles, denoted wt(p), is defined to be the number
of processing cycles it requires before it can be successfully
transmitted, and its value, denoted v(p), is the number it
contributes to the objective function upon transmission.

Three fundamental properties are often used in online algo-
rithms. First, a policy is called greedy if it always accepts
packets in the queue whenever it has free space. Greedy
algorithms are usually amenable to efficient implementation
and transmit everything if there is no congestion. Second, a
policy is called work-conserving if it is always processing as
long as it has packets with nonzero required processing in
the buffer. Third, a policy is called push-out if it is allowed
to drop packets that already reside in its queue; note that it
does not make sense for a push-out policy to be non-greedy
(it may be reasonable only with non-zero copying costs). In
what follows, we will assume that all push-out policies are
greedy and all policies are work-conserving.

III. RELATED WORK

Rich literature has been devoted to special cases of our
model where one characteristic is assumed to be uniform. In
particular, admission control policies for the case of single-
queued buffers where packets with uniform processing and
varying intrinsic value arrive have been thoroughly studied. In
the case of two values (1 and V) and First-In-First-Out (FIFO)
processing order, the works [5], [30] present a deterministic
non-push-out policy with competitive ratio (2 − 1

V), i.e.,
bounded by a constant. For the more general case, when packet
values vary between 1 and V , the works [5], [30] prove that the
competitive ratio cannot be better than Θ(log V). In [4], this
upper bound was improved to 2 + lnV +O(ln2 V/B). In the
push-out case with two packet values, the greedy policy was
shown in [15] to be at least 1.282 and at most 2-competitive.
Later, the upper bound on the greedy policy was improved to
1.894 [16]; this work also considers the β-push-out case and
proves that the greedy policy is at least 1.544-competitive.
Policies with memory have been considered in [3], [7], [24].

Recently, packets with required processing but with uniform
packet values in various settings have been considered in [8],
[12]–[14], [20]–[22]. These works also follow the paradigm of
competitive analysis, and their main results usually constitute
good processing policies that have constant or logarithmic
upper bounds on the competitive ratio. For a buffer with
one queue of packets with uniform value, priority queue
that sorts packets according to their required processing is
known to be optimal [12]. Our current work can be viewed
as part of a larger research effort concentrated on studying

competitive algorithms for management of bounded buffers.
Initiated in [2], [15], [25], this line of research has received
tremendous attention over the past decade. A survey by
Goldwasser [10] provides an excellent overview of this field.
Pruhs [27] provides a comprehensive overview of a related
field of competitive online scheduling for server systems;
however, scheduling for server systems usually concentrates on
average response time and does not allow jobs to be dropped,
while we focus mostly on throughput and allow push-out.

Another very interesting class of results in competitive
analysis are adversarial lower bounds that hold over all al-
gorithms. Such bounds, when they can be proven, indicate
that one cannot hope to get an optimal online algorithm,
and a clairvoyant offline algorithm will always be able to
outperform it. One well-known example of such a bound is the
lower bound of 4

3 on the competitive ratio of any algorithm
in the model with multiple queues in a shared memory
buffer and uniform packets (i.e., packets with identical value
and required processing) [1], [11]. For the case of a single
queue, previous works have considered two cases: variable
value with uniform processing and variable processing with
uniform values. In both cases, a single priority queue that
sorts packets with respect to the variable characteristic (largest
value and smallest required processing first, respectively) is
optimal, so there can be no nontrivial general lower bound
regardless of transmission order. In the FIFO model, for the
case of variable values and uniform processing there has been
a line of adversarial lower bounds culminating in the lower
bound of 1.419 that applies to all algorithms [18], with a
stronger bound of 1.434 for the special case when B = 2
if all possible values are admissible [5], [30]. In the two-
valued case, tight bound are known: an adversarial lower
bound of r = 1

2 (
√

13 − 1) ≈ 1.303 for any B ≥ 2 and
r∞ =

√
2 − 1

2 (
√

5 + 4
√

2 − 3) ≈ 1.282 for B → ∞ and an
online algorithm that achieves competitive ratio r for arbitrary
B and r∞ for B →∞ [7]. In the case of variable processing
with uniform values, no general lower bounds for FIFO order
are known apart from a simple lower bound of 1

2 (k + 1) for
greedy non-push-out policies [21].

IV. ALGORITHMS AND LOWER BOUNDS

Previous research indicates that priority queues with push-
out are the best tools that often lead to good competitive ratios.
In particular, Keslassy et al. showed that a single priority queue
with push-out is optimal for packets with varying required
processing and unit value [12]. Therefore, our usual suspects
are priority queues; in case of multiple characteristics, there
can be different priority queues that sort packets in different
orders. We introduce the following definition.

Definition 4.1: Let f be a function of packets, f(w, v) ∈ R,
with the intuition that better packets have larger values of f .
Then the PQf processing policy is defined as follows:

• PQf is greedy;
• PQf sorts and processes packets in its queue in the order

of decreasing values of f ;

• PQf pushes out a packet p and adds a new packet p′ to
the queue at time slot t if the buffer is full, p is currently
the worst packet in the buffer and p′ is better than p:
f(p) = minq∈IBPQf f(q), and f(p′) > f(p).

In other words, PQf sorts and processes packets according
to the function f . In particular, we consider three specific
priority queues (here w denotes the current residual work):
(1) PQ−w,v = PQ−w+v/(V+1) sorts packets in the increasing

order of their required processing, breaking ties by value;
(2) PQv,−w = PQv−w/(W+1) sorts packets in the decreasing

order of their value, breaking ties by required processing;
(3) PQv/w sorts packets in the decreasing order of their

value-to-work ratio, i.e., it prioritizes packets that yield
the best value per one time slot of processing. Here we
also have two possibilities for breaking ties, PQv/w,−w =
PQv/w−w/(W 2+1) and PQv/w,v = PQv/w+v/(WV+1),
but in this case the tie-breakers will be irrelevant for all our
statements, so we will unite them under the same notation.

Fig. 1 shows a sample time slot of these priority queues; all
policies start with (5 | 2), (4 | 3), and (1 | 1) in their queues,
B = 3, and a (6 | 3) packet arrives. PQ−w,v rejects the (6 | 3)
since it has the largest processing requirement, PQ−v,w pushes
out (1 | 1) since it has the smallest value, and PQv/w pushes
out (5 | 2) since it has the worst v/w ratio of 2/5.

Our main result in this section is that priority queues fail to
provide constant or even logarithmic competitiveness with two
packet characteristics, as they do in simpler cases. We show
linear (in V and/or W) lower bounds on the competitive ratio
of all three PQ policies. This is an interesting and somewhat
discouraging result since priority queues have proven to be
efficient (often with constant upper bounds on the competitive
ratio) in other contexts. For a lower bound, it suffices to present
a hard sequence of packets on which the optimal algorithm
outperforms the one in question; we show the first proof as
an example but omit the others due to space constraints.

Theorem 1: For a buffer of size B, maximal packet required
processing W , and maximal packet value V , PQ−w,v is at
least V -competitive and at most V -competitive.

Proof: First, there arrive B × (1 | 1) (B packets with
required processing 1 and value 1); PQ−w,v accepts them
while OPT does not. Then there arrive B × (2 | V) packets
accepted by OPT; PQ−w,v skips them since they have larger
required processing than already admitted. No more packets
arrive, so in 2B steps PQ−w,v processes packets with total
value B; OPT, with total value V B. The same sequence is
repeated to get the asymptotic bound. The upper bound follows
since PQ is optimal for uniform values and variable required
processing; this means that PQ−w,v processes as many packets
as OPT, so it cannot lose by a factor of more than V .

Theorem 2: For a buffer of size B, maximal packet required
processing W , and maximal packet value V , PQv,−w is at

least
(

(V−1)
V W − o(1)

)
-competitive.

Theorem 3: For a buffer of size B, maximal packet required
processing W , and maximal packet value V , PQv/w is at least
min(V,W)-competitive.

Fig. 1. A sample time slot of PQ−w,v , PQv,−w , and PQv/w .

V. GENERAL LOWER BOUND

We have already mentioned related general lower bounds for
online algorithms in Section III. It turns out that in our case,
when both required processing and value are allowed to vary,
it becomes possible again to prove an adversarial lower bound
on all online policies. We first show it for general values and
then consider the two-valued case (which in this case turns
out to be a generalization).

Theorem 4: For a buffer of size B, maximal packet required
processing W , and maximal packet value V ≥ 2, every online
algorithm ALG is at least

(
5
4 −O(1/W)

)
-competitive.

Proof: To show a lower bound, we present the cor-
responding hard instance. On the first step, there arrive
B × (1 | 1) and B × (W | 2). ALG is forced to choose how
many packets of each kind it accepts. Denote the number of
(W | 2) packets accepted by ALG by n. There are two cases.

• n < 3
5B : in this case, OPT chooses to accept B ×

(W | 2), and no new packets arrive. After BW time slots,
OPT has processed packets with total value 2B, and
ALG has processed at most (B−n)+2n. The competitive
ratio thus becomes 2B

B+n = 2
1+n/B ≥

5
4 for n

B < 3
5 .

• n
B ≥

3
5 : in this case, OPT accepts B × (1 | 1). After

B time slots, OPT has processed all of its packets with
total value B, while ALG has not been able to process
more than (B − n) × (1 | 1) (by assumption) and no
more than B/W × (W | 2) (by the time constraint). At
this point, B × (1 | 2) arrive and then no more packets;
regardless of whether ALG accepts any of them, after
all buffers have been emptied OPT gets 2B more value
and ALG no more than 2B. The ratio is thus at least

B+2B
(B−n)+2B/W+2B = 3

3−n/B − O(1/W) ≥ 5
4 − O(1/W)

for n
B ≥

3
5 .

In the two-valued case, the bound becomes worse; note
that the bound depends on the minimal available packet value
larger than 1; it does not matter what values more than V may
be available.

Theorem 5: For a buffer of size B, maximal packet required
processing W , and available packet values 1 and V > 1,

every online algorithm ALG is at least
(
1 + V−1

V 2 −O
(

1
W

))
-

competitive.
Proof: Similar to Theorem 4, on the first step there arrive

B×(1 | 1) and B×(W | V). Suppose that ALG has accepted
n of (W | 2) packets. Again, there are two cases.
• n < V2−1

V2+V−1B : in this case, OPT chooses to accept
B×(W | V), and no new packets arrive. After BW time
slots, OPT has processed packets with total value V B,
and ALG has processed at most (B−n) + V n, yielding
competitive ratio V B

B−n+V n = V
1+(V−1) n

B
≥ V 2+V−1

V 2 for
n
B < V 2−1

V 2+V−15.
• n ≥ V2−1

V2+V−1B : in this case, OPT accepts B × (1 | 1).
After B time slots, OPT has transmitted total value B,
while ALG has processed at most (B − n)× (1 | 1) and
B/W × (W | V). Now B × (1 | V) arrive and then no
more packets; after all buffers have been emptied OPT
gets V B more value and ALG at most V B, which
gives us the ratio B+V B

(B−n)+V B/W+V B = V+1
V+1−n/B −

O(1/W) ≥ V 2+V−1
V 2 −O(1/W) for n

B ≥
V 2−1

V 2+V−1 .

In the next section, we look at the case of two possible
values, 1 and V , in more detail. In the main result of this
work, we show that in this special case some priority queues
do admit an interesting upper bound on their competitive ratio.

VI. UPPER BOUND FOR THE TWO-VALUED CASE

Although the results of Section IV do not leave much hope
about the general case, we can still prove positive results in
special cases. In this section, we consider a special case when
there are only two possible values, 1 and V , so there are two
kinds of packets, (w | 1) and (w | V); the required processing
can still be arbitrary from 1 to W . This case often occurs
in practice; for instance, (w | 1) may represent “commodity”
packets while (w | V) corresponds to “golden” packets that
have paid more to be processed. Similar special cases have
been considered, e.g., in [20]. We will show in Theorem 7 that
in this special case, the PQv,−w policy has an attractive upper
bound on the competitive ratio, which implies a constant upper
bound on the competitive ratio of both PQv,−w and PQv/w in
case when W < V . However, we begin with negative results;

Theorem 6 provides matching tight lower bounds for the main
result that follows; again, proofs of lower bounds are omitted
due to lack of space.

Theorem 6: Consider a buffer of size B with maximal
required processing W and possible packet values 1 or V .
Then:

(1) PQ−w,v is at least V -competitive;
(2) if W ≥ V then PQv/w is at least V -competitive;
(3) PQv,−w is at least

(
W
V + o(1)

)
-competitive.

In the next theorem, we show the main result of this work,
an upper bound on the competitive ratio of PQv,−w.

Theorem 7: Consider a buffer of size B with maximal
required processing W and possible packet values 1 or V .
Then PQv,−w is at most

(
1 + W+2

V

)
-competitive.

Proof: By the definition of the PQv,−w queue, any packet
with value V pushes out any packet with value 1. This is the
crucial property that we need to prove this upper bound. For
brevity, throughout this proof we denote PQ = PQv,−w. We
define the following sets of packets:
(1) IBALG

v = {p ∈ IBALG : value(p) = v} contains packets
with value v in IBALG;

(2) TransALG
v = {p transmitted by ALG : value(p) = v}

is the set of packets with value v transmitted by ALG;
TransALG =

⋃
v TransALG

v ;
(3) IBTALG

v = IBALG
v ∪TransALG

v is the set of packets with
value v either already transmitted by ALG or currently
residing in its buffer; IBTALG

v =
⋃
v IBTALG

v .

We also define ΦALG
v (l) =

∑l
i=1 w(pi), where pi is the ith

packet from IBTALG
v in PQ order. Here w(p) is the residual

processing time of a packet at the current time moment; in
particular, we let w(p) = 0 for already transmitted packets.

In the proof, we will sometimes let OPT transmit certain
packets immediately, “for free”, thus improving its throughput.
These packets do not fall into TransOPT but comprise a sep-
arate set Free(OPT). Throughout the proof, we will preserve
the property that ∀ p ∈ Free(OPT) value(p) = 1, i.e., we
only give out packets of value 1 for free. We begin with a
technical statement (proof omitted due to space constraints).

Lemma 8: Let a1, a2, . . . , am and b1, b2, . . . , bm be two
sequences of numbers in nondecreasing order, and, moreover,
suppose that ∀l ∈ {1, . . . ,m}

∑l
i=1 ai ≥

∑l
i=1 bi. Let also a∗

and b∗ be any two numbers, such that a∗ ≥ b∗. Consider two
sequences: a′1, a

′
2, . . . , a

′
m+1 and b′1, b

′
2, . . . , b

′
m+1, that result

after insertion of a∗ and b∗ into a1, . . . , am and b1, . . . , bm
respectively (nondecreasing order preserved). Then we have,
that ∀l ∈ {1, . . . ,m+ 1}

∑l
i=1 a

′
i ≥

∑l
i=1 b

′
i.

We now prove the crucial lemma of this upper bound.
Lemma 9: There exists an algorithm OPT that works no

worse than the optimal algorithm on any sequence of inputs
for which on every sequence of inputs at every time moment
it holds that:

(1) for all l ∈ {1, . . . , |IBTOPT
1 |} ΦOPT

1 (l) ≥ ΦPQ
1 (l);

(2) for all l ∈ {1, . . . , |IBTOPT
V |} ΦOPT

V (l) ≥ ΦPQ
V (l);

(3) |Free(OPT)| ≤ (W + 2)|TransV (PQ)|.

Proof: We prove these estimates by induction on the
number of “events” such as receiving, processing, or transmit-
ting a packet. At the initial time moment all conditions hold
trivially. Note that whenever conditions (1) and (2) hold, it
also necessarily holds that |Transv(OPT)| ≤ |Transv(PQ)|
since ΦOPT

v (l) = 0 for all l < |Transv(OPT)| and con-
sequently ΦPQ

v (l) = 0; moreover, |IBTOPT
v | ≤ |IBTPQ

v |
since Φv must be defined. We now remove from IBTPQ

v

the (|IBTPQ
v | − |IBTOPT

v |) packets with the highest priority,
denoting the resulting set by ĨBT

PQ

v and the corresponding
set of packets in the buffer by ĨB

PQ
. Then all of the above

implies that |IBOPT
v | ≥ |ĨB

PQ

v |.
Upon acceptance we may mark a packet admitted to OPT

buffer as “causing overflow”. The set of such packets is
denoted as overflow(OPT), and it does not contribute to
IBTOPT. The induction step will guarantee that every packet
in overflow(OPT) is moved eventually to Free(OPT) and the
following invariant holds:

|overflow(OPT)| ≤ |IBPQ
V | − |ĨB

PQ

V |.

Let us now consider all possible events one by one and show
that none of them violates the conditions of the theorem.
Arrival of a new packet p. There are two subcases.

value(p) = V. If PQ has accepted the packet and has
pushed out a packet from IBPQ

1 , we move the largest
packet from IBOPT

1 (if it is nonempty) to Free(OPT).
Thus, inequalities for Φ1 are not violated since we
have removed largest elements from both IBOPT

1 and
IBPQ

1 . Further, if OPT accepts p, then B > |IBOPT
V | ≥

|ĨB
PQ

V |, so the sequence IBTPQ
V will receive the small-

est of packets (IBPQ
V \ ĨB

PQ

V) ∪ {p} (according to the
push-out rules). Therefore, by Lemma 8 inequalities for
ΦV still hold. Note, that (|IBPQ

V |−|ĨB
PQ

V |) could only
increase.

value(p) = 1. We consider two subcases separately.
(i) |IBPQ

V |+ |ĨB
PQ

1 | < B. In this case, we add to

ĨB
PQ

1 the smallest packet from (IBPQ
1 \ ĨB

PQ

1)∪ {p}
(according to push-out rules), and by Lemma 8 the
inequalities are preserved. (ii) |IBPQ

V |+ |ĨB
PQ

1 | = B.

Then, since |IBOPT| ≥ |ĨB
PQ
| and |IBOPT| +

|overflow(OPT)| < B, we get that |IBPQ
V |−|ĨB

PQ

V | >
|overflow(OPT)|. Now, if OPT accepts p then p is
added to the overflow(OPT).

Processing of packet p by OPT. In this case, there are
three subcases.
value(p) = V. This is a simple case. If IBPQ

V 6= ∅ then
each nonzero term in ΦPQ

V (l) reduces exactly by one,
while each nonzero term in ΦOPT

V (l) reduces by at
most one, so the inequalities are obviously preserved.
If otherwise IBPQ

V = ∅ then all ΦPQ
V = 0.

value(p) = 1 and IB
PQv/w
V = ∅. This case is com-

pletely similar to the previous one.

value(p) = 1 and IB
PQv/w
V 6= ∅. In this case, the

packet p being processed is sent to Free(OPT). It
remains to show that in this case ΦOPT

1 (l) do not
decrease since we have merely removed an element
from an ordered sequence.

Transmitting a packet. Inequalities on Φ obviously remain
unchanged upon transmission. However, during transmis-
sion the value (|IBPQ

V | − |ĨB
PQ

V |) may decrease by one.
In order to preserve the invariant on overflow(OPT), we
move an arbitrary packet from overflow(OPT) (if it is
nonempty) to Free(OPT).

To see the last statement of the lemma, it suffices to note that
a packet may fall into Free(OPT) only when PQ receives,
processes, or transmits a packet with value V .

Now, after both OPT and PQ have processed the entire se-
quence of packets, the total value of packets transmitted by PQ
equals |IBTPQ

1 |+V |IBTPQ
V |. The total value of packets trans-

mitted by OPT is |IBTOPT
1 | + V |IBTOPT

V | + |Free(OPT)|.
Thus,

α =
|IBTOPT

1 |+ V |IBTOPT
V |+ |Free(OPT)|

|IBTPQ
1 |+ V |IBTPQ

V |

≤ 1 +
|Free(OPT)|

|IBTPQ
1 |+ V |IBTPQ

V |
≤ 1 +

|Free(OPT)|
V |IBTPQ

V |

≤ 1 +
(W + 2)|IBTPQ

V |
V |IBTPQ

V |
≤ 1 +

W + 2

V
.

Corollary 10: If W < V , PQv,−w and PQv/w are at most(
2 + 2

V

)
-competitive.

Proof: Since (W | V) pushes out (1 | 1) in the PQv/w

queue, any packet with value V pushes out any packet with
value 1, so for W < V PQv/w is equivalent to PQv,−w.

VII. THE β-PUSH-OUT CASE

In some systems it is important to control the number of
pushed out packets, for at least two reasons: each admitted
packet incurs some copying cost α, and pushing a packet out is
not a simple operation. The addition of a copying cost α covers
both cases. As a result, [12] introduced the notion of copying
cost in the performance of transmission algorithms for packets
with heterogeneous processing requirements but uniform val-
ues: if an algorithm accepts A packets and transmits packets
with total value T , its transmitted value is max(0, T − αA).
Thus, in extreme cases, the transmitted value of a push-out
policy may even go down to zero, and copying cost provides
an additional control on the number of pushed out packets.
To implement such a control mechanism, Keslassy et al. [12]
introduced the greedy push-out work-conserving policy PQβ
that processes a packet with minimal required work first and in
the case of congestion such a policy pushes out only if a new
arrival has at least β times less work then the maximal residual
work in PQβ . In our context, we extend PQf to PQβ

f and then
show several lower bounds for β-push-out counterparts of our

policies. Unfortunately, the proof of Theorem 7 does not go
through for β-push-out policies; it remains an open problem to
show nontrivial (less than linear) upper bounds for β-push-out
policies with two packet characteristics.

Definition 7.1: Let f be a function of packets, f(w, v) ∈ R,
with better packets corresponding to larger values of f . The
PQβ

f processing policy for β > 1 is defined as PQf with the
following difference: PQβ

f can push out a packet p and add a
new packet p′ to the queue at time slot t if p is currently the
worst packet in the buffer and p′ is better than p at least by a
factor of β: f(p) = minq∈IBPQf f(q), and f(p′) > βf(p).

Theorem 11: Consider a buffer of size B with maximal
required processing W and maximal packet value V . Then:
(1) PQβ

−w,v is at least V -competitive in both in the case of
arbitrary packet values and in the two-valued case;

(2) PQβ
v/w is at least min(V,W)-competitive in the case of

arbitrary packet values;
(3) in the two-valued case, if βW ≥ V then PQβ

v/w is at least
V -competitive;

(4) PQβ
v,−w is at least

(
(V−1)
V W − o(1)

)
-competitive in the

case of arbitrary packet values and at least
(
W
V + o(1)

)
-

competitive in the two-valued case.
Proof: (1) In the construction from Theorem 1, packets

are never pushed out from PQ−w,v buffer, so the result still
holds for PQβ

−w,v . (2) Construction from Theorem 3 also
works because packets are never pushed out from PQv/w

buffer in tnis construction. (3) This result can be seen as a
relaxation of the second part of Theorem 6 since β > 1.
The same construction works: PQv/w fills its buffer with
B×(1 | 1) and then drops incoming B×(W | V). PQβ

v/w also
drops them since V

W ≤
βV
V = β. (4) Again, the constructions

from Theorem 2 and Theorem 6 work since they do not force
packets to be pushed out from PQ−v,w buffer.

VIII. SIMULATIONS

In this section, we present the results of a comprehensive
simulation study intended to validate our theoretical results.
Naturally, it would be desirable to compare the proposed
algorithms on real life network traces. Unfortunately, available
datasets such as CAIDA [9] are of little use for our model.
They cannot provide information on required processing and
time scale (i.e., which packets go in the same time slot)
since this information is heavily dependent on a specific
network processor. Therefore, in our experiments we have used
synthetic traces.

We have conducted five series of experiments on syn-
thetic traces, studying how performance depends on max-
imal required processing k, buffer size B, maximal value
V , intensity λon, and β (in the model with copying cost).
The actual optimal online algorithm in our model would be
computationally prohibitive, so to find out the competitive
ratios of our algorithms we have used an algorithm which
is actually better than optimal: a single priority queue that
breaks each packet into single priority queue that processes
smallest packets first and has n cores. This algorithm has

been proven optimal in the single queue model, so in our
model, where some queues may be congested and others
idle, it performs even better than optimal. In our experiments,
synthetic traffic was generated by 500 independent sources,
where each source was a Markov-modulated Poisson process
(MMPP) with packet rate λon in the “on” state and 0 in
the “off” state; the probability of switching the state from
“off” to “on” was 0.02 (a source switches on with probability
1/50 on each tick), and the probability of switching from
“on” to “off” was set to 0.2. The values and processing
ratios of packets were chosen uniformly from {1, . . . , k} and
{1, . . . , V } respectively. We ran all experiments for 5 · 105

time slots with periodic “flushouts” (wait for all queues to
finish their packets and then continue from an empty state),
which in our experiments has proven to be sufficient for stable
results. We have also performed simulations without flushouts;
since the results are very close to the ones with flushouts in all
settings, we do not show them separately. Note that all of our
experiments venture into the values of parameters that yield
high system load with large dropout rates for all algorithms;
these are precisely the situations where we would like to
compare performance since without heavy load and frequent
congestion all reasonable algorithms perform identically.

As the OPT algorithm, we used a single priority queue
of size B that holds all packets regardless of their queue
and makes n processing steps per time slot; this algorithm
is obviously better than the optimal algorithm in our model.

Figure 2 shows simulation results presented in terms of
the fraction of successfully transmitted packets: each graph
shows the “better than optimal” reference algorithm in black
alongside with the ratio of transmitted packets for other poli-
cies. There are five sets of experiments corresponding to the
rows of Fig. 2 that will be described in subsections below; we
have tested the four algorithms used in this work: PQv/w,−w,
PQv/w,v , PQ−w,v , and PQv,−w. Note that in all cases, OPT,
PQv/w,−w, and PQv/w,v are virtually indistiguishable: the
competitive ratio of both PQv/w,−w and PQv/w,v was below
1.01 (that is, they stayed within one percent of OPT) across
all settings we have tried in the experiments except at very
large buffer sizes.

A. Maximal required processing

In the first set of simulations (Fig. 2(1-3)), we study perfor-
mance as a function of the maximal required processing k. As
k grows, all algorithms deteriorate (packets become heavier),
but it is clear that PQ−w,v , which pays more attention to
required processing, fares better and becomes closer to OPT
while PQv,−w loses badly. We see that PQv/w is uniformly
the best policy, virtually indistinguishable from OPT.

B. Buffer size B

In the second set of simulations (Fig. 2(4-6)), we study
performance as a function of the buffer size B. For relatively
small sized buffers, PQv/w,−w and PQv/w,v remain indis-
tinguishable. However, as B grows larger, PQv/w,v stars to
overcome PQv/w,−w, and for very large buffers, especially

for low values of V , the difference becomes significant; also,
both ratio-based priority queues start to lose somewhat to
the fractional OPT algorithm. Thus, for large buffers we
recommend PQv/w,v .

C. Maximal value V

In the third set of experiments (Fig. 2(7-9)), we look at
performance as a function of the maximal value V . It turns
out that the performance level of all our algorithms does not
significantly depend on V in realistic cases; there is only a
slight improvement in performance as V increases, noticeable
only for PQv,−w, as expected since PQv,−w emphasizes value
over required processing. The relative order of algorithms
remains unchanged.

D. Incoming stream intensity

The fourth set of experiments (Fig. 2(10-12)) shows how
performance depends on the intensity λon of switched on
incoming packet sources. Here, we see that all algorithms,
including OPT, show approximately the same rate of decline
under higher and higher input intensities, and their relative
standings remain the same across all intensities.

E. β for β-push-out policies

The last, fifth set of experiments (Fig. 2(13-15)) studies a
different situation; here, we have introduced nonzero copying
cost α (on all three graphs, α = 0.3) and have studied how
performance depends on β for β-push-out counterparts of our
policies (as introduced in Section VII); since the number of
admitted packets is not well defined for our fractional OPT,
OPT did not participate in these experiments. On the graphs for
PQv/w, we see that in each case, performance is maximized
at some β∗ > 1; in these three cases, β∗ ∈ [1.2, 1.5]. Thus,
β-push-out policies indeed provide an improved alternative for
regular policies in the model with copying cost.

To summarize, in this section we have shown a comprehen-
sive simulations study on synthetic traces. The main result
is that the PQv/w policy that we have introduced in this
work is uniformly the best policy across all tested settings.
Another interesting result is that β-push-out policies do have
an advantage (albeit slight) in settings with nonzero copying
cost.

IX. CONCLUSION

In this work, we have considered a single queue pro-
cessing packets with two different characteristics: processing
requirement and value. We have investigated various packet
processing orders and found that they have linear lower bounds
on the competitive ratio, which makes them unattractive.
However, we have provided positive results in the special case
of two different values, 1 and V . Namely, we have shown a
(1+(W+2)/V) upper bound for a priority queue PQv,−w that
sorts packets first by value and then by required processing.
For W < V , this also becomes a constant upper bound on
the competitive ratio of PQv/w which sorts packets by unit
processing (ratio of value to processing). Besides, we have

General case Two-valued case
Processing policy Lower bound Lower bound Upper bound
Any 5/4 1 + V−1

V 2 −O
(

1
W

)
PQ−w,v , PQβ−w,v V V V

PQv,−w , PQβv,−w
(V−1)
V

W − o(1) W
V

+ o(1) 1 + W+2
V

PQv/w , PQβ
v/w

, βW ≥ V V V

PQv/w , W < V W W
V

+ o(1) 2 + 2
V

TABLE I
RESULTS SUMMARY: LOWER AND UPPER BOUNDS.

introduced a general lower bound of 5/4 (in case when value
2 is available) that holds for all online policies; this lower
bound distinguishes the model considered in this work from
previously studied models with uniform processing or uniform
values, where certain online policies have been proven to
be optimal. Results of this work are summarized in Table I;
note that all algorithms in the table employ push-out and use
different heuristics for it.

For the two-valued case, we have proven tightly matching
lower and upper bounds on the competitive ratio (they differ
by 1+o(1)). It still remains a very interesting open problem to
prove upper bounds for the general case of multiple possible
values, and another interesting problem would be to prove
upper bounds for β-push-out policies. However, the really
crucial question here is whether it is possible to devise a
processing policy with better than linear competitive ratio
for the general case of two characteristics. We suggest this
problem for further study.

Acknowledgements: This work was partially supported
by the Government of the Russian Federation (grant
14.Z50.31.0030).

REFERENCES

[1] William Aiello, Alexander Kesselman, and Yishay Mansour. Competi-
tive buffer management for shared-memory switches. ACM Transactions
on Algorithms, 5(1), 2008.

[2] William Aiello, Yishay Mansour, S. Rajagopolan, and Adi Rosén.
Competitive queue policies for differentiated services. In INFOCOM,
pages 431–440, 2000.

[3] Nir Andelman. Randomized queue management for diffserv. In SPAA,
pages 1–10, 2005.

[4] Nir Andelman and Yishay Mansour. Competitive management of non-
preemptive queues with multiple values. In DISC, pages 166–180, 2003.

[5] Nir Andelman, Yishay Mansour, and An Zhu. Competitive queueing
policies for QoS switches. In SODA, pages 761–770, 2003.

[6] Allan Borodin and Ran El-Yaniv. Online Computation and Competitive
Analysis. Cambridge University Press, 1998.

[7] Matthias Englert and Matthias Westermann. Lower and upper bounds
on FIFO buffer management in QoS switches. Algorithmica, 53(4):523–
548, 2009.

[8] Patrick Th. Eugster, Kirill Kogan, Sergey I. Nikolenko, and Alexander
Sirotkin. Shared memory buffer management for heterogeneous packet
processing. In IEEE 34th International Conference on Distributed
Computing Systems, ICDCS 2014, Madrid, Spain, June 30 - July 3,
2014, pages 471–480, 2014.

[9] CAIDA The Cooperative Association for Internet Data Analysis. [On-
line] http://www.caida.org/.

[10] Michael Goldwasser. A survey of buffer management policies for packet
switches. SIGACT News, 41(1):100–128, 2010.

[11] Ellen L. Hahne, Alexander Kesselman, and Yishay Mansour. Compet-
itive buffer management for shared-memory switches. In SPAA, pages
53–58, 2001.

[12] Isaac Keslassy, Kirill Kogan, Gabriel Scalosub, and Michael Segal.
Providing performance guarantees in multipass network processors.
IEEE/ACM Trans. Netw., 20(6):1895–1909, 2012.

[13] Alexander Kesselman, Kirill Kogan, and Michael Segal. Improved
competitive performance bounds for CIOQ switches. In ESA, pages
577–588, 2008.

[14] Alexander Kesselman, Kirill Kogan, and Michael Segal. Packet mode
and QoS algorithms for buffered crossbar switches with FIFO queuing.
Distributed Computing, 23(3):163–175, 2010.

[15] Alexander Kesselman, Zvi Lotker, Yishay Mansour, Boaz Patt-Shamir,
Baruch Schieber, and Maxim Sviridenko. Buffer overflow management
in QoS switches. SIAM Journal on Computing, 33(3):563–583, 2004.

[16] Alexander Kesselman and Yishay Mansour. Loss-bounded analysis for
differentiated services. J. Algorithms, 46(1):79–95, 2003.

[17] Alexander Kesselman and Yishay Mansour. Harmonic buffer manage-
ment policy for shared memory switches. Theor. Comput. Sci., 324(2-
3):161–182, 2004.

[18] Alexander Kesselman, Yishay Mansour, and Rob van Stee. Improved
competitive guarantees for QoS buffering. Algorithmica, 43(1-2):63–80,
2005.

[19] Kirill Kogan, Alejandro López-Ortiz, Sergey I. Nikolenko, Gabriel
Scalosub, and Michael Segal. Balancing work and size with bounded
buffers. In Sixth International Conference on Communication Systems
and Networks, COMSNETS 2014, Bangalore, India, January 6-10, 2014,
pages 1–8, 2014.

[20] Kirill Kogan, Alejandro López-Ortiz, Sergey I. Nikolenko, and Alexan-
der Sirotkin. Multi-queued network processors for packets with hetero-
geneous processing requirements. In Proceedings of the 5th International
Conference on Communication Systems and Networks (COMSNETS
2013), pages 1–10, 2013.

[21] Kirill Kogan, Alejandro López-Ortiz, Sergey I. Nikolenko, and Alexan-
der V. Sirotkin. A taxonomy of semi-FIFO policies. In Proceedings of
the 31st IEEE International Performance Computing and Communica-
tions Conference (IPCCC 2012), pages 295–304, 2012.

[22] Kirill Kogan, Alejandro López-Ortiz, Sergey I. Nikolenko, Alexander V.
Sirotkin, and Denis Tugaryov. FIFO queueing policies for packets with
heterogeneous processing. In Proceedings of the 1st Mediterranean
Conference on Algorithms (MedAlg 2012), Lecture Notes in Computer
Science, volume 7659, pages 248–260, 2012. arXiv:1204.5443 [cs.NI].

[23] Hongqiang Harry Liu, Xin Wu, Ming Zhang, Lihua Yuan, Roger Wat-
tenhofer, and David A. Maltz. zupdate: updating data center networks
with zero loss. In SIGCOMM, pages 411–422, 2013.

[24] Zvi Lotker and Boaz Patt-Shamir. Nearly optimal FIFO buffer man-
agement for two packet classes. Computer Networks, 42(4):481–492,
2003.

[25] Yishay Mansour, Boaz Patt-Shamir, and Ofer Lapid. Optimal smoothing
schedules for real-time streams. Distributed Computing, 17(1):77–89,
2004.

[26] George Porter, Richard D. Strong, Nathan Farrington, Alex Forencich,
Pang-Chen Sun, Tajana Rosing, Yeshaiahu Fainman, George Papen, and
Amin Vahdat. Integrating microsecond circuit switching into the data
center. In SIGCOMM, pages 447–458, 2013.

[27] Kirk Pruhs. Competitive online scheduling for server systems. SIG-
METRICS Performance Evaluation Review, 34(4):52–58, 2007.

[28] Daniel Dominic Sleator and Robert Endre Tarjan. Amortized efficiency
of list update and paging rules. Communications of the ACM, 28(2):202–
208, 1985.

[29] Tilman Wolf, Prashanth Pappu, and Mark A. Franklin. Predictive
scheduling of network processors. Computer Networks, 41(5):601–621,
2003.

[30] An Zhu. Analysis of queueing policies in QoS switches. J. Algorithms,
53(2):137–168, 2004.

OPT PQv/w,−w PQv/w,v PQ−w,v PQv,−w

2 4 6 8 10 12 14 16 18
0.00

0.10

0.20

0.30

(1) k, B = 30, V = 10, λon = 0.25

2 4 6 8 10 12 14 16 18
0.00

0.10

0.20

0.30

(2) k, B = 100, V = 10, λon = 0.25

2 4 6 8 10 12 14 16 18
0.00

0.10

0.20

0.30

(3) k, B = 300, V = 30, λon = 0.25

20 25 30 35 40 45 50
0.00

0.02

0.04

0.06

0.08

0.10

(5) B, k = 50, V = 10, λon = 0.25

1,000 2,000 3,000 4,000

0.15

0.20

0.25

0.30

0.35

(5) B, k = 10, V = 25, λon = 0.25

2,000 4,000 6,000 8,000
0.10

0.15

0.20

0.25

0.30

0.35

(6) B, k = 10, V = 10, λon = 0.25

15 20 25 30 35
0.00

0.05

0.10

0.15

0.20

(7) V , k = 10, B = 30, λon = 0.25

15 20 25 30 35
0.00

0.05

0.10

0.15

0.20

(8) V , k = 10, B = 100, λon = 0.25

15 20 25 30 35
0.00

0.05

0.10

0.15

0.20

(9) V , k = 50, B = 300, λon = 0.25

0.5 1 1.5 2 2.5 3 3.5
0.00

0.05

0.10

0.15

(10) λon, k = 10, B = 100, V = 10

0.5 1 1.5 2 2.5 3 3.5
0.00

0.02

0.04

0.06

0.08

0.10

(11) λon, k = 50, B = 100, V = 10

0.5 1 1.5 2 2.5 3 3.5
0.00

0.05

0.10

0.15

(12) λon, k = 10, B = 100, V = 30

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0.05

0.10

0.15

0.20

(13) β, k = 10, B = 100, V = 10, α = 0.3

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0.05

0.10

0.15

0.20

(14) β, k = 10, B = 100, V = 30, α = 0.3

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0.00

0.02

0.04

0.06

0.08

0.10

(15) β, k = 50, B = 100, V = 10, α = 0.3

Fig. 2. Simulation results: share of successfully transmitted packets in the required processing model as a function of (1-3) maximal required processing k,
(4-6) buffer size B, (7-9) maximal value V , (10-12) packet stream intensity λon. Specific simulation parameters are shown in graph captions.

