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Abstract—Modern datacenters are increasingly required
to deal with latency-sensitive applications. A major ques-
tion here is how to represent latency in desired objectives.
Incorporation of multiple traffic characteristics (e.g., packet
values and required processing requirements) significantly
increases the complexity of buffer management policies.
In this work, we consider weighted throughput optimiza-
tion (total transmitted value) in the setting where every
incoming packet is branded with intrinsic value, required
processing, and slack (an offset from the arrival time
when a packet should be transmitted), and the buffer is
unbounded but effectively bounded by slacks. The main
result is a 3-competitive algorithm as the slack-to-work
ratio increases. Our results supported by a comprehensive
evaluation study on CAIDA network traces.

I. INTRODUCTION

Low latency is critical for interactive applications, and
achieving desired latency is a challenging task. Modern
applications are highly distributed; moreover, in order
to complete a final result application-level operations
consisting of many queries often should satisfy latency
limitations [2], [8], [29].

Latency is certainly an important factor, but there are
two primary ways to represent latency requirements in
optimization problems that arise in the design of network
elements. One approach is to include latency in the final
objectives by actually optimizing for it; for example, a
popular way to represent latency in the final objective is
to minimize average flow completion time [3], [15]. This,
however, requires prior knowledge about flow duration
which may be too restrictive, and still leaves the problem
of how to balance latency with other desired objectives
such as throughput, fairness, and others.

Instead of optimizing latency explicitly, a different
way to look at the problem is to satisfy latency con-
straints on the level of individual packets; this constraint-
based approach allows to optimize additional objectives
and does not require prior knowledge of a flow’s du-
ration. Originally, weighted throughput optimization for

packets with associated intrinsic value and slack was
introduced in [21] and called a bounded-delay model.
In this model, the slack defines a latency constraint,
i.e., the offset from arrival time when a packet must be
transmitted or is lost otherwise and every successfully
transmitted packet contributes its intrinsic value to the
weighted throughtput.

However, the model of [21] does not include another
important characteristic: processing requirements per
packet. Different packets at the same network element
can require different processing; from simple forwarding
on some of them to complex services as deep packet
inspection (DPI) and sophisticated virtual private net-
work (VPN) services on the others; only recently this
characteristic has become an object of study in admission
control and scheduling decisions [9], [17]. However,
none of these works apply latency constraints. Hence, the
primary objective of this work is to incorporate all three
characteristics: packet values, processing requirements,
and latency constraints, studying the combined impact
of the three characteristics on throughput optimization.

In this work, we consider a single-queue switch where
a buffer is shared among all types of traffic. We do not
assume any specific traffic distribution but rather analyze
our buffer management policies against adversarial traf-
fic using competitive analysis [7], [34], which provides
a uniform throughput guarantee for online algorithms
under all possible arrival patterns. An online algorithm
ALG is said to be α-competitive for some α ≥ 1 if
for any arrival sequence σ the total value of packets
transmitted by ALG is at least 1/α times the total
value transmitted in an optimal solution obtained by
an offline clairvoyant algorithm, further denoted OPT.
Note that a lower bound on the competitive ratio can be
proven with a specific example while an upper bound
represents a general statement that should hold over all
possible inputs. In practice, the choices of processing



order, admission control logic are likely to be made at
design time. From this point of view, our study of worst-
case behaviour aims to provide a robust estimate on the
settings that can handle all possible arrival patterns.

The paper is organized as follows. In Section II,
we survey previous work in related buffer processing
algorithms. Section III introduces a model that is used in
this work. In Section IV, we propose several algorithms
based on different processing orders, prove a general
lower bound for all deterministic online algorithms, and
show that all proposed algorithms have at least linear
competitive ratio in the general case. Section V discusses
a feasibility of a constant competitiveness and introduces
a 3-competitive algorithm that is a main result of this
paper. In Section VI we evaluate proposed algorithms on
CAIDA traces [14]. Section VII concludes the paper.

II. RELATED WORK

There are two works [9], [21] that are closely related
to this paper and consider weighted throughput (total
transmitted value) as an optimized objective. In the
model from [21], every packet has an intrinsic value
and slack; the required processing (work) per packet is
assumed to be identical. The buffer size in this case is
bounded implicitly since there is an upper bound on
the slack. It turns out that a simple greedy algorithm
that transmits the most valuable packet whose slack has
not expired yet is at most 2-competitive. The second
work [9] considers packets with an intrinsic value and
required processing stored in a limited buffer but does
not take into account latency constraints (slack); in the
special case, where only two values 1 and V are possible
and processing requirements per packet vary in a range
from 1 to W , the authors propose an (1 + W+2

V )-
competitive algorithm. It remains an open problem to
see whether there exist algorithms with constant compet-
itiveness in the general case when both intrinsic values
and processing requirements can be arbitrary integers
from 1 to V and 1 to W respectively. In this work, we
extend these models to consider all three characteristics
(intrinsic value, required processing, and slack) at once
and show that there exist algorithms with constant com-
petitiveness even in these settings.

There has been a long line of work devoted to com-
petitive analysis in models with only a single varying
characteristic such as packet value [6], [18]–[20], [35]
or required processing [12], [13], [17], [24]–[27] and
with different buffer architectures. In particular, admis-
sion control policies for the case of a single-queue
bounded buffer, where packets with uniform processing
and varying intrinsic value arrive have been thoroughly

studied. In the case of two values (1 and V ) and First-
In-First-Out (FIFO) processing order, the works [6],
[35] present a deterministic non-push-out policy with a
constant competitive ratio (2− 1

V ). For the more general
case, when intrinsic packet values vary between 1 and
V , the works [6], [35] show that the competitive ratio
cannot be better than Θ(log V ). In [5], the upper bound
was improved to 2 + lnV +O(ln2 V/B), where B is a
buffer size. In the push-out case (when already admitted
packets can be dropped) with two packet values, the
greedy policy was shown in [22] to be at least 1.282
and at most 2-competitive. Later, the upper bound on
the greedy policy was improved to 1.894 [23]. Policies
with memory have been considered in [4], [11], [30].

Our current work can be viewed as part of a larger
research effort concentrated on studying competitive
algorithms for management of various buffering architec-
tures. Initiated in [1], [22], [32], the competitive analysis
for buffer management has received tremendous atten-
tion over the past decade. The bounded-delay model [21]
is shown to be effective for service scale-outs [10]. The
surveys by Goldwasser [16], Nikolenko and Kogan [33]
provide a comprehensive overview of this field. The
language to express buffer managment policies for user-
defined policies is proposed in [28].

III. MODEL DESCRIPTION

We use a model similar to the one introduced in [21].
Consider a single queue that handles the arrival of a se-
quence of unit-sized packets. While previous works [9],
[21] have dealt with the case of two characteristics
(value and slack in [21], value and required processing
in [9]), we assume that each arriving packet p is branded
with three characteristics: (1) the number of required
processing cycles (work) w(p) ∈ {1, . . . ,W}, (2) its
processing value v(p) ∈ {1, . . . , V }, (3) slack s ∈
{1, . . . , S} that defines how long from the arrival time
a packet should be transmitted before it is lost without
any gain to the final objective (weighted throughtput).
We denote by Jw | v | sK a packet with work w, value
v, and slack s; a sequence of n packets with the same
parameters, by n×Jw | v | sK. Similar to [21], we assume
unbounded queue size; note that the maximal slack value
S effectively bounds it. In the notation above, slack s
of a packet decreases on every time step, i.e., we are
talking about “current”, effective slack. A packet is fully
processed if the processing unit has scheduled the packet
for processing for at least its required number of cycles.

Although the maximal work W , maximal value V ,
and maximal slack S will play a fundamental role in our
analysis, the proposed online algorithms do not need to
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know them in advance. Note that for W = 1 the model
degenerates into a single queue of unit-sized packets with
heterogeneous intrinsic values, as in [21].

We assume discrete slotted time with three phases
in each time slot: (i) arrival: new packets arrive, and
admission control decides if a packet should be dropped
or, possibly, an already admitted packet should be pushed
out; (ii) processing: one packet is selected for processing
by the scheduling unit; (iii) transmission: at most one
fully processed packet is selected for transmission and
leaves the queue. If a packet is dropped prior to being
transmitted (while it still has a positive number of
required processing cycles), it is lost. A packet may be
dropped either upon arrival or due to a push-out decision
while it is stored in the buffer. A packet contributes
its value to the objective function only upon being
successfully transmitted; note that only one packet may
be transmitted per time slot. The goal is to devise
buffer management algorithms that maximize the overall
weighted throughput, i.e., the total value of all packets
transmitted out of the queue.

IV. IMPACT OF PROCESSING ORDERS

It is well known that different processing orders have
a significant impact on the performance of buffer man-
agement policies [9], [17]. For a single queue buffer-
ing architecture with bounded buffers, one usually has
to consider two orders: admission order that defines
which packets will be dropped in case of congestion
and processing order of packets in the queue. In the
bounded-delay model [21], a queue has an unbounded
size, so during admission we can accept all packets,
later automatically discarding packets with expired slack,
so we only need to define the processing order. Note
that although the queue is unbounded, it can contain
only a limited number of packets at the end of the
next arrival phase, defined by the maximal slack value
and required processing1. In what follows, we introduce
several processing orders to understand their impact on
weighted throughput (total transmitted value).

Let f be a function of packets, f(w, v) ∈ R, with the
intuition that better packets have larger values of f . Then
the PQf processing policy (priority queue) is defined
as the policy that processes packets in its queue in the
decreasing order of the values of f on these packets.

1Our model does not limit a number of packets during arrival phase.
In practical implementations to guarantee a limited buffer size at every
point in time, we can discard least valuable packets according to
processing order, whose slack is bigger than the total work of all
currently admitted packets.

Fig. 1. A sample time slot for PQ−w , PQv , PQv/w , and PQv/s.
The head of line packet is at the top. Shaded packets are those that
will not be transmitted due to lack of time.

In particular, we consider the following specific prior-
ity queues; below w denotes the current residual work,
v denotes the value, and s denotes slack:
(1) PQ−w = PQ−w+v/(V+1) orders packets in the in-

creasing order of their required processing, breaking
ties by value;

(2) PQv = PQv−w/(W+1) orders packets in the de-
creasing order of their value, breaking ties by re-
quired processing;

(3) PQv/w orders packets in the decreasing order of
their value-to-work ratio, i.e., it prioritizes packets
that yield the best value per one time slot of pro-
cessing; one can break ties either by work or by
value, all statements below will remain valid, so we
unite these variations;

(4) PQv/w0
orders packets in the decreasing order of

their value-to-original-work ratio, i.e., in difference
from PQv/w the priority of a packet does not
increase as it gets processed more and its work
decreases;

(5) PQv/s and PQv/s0 order packets in the decreasing
order of their value-to-slack and value-to-original-
slack ratio respectively; this idea is known in
scheduling, where it has been shown to work well
as a variation on the earliest due date (EDD) heuris-
tic [31].

Figure 1 illustrates a sample time slot with four differ-
ent processing orders; the queues are shown vertically,
with head of the queue on top. Shaded packets are
those that the corresponding algorithm will not have time
to process; this illustrates the differences between four
processing orders.

Finally, we proceed to establish a general lower
bound; note that while proving a lower bound for a
specific algorithm usually reduces to simply providing
a counterexample, general lower bounds valid for all or
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a specific wide class of algorithms are usually proven
by adversarial arguments and often represent interesting
results. It turns out that in case of three characteristics,
there is a relatively simple general lower bound that
applies to all online algorithms and is not only non-
constant but linear in V .

Theorem 1. The competitiveness of any deterministic
online algorithm A cannot be bounded from above by a
constant.

Proof: We prove the theorem by contradiction.
Suppose that an algorithm A has constant competitive
ratio; we present the following sequence. At the first
time slot, two packets arrive, one with value 1 and work
1 and another with value V and work W = V 2. The
next elements in the sequence are constructed in an
adversarial way, depending on A’s behaviour. While A is
working on the packet with value V , a new packet with
value 1 and work 1 arrives on every time slot; hence,
the optimal algorithm can process all small packets for
a total value of V 2 while A has only processed value
V . If at any time A chooses any packet other than the
large one (with value V and work W = V 2), the packet
sequence stops immediately, and A’s total transmitted
value is 1 while the optimal algorithm can finish the
larger packet for a total value of V . In both cases, the
competitiveness of A is at least V .

However, the crucial point in this lower bound is that
it uses “real-time” packets with s = w, so the algorithm
is forced to make a decision about them immediately and
cannot store smaller packets in its buffer “for later”. In
our main result, we will see that if we require the slack
s to be separated from w by at least any constant mul-
tiplicative factor, we will be able to achieve a constant
competitive ratio. But first we show a few more lower
bounds for specific algorithms that are interesting from
the practical point of view.

Lower bounds on competitive ratios represent only in-
dividual hard cases, specific sequences of packets where
the algorithm loses a lot to the optimal. Nevertheless,
lower bounds can still provide important insights to
the comparative quality of online algorithms. Note that
while previous work has provided non-constant lower
bounds for priority queues in various settings with two
characteristics [9], those were proven for a bounded
buffer and hence are inapplicable in our case. Theorem 1
already shows that if “real-time” packets are allowed no
online algorithm is competitive. Still, it turns out that
baseline priority queues are non-competitive even with
large slacks (by large slack we will denote a slack which

is always greater than the work by some constant c).

Theorem 2. If w, s, and v are admissible values of
work, slack, and value respectively, the competitiveness
of priority queue algorithms PQv , PQv/w, PQv/w0

,
PQs/w, PQs/w0

is at least

1− (w−2w )
1
w

⌊
log w

w−2
v

⌋
1− w−2

w

w

s
,

which is non-constant in v and w.

Proof: Consider a sequence of n packets arriving
one per timeslot. All packets have the same work w
and slack s ≥ w, and their values are respectively v,

v w
w−2 , v

(
w
w−2

)2
and so on, with the ith packet’s value

v( w
w−2 )i; since v ≥ 1 n is limited by n ≤ log w

w−2
v. At

time i, the priority queue algorithm will always prefer
the (i + 1)th packet since all parameters in question
(v, w, v/w, v/w0, v/s, and v/s0) are better for the
new packet. Thus, the first fully processed packet will
be the last packet, and the total number of processed
packets will not exceed s

w , so the total processed value
can be bounded from above by v( w

w−2 )n sw . On the
other hand, the optimal algorithm can process the nth,
(n−w)th, (n−2w)th packets, and so on, with total value

v( w
w−2 )n

1−(w−2
w )

n
w

1−w−2
w

. This yields the necessary bound,
and for any fixed w

s it tends to infinity if v and w tend
to infinity.

Theorem 2 shows a common problem of priority
queue algorithms: they abandon packets they have al-
ready invested in, and thus sometimes a large part of
the processing time is wasted. One possible approach
to solve this problem is to introduce the so-called β-
preemption. Consider a priority queue algorithm which
sorts packets by some function f . We make it more
stable in the following way: if no packet is processed
at the moment, just choose a packet p with the largest
f(p) as usual, but if the algorithm is currently processing
some packet p then it will switch to another packet p′

only if f(p′) ≥ βf(p). For β > 1, this introduces
a commitment to already processed packets, helping
to solve the above problem, and we will see them in
experimental evaluation. However, in the worst case β-
preemption also do not really help; we illustrate it below
for PQv/w, and similar examples can be constructed for
other priority queues.

Theorem 3. The PQv/w algorithm with β-preemption
has a non-constant lower bound for arbitrarily large
slacks.
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Proof: Consider an input sequence that consists of
two kinds of packets. There are k “large” packets with
work w, value v, and slack cw each; c “large” packets
arrive on the first time slot, and the others arrives at times
w
2 , 2w

2 , 3w
2 , 4w2 ,· · · , w2 (k− c). There also are k− c+ 1

“small” packets with work 1, value β+1
w v, slack c, and

arrival times w
2 + c−1, 2w

2 + c−1, . . ., kw2 . PQv/w will
process all small packets and c large packets for a total
value cv+ (k−c+1)v(β+1)

w while another algorithm could
process only large packets for a total value of kv which
can be greater than cv+ (k−c+1)v(β+1)

w by an arbitrarily
large factor if w is sufficiently large (here we assume that
PQv/w chooses the oldest package among the packages
with the same v/w. If this is not the case we can add
k to the value of the first “large” package, k − 1 to the
value of the second and so on).

While algorithms with β-preemption solve some prob-
lems of priority queue algorithms, two major problems
remain. The first problem is that even with large slacks
the algorithm can drive itself into a “real-time” situation
by processing packets with expiring slack (we have
pressed upon this weakness in Theorem 3). The second
problem is that while preemption does lend some stabil-
ity and robustness to the algorithm, once a preemptive
algorithm has abandoned processing of some packet it
is not going to prefer it to unprocessed packets, wasting
invested time in vain. In the next section we present
an algorithm that is free of these problems and identify
conditions when it has a constant competitive ratio.

V. CONSTANT COMPETITIVENESS
WITHOUT JUST-IN-TIME PACKETS

We have seen in Theorem 1 that any deterministic
online algorithm is non-competitive in the general case;
however, as we have noted, the counterexample relies
upon the availability of “just-in-time” packets with s =
w. Surprisingly, as soon as we require any, however
small separation between w and s, we can immediately
design an algorithm with constant competitiveness!

The main result of our work is a new upper bound
for the model with three characteristics. We begin by
describing the algorithm and basic assumptions and then
proceed to prove the bound. For the proof, we introduce
the following assumption: suppose that for every packet
Jw | v | sK, its initial slack at time of arrival is at least c
times larger than required work, s ≥ cw. The proof will
work for any constant c > 1, and the algorithm does not
have to know c in advance.

Definition V.1. Algorithm SPQ (stack with priority
queue) operates as follows: apart from the queue, it

Fig. 2. Sample operation of the SPQ algorithm.

emulates a stack and on every step processes the top
packet in the stack, i.e., some packets are “on stack”
and some are “not on stack” in the buffer. SPQ al-
ways processes the top packet on the stack2, denoted
HOL with parameters Jwh | vh | shK; we also denote by
HOLt = Jwth | vth | sthK the HOL packet at time t. SPQ
operates as follows: on every time slot,
(R1) drop all packets Jw | v | sK from the buffer that are

not on stack and have slack s < (1 + β)w (the
“freelancer rule”: we never put on stack a packet
without some cushion on its deadline; but if it is
already on stack it will remain there);

(R2) for each new packet, we accept it on stack (making
it the new HOL) if its v

w ratio is at least α times
larger than the current HOL’s;

(R3) drop packets from the stack with insufficient time
to process (Jw | v | sK with s < w).

Note that SPQ has two parameters, α and β. Figure 2
illustrates SPQ with a few sample time slots for α = 2
and β = 1; shaded packets are being dropped (due to
the freelancer rule), the dotted rectangle surrounds SPQ
buffer divided into the stack and “other” packets, and
grey dashed arrows show how packets move in SPQ
buffer and are transmitted out. At t = 1, a new packet
has v

w = 2 which is more than α = 2 times larger than
the HOL packet’s v

w = 1
2 , so it is accepted on top of the

stack and processed at t = 2. Then the previous HOL
returns to top of the stack and is processed; meanwhile,
the J3 | 2 | 5K packet residing in the buffer has been
reduced to J3 | 2 | 3K and dropped due to the freelancer

2This means that SPQ can accept a new packet on top of the stack,
interrupting the current, and then return back to it when the new packet
is transmitted.
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rule; a new packet is accepted on stack when the stack
becomes empty. Note that in this short sequence, SPQ
operates suboptimally: it would be better not to drop
J3 | 2 | 3K and accept it on stack instead.

Theorem 4. If s ≥ cw for every packet at time of arrival,
the SPQ algorithm defined above has competitive ratio
at most(

1 +
1

β(α− 1)− 1

)(
1 + α+

αc

(c− β − 1)

)
.

Proof: The first (crucial) step of the proof is to pass
from computing SPQ value as a sum of the values of
transmitted packets to computing it as a sum of (perhaps
partially) processed packets. This is an important idea
that makes the rest of the proof much easier and may be
later reused for other results. To do so, we introduce
bites. A bite is the “value” of a single processing
timeslot, i.e., vh

wh
for HOL Jwh | vh | shK. Formally, the

transition is summarized in the following lemma.

Lemma 5. There exists a partition of total value V
obtained by SPQ over its entire operation among all
timeslots g : [1, T ] → N,

∑
t g(t) = V , such that on

every timeslot t, g(t) ≥
(

1− 1
(α−1)β

)
vth
wth

.

Proof: The idea is to take the value of packets
actually processed (transmitted) by SPQ and distribute it
among “fruitless” time slots, when SPQ was processing
a packet only to drop it afterwards. What does it mean
that a packet Jw | v | sK has been dropped from the
stack? By (R1), when it was accepted it had a slack
of at least (1 + β)w timeslots. Since it has not finished
processing, it means that for at least βw timeslots SPQ
has been processing a better packet that was accepted on
top of stack by (R2). This packet has at least α times
better v/w ratio. Naturally, it might happen that a packet
was preempted by a better packet, and that one was in
turn preempted by another, and so on. However, each
new packet must be α times better than the previous
one. Therefore, for every timeslot when we processed a
packet we can redistribute 1

α of its value to a preempted
one, 1

α2 to a previously preempted packet, and so on, for
a total of ≤ 1

α + 1
α2 + 1

α3 + . . . = 1
α−1 of the total value.

Now, for every processed packet we need to redis-
tribute out βw of its processing timeslots to previously
preempted packets, so the value of each processed times-
lot is reduced by a factor of 1− 1

(α−1)β .
We now proceed to proving the theorem. From this

moment on, we will consider bites instead of full
packets, and by Lemma 5 we can simply multiply the
resulting upper bound by δ := 1

1− 1
(α−1)β

= β(α−1)
βα−β−1 .

Let us now classify all bites that OPT has processed
over time, creating a matching of bites between OPT
and SPQ. For a bite out of a packet p = Jw | v | sK,
there are three cases:
(1) this bite has also been processed by SPQ;
(2) this bite has not been processed by SPQ, and:

a) at the time when OPT was processing it p has
not been accepted on stack by (R2);

b) at the time OPT was processing it p was on stack;
(3) this bite has not been processed by SPQ because p:

a) has not been accepted on stack by (R1);
b) has been removed from stack by (R3).

In general, different bites of the same packet p could fall
into different cases. If this is the case, we split a packet
into parts p1, p2 and p3 and in futher analysis view them
as separate packets (this lets us merge cases 3a and 3b
into one). Note that all of these three cases may cover
the same packet processed by SPQ independently, so the
resulting ratio will be the sum of ratios from cases 1–3.

In case 1, we match the bites one-to-one, and they are
covered by Lemma 5, with a competitive ratio of δ. In
case 2, we match OPT’s bite to a corresponding bite
of the packet p′ = Jw′ | v′ | s′K that SPQ processed on
the same time slot. By (R2), p′ has the value-work ratio
of at most α times worse than p: v′

w′ >
1
α
v
w . Therefore,

the matching bite brings SPQ at least α times less than
the bite of OPT, and by Lemma 5 we get a competitive
ratio of αδ.

Case 3 is the most interesting. To bound the compet-
itive ratio in case 3, we denote by tparr the time when
packet p arrives, by tpbeg the time when OPT begins
processing p, and by tpend the time when OPT finishes
processing p. We sort the packets in the order of tend.

Lemma 6. Consider a stream of packets (p1, p2, . . .)
sorted by tpend. We construct the mapping as follows: for
each p = Jw | v | sK, we map it to an arbitrary subset of
1
αw unmapped SPQ bites from the interval [tparr, t

p
beg].

Then this mapping is feasible, and therefore each packet
processed by OPT and dropped by SPQ according to
(R1) has at least c−1−βc of its bites mapped to processed
SPQ bites.

Proof: We denote for convenience γ = c−1−β, so
it always holds that for every packet Jv | w | sK, at time
of arrival (γ + 1 + β)w ≤ s. We have to prove that for
every packet p = Jw | v | sK, there are at least γ

cw bites
of SPQ left unmapped in the interval [tparr, t

p
end]. First,

there are at least s− (1 + β)w ≥ γw SPQ bites in the
interval in total, since otherwise we would have time to
accept p on stack and process it.
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Second, note that the already mapped bites from the
interval [tparr, t

p
beg] can only be mapped to packets fully

processed by OPT over the interval [tparr, t
p
end]: if a

packet p′ has tp
′

end > tpend, it comes later in the ordering,
and if it has tp

′

beg < tparr then all bites mapped to p′ have
time smaller than tparr. There are at most s − w OPT
bites spent on these packets, since tpend − tparr = s, and
OPT needs w timeslots to actually process p; hence at
most γc (s−w) SPQ bites from [tparr, t

p
end] will be already

mapped by this step.
Combining the two, we get that in total we have at

least γw SPQ bites, and we have already mapped at most
γ
c (s − w) of them, so this leaves us γw − γ

c (s − w) ≥
γw
(
1− 1

c (c− 1)
)
≥ γ

cw bites free to be mapped to p,
which proves that the mapping is always feasible.

By Lemma 6, we get that each packet processed by
OPT and rejected by SPQ due to (R1) maps to at least

c
c−1−βw bites of SPQ; since, again, these bites might be
later preempted as in case 2, the total competitive ratio
in this case is c−1−β

c αδ. Therefore, we have obtained a
total competitive ratio of

δ + αδ + αδ
c

c− 1− β
=

β(α− 1)

βα− β − 1

(
1 + α+ α

c

c− 1− β

)
=(

1 +
1

β(α− 1)− 1

)(
1 + α+

αc

(c− β − 1)

)
.

We are now free to choose α and β to optimize this
competitive ratio under natural constraints α > 1, β > 0,
β(α−1)−1 > 0, β < c−1 (otherwise the algorithm will
not be well defined). While it is hard to get an analytic
optimum for every specific value of c, the asymptotic
result is clear: for large c we can take, e.g., β =

√
c,

α = 1 + 1
4
√
c
, and the competitive ratio will tend to 3 as

c→∞.

VI. EVALUATION

To evaluate our policies, we have used real traffic
traces from CAIDA (Center for Applied Internet Data
Analysis) [14]. Unfortunately, such traces provide no
information about time-scale, and specifically, how long
should a time-slot last that is an internal property of
processing network element. This information is essen-
tial in our model since a size of time slot determines
traffic burstiness even for fixed packet traces.

The traces provide traffic distributions for the incom-
ing packets: we specify a size of time slot and take all
packets in this window to arrive at the same time slot.

10−6 5 · 10−6

0.995

1

W = 10, V = 20, S = 25 T

PQw PQv
PQs PQv/w
PQv/s SPQ

5 · 10−6 10−5 2 · 10−5
0.7

0.8

0.9

1

W = 10, V = 20, S = 25 T

Fig. 3. Share of transmitted value as a function of time slot size T
for W = 10, V = 20, S = 25.
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1
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PQw PQv
PQs PQv/w
PQv/s SPQ

5 · 10−6 10−5 2 · 10−5
0.7

0.8

0.9

1

W = 20, V = 20, S = 50 T

Fig. 4. Share of transmitted value as a function of time slot size T
for W = 20, V = 20, S = 50.

Unfortunately, we are not aware of any publicly available
datasets with specified required processing, values, and
deadlines/slacks for the packets, so for these parameters
we had to rely on random generation.3

The simulations, aligned to the discussion above, have
the following parameters: V is the maximal value, W is
the maximal work, S is the maximal slack, and T is

3We have made the source code for our simulations available
on http://github.com/submissioninfocom/throughput-latency; naturally,
the repository does not contain CAIDA traces.
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Fig. 5. Share of transmitted value as a function of maximal value V
and maximal work W .
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Fig. 6. Share of transmitted value as a function of maximal slack S.

the size of time slot (in seconds) for the CAIDA traces.
The size of time slot has a direct linear relationship with
the unit intensity of the incoming stream of packets λ:
a larger size of time slot means that more packets on
average arrive on a single time slot. The plots show
the share of total value of all arriving packets that has
been successfully transmitted as a function of various
characteristics. Other characteristics have been sampled
uniformly at random from their respective intervals. We
have run all simulations up to 50,000 time slots in order
to obtain a clear and robust evaluation.

Figures 3 and 4 show the main results of our simu-
lation study: the dependence of the share of transmitted
value on the time slot size, that is, on the intensity of
the incoming stream of packets. In our experiments, the
most interesting effects happen when the packet intensity
1
2λ/W is close to 1, i.e., packets arrive with relatively
little congestion. Our results indicate that overall, the
best policies are SPQ, PQv/w, and PQv/s, which have
more processed value compared to other policies. When
1
2λ/W is close to 1, and thus the share of processed
packets is 1 or close to 1, PQv/s performs best, and
SPQ is in second place. However, as the unit density
grows PQv/w takes the lead, and PQv/s drops to the
third place; throughout the ranges of parameters in our
experiments, SPQ held a steady second place. In order
to show this effect, Figs. 3 and 4 show the same plots
on two different scales, with an enlarged version on the
left.

Figure 5 shows sample graphs from the second set
of simulations, where we investigated how the share of
transmitted value depends on V and W . As expected,
throughout the entire range of values in our simulation
we have noticed no significant dependence on either V
or W .

Figure 6 shows how the share of transmitted value de-
pends on the maximal slack S. Here we show two differ-
ent settings: in the first (top) plot, we see a relatively con-
gested situation with all algorithms transmitting around
0.6–0.8 of the total possible value. In this setting, SPQ
and PQv/w work best, and SPQ overcomes PQv/w as
the slack grows (and thus congestion decreases). On the
bottom, we see a relatively uncongested situation (with
twice smaller time slot size), and here the leaders are
completely different: PQs and PQv/s are the first to
achieve perfect transmission. Note, however, that in both
settings SPQ performs well.

VII. CONCLUSION

In this work, we have considered a very general packet
processing model, where packets are endowed with three
different characteristics: processing requirement (work),
intrinsic value (objective function being to maximize
total transmitted value), and slack (how much time the
algorithm has to process a packet). We have shown
that several natural candidates given by various priority
queues fail to achieve constant competitiveness. How-
ever, we have designed a novel algorithm that operates
by emulating a stack with its priority queue and have
shown that it has constant competitive ratio which tends
to 3 as the slack-to-work ratio increases. On the practical
side, we have performed a comprehensive evaluation
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study on CAIDA network traces [14] that has shown
which heuristics work best in this setting. Our results
show that even in the seemingly general model one
can devise algorithms with good worst case guarantees.
This opens new possibilities for buffer management
in latency-sensitive applications with multiple packet
characteristics. The results also support the view that
frames latencies as constraints to be satisfied rather
than function to be optimized, as in the average flow
completion time model.
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