
Essential Traffic Parameters for Shared Memory Switch
Performance

Patrick Eugster1,2, Alex Kesselman3,
Kirill Kogan4, Sergey Nikolenko5,6, and Alexander Sirotkin7,8

1 Purdue University, p@cs.purdue.edu
2 Technical University of Darmstadt?
3 Google Inc., alx@google.com

4 IMDEA Networks Institute, kirill.kogan@imdea.org
5 National Research University Higher School of Economics, St. Petersburg

6 Steklov Institute of Mathematics at St.Petersburg, sergey@logic.pdmi.ras.ru ??

7 International laboratory for Applied Network Research
National Research University Higher School of Economics, Moscow

8 St. Petersburg Institute for Informatics and Automation of the RAS, St. Petersburg,
alexander.sirotkin@gmail.com

Abstract. Cloud applications bring new challenges to the design of network
elements, in particular accommodating for the burstiness of traffic workloads.
Shared memory switches represent the best candidate architecture to exploit buffer
capacity; we analyze the performance of this architecture. Our goal is to ex-
plore the impact of additional traffic characteristics such as varying processing
requirements and packet values on objective functions. The outcome of this work
is a better understanding of the relevant parameters for buffer management to
achieve better performance in dynamic environments of data centers. We consider
a model that captures more of the properties of the target architecture than pre-
vious work and consider several scheduling and buffer management algorithms
that are specifically designed to optimize its performance. In particular, we pro-
vide analytic guarantees for the throughput performance of our algorithms that
are independent from specific distributions of packet arrivals. We furthermore
report on a comprehensive simulation study which validates our analytic results.

1 Introduction

Cloud data centers are faced with workloads which evolve rapidly, driven by high vol-
umes of end users, application types, cluster nodes, and overall data movement (e.g., big
data processing [4,10]). A primary design challenge in this context consists in selecting
and deploying network switches that scale application performance, in a way which is
robust and cost-effective. A network switch receives packets on ingress ports, applies

? P. Eugster was partially supported by the German Research Foundation (DFG) under project
MAKI (“Multi-mechanism Adaptation for the Future Internet”).

?? The work of Sergey Nikolenko was partially supported by the Government of the Russian
Federation grant 14.Z50.31.0030 and the Presidential Grant for Leading Scientific Schools,
NSh-3856.2014.1.

2 Eugster, Kesselman, Kogan, Nikolenko, Sirotkin

specific policies to them, identifies destination ports, and sends them out through egress
ports. When application-induced traffic bursts create an imbalance between incoming
and outgoing packet rates for a given port, packets must be queued in the switch packet
buffer. The available queue size on a port determines the port’s ability to hold packets
until the egress port can emit it. When buffer queue is full, packets are dropped. The
allocation and availability of buffer resources to the ports, determined by the buffering
architecture, affects burst absorption capabilities and performance characteristics of the
network switch. Overprovisioning in terms of buffer capacity at each network node to
absorb bursty behavior is not viable, as networks do not have unlimited resources; con-
versely, cloud data centers can only scale out as fast as the effective per-port cost and
power consumption. These factors, in turn, are driven by the chosen buffering archi-
tecture. The shared memory switch allows to absorb traffic bursts in the best way since
the whole buffer can be utilized by a same output port if needed. Since this is an actual
choice in practice [13], here we focus our efforts on this type of buffer architecture.

The buffer management policy is a key element in meeting network design chal-
lenges. It directly impacts a switch’s ability to transfer data at line rate and optimize
desired objectives during congestion under various traffic conditions. Most existing
buffer management policies are based on a simple characteristic such as buffer occu-
pancy [9, 16], whereas traffic workloads have additional important characteristics such
as processing requirements or value that are not explicitly taken into account. Efficient
methods for buffer management incorporating new characteristics in admission deci-
sions beyond fairness objective functions lead to new challenges in performance and
implementation for traditional switch architectures. Inherited from the Internet, fairness
is in fact a design choice which can conflict with other objectives in various economic
models (e.g., utilization of network infrastructure or profit [7, 19, 20]).

We thus consider a shared memory switch where a buffer of sizeB is shared among
all types of traffic. Each arriving packet is labeled with an output queue. Arrivals can
be adversarial. During arrival, packets concurrently “access” the shared memory. Each
input port decides if its arriving packets should be admitted based on information
computed by output ports in a distributed manner. In this work we consider (possi-
bly weighted) throughput optimization since relevant objectives such as better reuse
of underlying infrastructure or profit maximization can be reduced to throughput op-
timization [19, 20]. However, in stark contrast to the seminal work of Aiello et al. [1]
where packets have uniform values and processing requirements, in our model each
arriving packet has an intrinsic value (“worth”) or processing requirement. Moreover,
we remove a strong constraint from the recent work of Eugster et al. [15] by allowing
packets for the same output port to have distinct processing requirements. We consider
the paradigm of competitive analysis [8, 37]: an algorithm ALG is α-competitive for
some α ≥ 1 if for any arrival sequence the number of packets transmitted by ALG is
at least 1/α times the number of packets transmitted by an optimal offline clairvoyant
algorithm OPT. Worst case analysis shows whether additional workload characteristics
should be taken into account in buffer management. Since all policies we consider are
greedy (they accept and transmit all traffic if there is no congestion), we need to con-
sider extreme cases during congestion periods that can actually happen in scenarios like

Essential Traffic Parameters for Shared Memory Switch Performance 3

big data processing [12,38,39]. Worst case results help define buffer management “rules
of thumb” that are independent of specific arrival distributions.

The goal of this paper is to offer designs with proven performance guarantees for
the shared memory switch; we analyze the performance of buffer management poli-
cies and provide guarantees for their worst-case throughput. We consider two different
traffic characteristics: (a) required processing and (b) values for packet transmission.
Intuitively, they should have similar impacts on the desired objective. In the case of a
single queue, both of them reach optima when all packets are ordered by required pro-
cessing [21] or values with push-out9. However, generalizing them to a shared memory
buffering architecture is challenging: the case of heterogeneous values was presented
as an open question in SIGACT News [18, p. 22].

In the first part of this paper every incoming packet has unit value (and an output
port label) but has processing requirement varying from 1 to k. In this case the objective
comes down to maximizing the number of transmitted packets. We show that LQD is at
least (n/2−o(n))-competitive for sufficiently large buffer sizeB and maximal required
processing k; besides that we show that Biggest-Packet-Drop (BPD, a policy that pushes
out packets with maximal processing requirement in case of congestion) degrades to at
least (n + 1)/2-competitiveness. In addition we introduce a natural Biggest-Average-
Drop policy (that pushes out a packet with maximal required processing from a queue
with maximal average processing requirements in the case of congestion) that achieves
the same lower bound as BPD. All lower bounds hold even for PQ (priority queue-
ing) processing order, where packets are ordered according to processing requirements.
The main result of this work is the 2-competitiveness of a semi-greedy variant of the
Longest-Work-Drop (LWD) policy of [15] that holds in our general model when packets
with heterogeneous processing requirements are processed in PQ order in each queue
(Section 5). In addition we show that in the FIFO case of our general model, LWD is
at least (logB/n k)(1 − 1/B) + 1-competitive. In the second part of this paper (b) we
consider a model where each incoming packet has, in addition to an output port label, a
heterogeneous value from 1 to V (and uniform processing). In this case the objective is
to maximize transmitted value. Intuitively, the model with values should be similar to
the model with required processing. However, we show that the Maximal-Total-Value-
Drop (MTVD) policy, which is similar to LWD, is at least V -competitive. We also turn
to policies that combine several characteristics and consider the Minimal-Ratio-Drop
(MRD) policy introduced in [15] that considers both queue occupancy and the average
value in the same queue. MRD was conjectured in [15] to have constant competitive-
ness. We show that the model with values has a different nature as a generalization from
the single-queue case (where both models have optimal online algorithms) to the shared
memory switch, and it is not enough to simply consider the total value. In particular,
we prove that MRD is at least V -competitive.

The paper is organized as follows. Section 2 discusses related prior art. Section 3
details the model underlying our work. Section 4 considers lower bounds of several al-
gorithms for packets with heterogeneous processing requirements to understand prop-
erties of an “ideal” policy. The main result of this paper — 2-competitiveness of LWD

9 In case of packets with values, the optimality of the greedy algorithm with pushout is trivial:
order the queue by value.

4 Eugster, Kesselman, Kogan, Nikolenko, Sirotkin

policy for packets with heterogeneous requirements — is presented in Section 5. Sec-
tion 6 considers a model with heterogeneous packet values. Section 7 concludes the
paper.

2 Related Work

Aiello et al. [28] propose a non-push-out buffer management policy called Harmonic
that is at most O(log n)-competitive and establish a lower bound of Ω(logn

log logn) on the
performance of any online non-push-out deterministic policy, where n is the number of
output ports. Kesselman and Mansour [1] demonstrate that the LQD policy is at most
2- and at least

√
2-competitive. Both works consider homogeneous packet processing,

i.e., each packet requires a single processing cycle. Eugster et al. [15] consider a lim-
ited variant of our model where all incoming packets for the same output port have
identical processing requirements. But even in this case it was shown there that LQD
is at least

(√
k − o(

√
k)
)

-competitive. Fortunately, in [15] a generalization of LQD,
namely Longest-Work-Drop (LWD), was proposed for this limited model; LWD is at
most 2-competitive in case when packets are processed with minimal current required
processing first (PQ order). Besides, it was shown in [15] that Biggest-Packet-Drop
(BPD, a policy that pushes out packets with maximal processing requirement in case
of congestion) is at least log k competitive for B > k(k+1)

2 . Unlike the model in [15]
the model we consider in this paper however allows for packets with heterogeneous
processing requirements to be admitted to the same queue. This generalization over the
model in [15] has a significant impact on the efficiency of considered policies and appli-
cability to real-world scenarios. In particular, we can open a separate queue per process-
ing requirement per output port but in this case the scalability of maximal number of
supported queues can become a strong constraint once k and n are growing. Our current
work can be viewed as part of a larger research effort concentrated on studying compet-
itive algorithms for management of bounded buffers. Surveys by Goldwasser [18] and
later by Nikolenko and Kogan [36] provide an excellent overview of this field. Initiated
in [26,35], this line of research has received tremendous attention over the past decade.
Various models have been proposed and studied, including QoS-oriented models where
packets have individual weights [2,14,26,35]. A related field that has recently attracted
much attention focuses on various switch architectures and aims to design competitive
algorithms for various scenarios therein (cf. [3,5,6,22–25,34]). However, none of these
models cover the case of packets with heterogeneous processing requirements, and our
work extends and generalizes previous models to heterogeneous processing. The sin-
gle queue case with heterogeneous processing requirements is considered in [21,32,33].
Kogan et al. considered the multiple separated queues case with heterogeneous process-
ing requirements in [30]. The single queue case with packets containing a combination
of heterogeneous processing with packet lengths or values has considered in [11, 31].

3 Model Description

We consider an n×n shared memory switch with n input and n output ports and a buffer
of sizeB, that is, the total length of all queues is bounded byB. We assume thatB ≥ n.

Essential Traffic Parameters for Shared Memory Switch Performance 5

Each output port manages a single output queue, denoted Qi for port i, 1 ≤ i ≤ n; the
number of packets inQi is denoted by |Qi|. Each packet p(d,w) arriving at an input port
is labeled with the output port number d and its required work w in processing cycles
(1 ≤ d ≤ n and 1 ≤ w ≤ k), where k denotes the global upper bound on required work
per packet. Each Qi implements either (i) priority queueing (PQ) processing order,
where packets are ordered in non-decreasing order of required processing, or (ii) first-
in-first-out (FIFO) processing order, where packets are ordered in the order of arrival. In
what follows, we denote by w | i a packet with required work w intended for output

port i; by h × w | i , a burst of h w | i packets arriving at the same time. We also
denote by rt(p) the remaining required processing of a packet p at time unit t. Time is
slotted; we divide each time slot into two phases (see Fig. 1). During the (1) arrival
phase a burst of new packets arrives at each input port that decides which ones should be
admitted based on the state computed by each output port in the distributed manner. The
arrivals are adversarial and do not assume any specific traffic distribution (more than n
arrivals are allowed at the same time slot). An accepted packet can be later dropped from
the buffer when another packet is accepted instead; in this case we say that a packet p is
pushed out by another packet q, and a policy that allows this is called a push-out policy.
During the (2) transmission phase, required work of the head-of-line packet according
to the supported processing order (PQ or FIFO) at each non-empty queue is reduced by
one, and every packet with zero residual work is transmitted. To facilitate our proofs,
we use some properties of ordered (multi-)sets. These notions, as well as the properties
we recall in this section, will enable us to compare the performance of our proposed
algorithms. In the following, we consider multi-sets of real numbers, where we assume
each multi-set is ordered in non-decreasing order. We will refer to such multi-sets as
ordered sets. For every 1 ≤ i ≤ |A|, we will further refer to element ai ∈ A or to A[i]
as the i-th element in the set A, as induced by the order. Given two ordered sets A and
B, we say A ≥ B, if for every i for which both ai and bi exist, ai ≥ bi. The following
lemma, and its corollary, will be used in our analysis; their proofs can be found in [29]
(Lemma 1 and Corollary 2).

Lemma 1. For any two ordered sets A and B satisfying A ≥ B, and any two real
numbers a, b such that a ≥ b, if (i) b ≤ b|B| or (ii) |A| ≤ |B| then the ordered sets
A′ = A ∪ {a}, B′ = B ∪ {b} satisfy A′ ≥ B′.

Corollary 1. For any two ordered sets A,B satisfying A ≥ B, and any real number b,
if (i) b ≤ b|B| or (ii) |A| ≤ |B| then the ordered set B′ = B ∪ {b} satisfies A ≥ B′.

4 The Quest for an Ideal Policy with Heterogeneous Processing

In this section, we consider several possible candidates for the “ideal” policy that might
provide constant competitiveness in the model presented above. These algorithms either
look like natural candidates or have been proven to be efficient for uniform process-
ing [1,28]. Note that in our model, each algorithm has two versions, with PQ and FIFO
processing order in each output queue. By default, we assume that every queue imple-
ments PQ order. Lower bounds on the competitive ratio represent specific sequences of

6 Eugster, Kesselman, Kogan, Nikolenko, Sirotkin

packets on which the optimal algorithm is much better than the one in question. they
are easier to prove than upper bounds since it suffices to present a hard instance of an
input sequence, but lower bounds can still provide important information regarding the
comparative quality of online algorithms.

Longest-Queue-Drop (LQD): during the arrival of a packet p with output port i,
denote by j∗ = arg maxj{|Qj |+ [i = j]} where [i = j] = 1 if i = j and 0 otherwise
(i.e.,Qj∗ is the longest queue once we virtually add p toQi; we choose one with largest
required processing if there are several); then do the following: (1) if the buffer is not
full, accept p into Qi; (2) if the buffer is full and i 6= j∗, push out last packet from Qj∗

and accept p into Qi; else drop p.
Note that the proposed here version of LQD is not fully oblivious to processing

requirements since it will drop a packet with a maximal processing from the longest
queue in the case of congestion. In case of homogeneous processing, LQD is at least√

2- and at most 2-competitive [1]. For heterogeneous required processing, the situation
is worse. Proofs of all theorems in this section are given in the Appendix.

Theorem 1. For sufficiently large B and k ≥ n(n− 1), LQD is at least (n/2− o(n))-
competitive.

Proof. Over the first burst, there arriveB packets of each of the following kinds: 1 | 1 ,

k | 2 , k | 3 , . . . , k | n . LQD evenly distributes the packets among queues and has
B/n packets in each of its nonempty queues (throughout the proof we assume that B is
large and is divisible by everything we need it to be). OPT accepts (B−n+1)× 1 | 1

and one each in the remaining queues. Every k processing cycles there arrive 1× k | 2 ,

1× k | 3 , . . . , 1× k | n , so OPT always has packets in these queues to work on, but

there are no more 1 | 1 s. OPT spends (B − n + 1) time to process all 1 | 1 s (after
that the arrival iteration is restarted); let us estimate the number of processed packets
by this time. OPT will have processed (B − n + 1) in queue 1 and (B − n + 1)/k in
each one of n − 1 other queues. LQD will have the same (B − n + 1)/k processed
packets in each queue but the first, and in the first queue LQD will have processed
B/n since there are no more packets in first queue. Thus, the overall competitive ratio

is (B−n+1)+(n−1)×B−n+1
k

B
n +(n−1)×B−n+1

k

, and for k = n(n − 1) we get
(B−n+1)+(n−1)×B−n+1

n(n−1)

B
n +(n−1)×B−n+1

n(n−1)

=

(B−n+1)+B−n+1
n

B
n +B−n+1

n

≥ (B−n+1)

2B
n

≈ n/2.

The next two algorithms drop packets with the largest processing requirement in
case of congestion.

Biggest-Packet-Drop (BPD): during the arrival of a packet p with required work w
and output port i, denote by Qj the nonempty queue that contains a packet pmax with
the largest processing requirement wmax; then do the following: (1) if the buffer is not
full, accept p into Qi; (2) if the buffer is full and w < wmax, push out pmax from Qj

and accept p into Qi; (3) if the buffer is full and w > wmax, drop p.
Biggest-Average-Drop (BAD): during the arrival of a packet p with required work

w and output port i, denote by Qj the nonempty queue with largest average processing

Essential Traffic Parameters for Shared Memory Switch Performance 7

Fig. 1: A sample time slot of Longest Queue Drop (LQD), Biggest Packet Drop (BPD), Biggest
Average Drop (BAD), and Largest Work Drop (LWD) policies with maximal processing k = 4,
n = 4 output ports, and a shared buffer of size B = 8. Queues for each output port are shown
horizontally. Shaded packets are dropped during arrival.

requirement w̄max; then do the following: (1) if the buffer is not full, accept p into Qi;
(2) if the buffer is full and w < w̄max, push out packet with maximal work from Qj

and accept p into Qi; (3) if the buffer is full and w > w̄max, drop p.

Theorem 2. BPD and BAD are both at least (n+ 1)/2-competitive.

Proof. The counterexample is as follows: every time slot, there arrive B × 1 | 1 fol-

lowed by B× 2 | 2 , . . . , B× 2 | n (a full set of packets); BPD and BAD both accept

only B× 1 | 1 and keep processing one packet per time slot, i.e., 2 packets per 2 time
slots, while OPT is free to accept the packets evenly and get 2+2/2+ . . .+2/2 packets
per 2 time slots, getting the bound as n+1

2 .

Largest-Work-Drop (LWD): during the arrival of a packet p with output port i and
required processing w, denote by j∗ = arg maxj{Wj + 1i=jw} where 1i=j = 1 if
i = j and 0 otherwise, and Wj is the total required processing of all packets in queue
Qj (i.e., Qj∗ is the queue with the largest total required processing once we virtually
add p to Qi; we choose the one with the largest single packet if there are several queues
with largest work); then do the following: (1) if the buffer is not full, accept p into
Qi; (2) if the buffer is full and w is smaller than the required processing of at least one
packet in Qi, push out the largest packet from Qj∗ and accept p into Qi; else drop p.

Theorem 3. LWD with FIFO processing order is at least (logB/n k)(1 − n/B) + 1-
competitive.

Proof. Consider LWD with n output ports and suppose that n divides B. Let a = B/n.
For every output port i, there arrive 1 × k | i followed by (a − 1) × k/a | i . OPT

discards k | i and accepts all k/a | i . After (a − 1)k/a processing steps, LWD has

a × k/a | i in every queue and has not yet transmitted any packets, while OPT has

transmitted all (a − 1) packets. The next arrival is (a − 1) × k/a2 | i for every i.

Since the processing order is FIFO, after accepting all these packets LWD has k/a | i

as HOL (head of line packet) followed by (a − 1) × k/a2 | i and OPT has only

8 Eugster, Kesselman, Kogan, Nikolenko, Sirotkin

(a − 1) × k/a2 | i in every queue. After (a − 1)k/a2 processing steps, LWD has

a × k/a2 | i in each queue and has not yet transmitted any packets, but OPT has
transmitted all (a − 1) packets. Next we repeat the above arrival sequence for packets
of size k/a3, . . . , k/am, until k/am = 1, i.e., for loga(k) steps. On every step, OPT
transmits (a−1)×n packets and LWD transmits nothing. After all these steps, a× 1 | i
has arrived in every queue, so after a processing cycles both OPT and LWD transmit
B packets and finish with empty buffers. Thus, the total number of packets that LWD
transmits is B, and the total number of packets transmitted by OPT is n(a−1) loga k+

B, getting the ratio n·((a−1) loga k)
B + 1. Recall that we had a = B/n, so the final ratio

is
n·(B/n−1) logB/n k

B + 1 = (logB/n k)(1− n/B) + 1.

5 Scheduling with Heterogeneous Processing

To avoid ambiguity during the arrival phase, a reference time t should be interpreted as
the arrival of a single packet. If several packets arrive at the same time slot, we consider
them independently, in the sequence in which they arrive. A time slot is divided into
time units; arrival of each packet is a separate time unit (so the arrival phase takes up
several time units), while processing and transmission phases both use only a single
time unit (we do not separate them). We introduce the class of semi-greedy algorithms
SG. A semi-greedy algorithm G ∈ SG accepts a packet if G’s buffer is not full; G is
defined by an iteration. An iteration begins during the first time unit ts when G’s buffer
is congested and ends on the first time unit te whenG has transmitted at leastB packets
since ts. To simplify analysis, G drops the content of its buffer at the end of an iteration
at time td, te ≤ td < te + 1, without gain to its throughput; in this section we show an
upper bound, so weakening the algorithm only makes things worse for us.

In what follows we consider an artificially enhanced version of OPT: (1) OPT never
pushes out admitted packets (since OPT is offline, it is clear that this property can be
satisfied); (2) at the end of an iteration, OPT flushes out all packets residing in its buffer
with extra gain to its throughput (in this case, the throughput of OPT is no worse than
any other optimal algorithm); (3) if at time t G transmits out of port i, the first packet
q (in PQ order) is transmitted out of the i-th port of OPT (if q exists) regardless of its
remaining work value rt(q) with extra gain to OPT’s throughput (again, clearly we only
make OPT better). Note that by definition, for a given sequence of inputs all algorithms
in SG with the same processing order accept and transmit the same number of packets
between starting with an empty buffer and the first moment of congestion. With PQ
processing order, moreover, no algorithm can transmit more packets from this sequence
over this time. And, by definition, at the end of an iteration an SG algorithm has an
empty buffer. The difference in the number of packets remaining at the end of an iter-
ation (just before td) is irrelevant since all these packets are dropped at time td. Since
during [ts, td) any semi-greedy algorithm G transmits B plus at most n − 1 packets,
dropping all buffered packets at time td adds at most 1 to the competitiveness of G. The
general idea of our analysis here is similar to [27] but the definition of an iteration and
the analysis of what happens during an iteration and between two consecutive iterations

Essential Traffic Parameters for Shared Memory Switch Performance 9

are completely new. We denote by tb the first time unit after the end of a previous iter-
ation or the time unit of the first arrival in the system. Since a semi-greedy G and OPT
both clean their buffers at time td, it suffices to compare performance of G versus OPT
only during [tb, te]. The class of semi-greedy algorithms is based on a well-structured
accounting infrastructure that significantly simplifies analysis of online buffer manage-
ment policies with various characteristics. The major question that we will soon answer
is: is there a policy with a constant competitiveness in the model where each packet
has both required processing and output port (admission of heterogeneous packets to
the same queue is allowed)? Note that the processing order implemented in each queue
has significant impact on the performance of a scheduling policy. We assume that every
queue implements priority queueing (PQ), where all packets in the same queue are or-
dered in non-decreasing order of required processing. For simplicity, we denote queue
Qi of an algorithm ALG by Ai, where A is the the first letter of the name of the consid-
ered algorithm (e.g,Oi andGi are the i-th queue of OPT and a semi-greedyG). We treat
queues as ordered sets in the sense of Lemma 1 and correspondingly write Ai ≤ Bi for
two queues if for every slot in the queue where both Ai and Bi have packets pA and pB
respectively, w(pA) ≤ w(pB).

The latency latAt (p) of a packet p ∈ Ai at time t is the number of time slots cur-
rently needed to transmit p out of Ai. We define the latency of an already transmitted
packet as −1 and the latency of a packet that has not yet arrived as∞. An i-th port or
queue of ALG’s buffer is called active at time unit t if it transmits during t; otherwise, it
is called idle. To show that OPT does not transmit more packets than a semi-greedy al-
gorithm G during [tb, ts), we formulate the following lemma (proven in the Appendix).
Actually, we prove an even stronger result that will be used in the proof of the key
Lemma 3. Consider an interval of time I , I ⊆ [tb, td). We denote by SA

I the set of
packets transmitted by an algorithm A during I .

Lemma 2. For a semi-greedy algorithmGwith PQ processing and time unit t ∈ [tb, ts)
between two consecutive iterations, (1) SOPT

[tb,t]
≤ SG

[tb,t]
; (2) for any i ∈ [1, n], at time t

Gi ≤ Oi and |Gi| ≥ |Oi|.

Proof. The proof proceeds by induction on the number of time units. Base: During the
first arrival of a packet p toQi at time tb, sinceG is greedy,G accepts p, so the induction
base follows. Hypothesis: Assume that the lemma holds during [tb, t), t ∈ [tb, ts − 1].
Step: We are to show that the lemma holds during t.

Processing and transmission: the induction step holds by induction hypothesis for
all empty queues or queues with head-of-line packet whose remaining processing is at
least one. Consider any active queue Qj in OPT or G, 1 ≤ j ≤ n. If both Oj and Gj

are nonempty just before t, by the induction hypothesis we have Oj [1] ≥ Gj [1]. If Gj

is active at time unit t + 1, then by definition of OPT (property (3)) Oj is also active
(even if there are additional processing cycles in the HOL packet), and the induction
step follows.

A packet p arrives toQi: during the arrival phase, the number of transmitted pack-
ets is unchanged, so condition (1) follows. Since there is no congestion during [tb, ts),
G accepts all arrivals. By the induction hypothesis, at the end of time unit t − 1 we
had Gi ≤ Oi and |Gi| ≥ |Oi|. Thus, if OPT accepts (G accepts since G is greedy and

10 Eugster, Kesselman, Kogan, Nikolenko, Sirotkin

there is no congestion between two consecutive iterations), by Lemma 1(ii) condition
(2) follows at time unit t. If OPT does not accept p to Oi, condition (2) follows by
Corollary 1(ii).

Note that due to property (3) in the definition of OPT, at this point it is unclear if
our version of OPT can transmit more packets than a semi-greedy G during [tb, ts), and
theoretically it can happen, so we have to prove (1) in Lemma 2. Part (2) of Lemma 2
will be used in the proof of Lemma 3.

The Largest Work Drop (LWD) policy belongs to the SG class. The rationale behind
LWD is to minimize the duration of an iteration. It can be done by optimizing a “local”
state of LWD buffer, and that is why we suggest to drop packets from a queue with
the largest total required processing. Our plan is as follows. By Lemma 2, between two
consecutive iterations OPT does not transmit more than LWD. We denote by T the
number of packets transmitted by LWD between two consecutive iterations. Later we
are to show that during [ts, td) LWD transmits B packets no later than OPT transmits
B packets. Since at td OPT contains at most B packets, during [tb, te] OPT transmits
at most T + 2B, whereas LWD transmits T + B packets. For any time interval I ′ =
[ts − 1, t], t ∈ [ts − 1, td), during an iteration we say that B − SLWD

I′ packets with
minimal latency in LWD buffer are colored in red; any other packet in LWD buffer
is colored in white. Note that packets that ceased to be red are immediately recolored
in white again. We denote by Ri the set of all red packets in Li. Lemma 3 contains
the main ideas of this upper bound; due to space constraints, its proof is given in the
Appendix.

Observation 4 If a packet pj ∈ Li is red then every pl ∈ Li is red for l ∈ [1, j − 1].

Lemma 3. For every OPT packet pj ∈ Oi, j ∈ [1, |Oi|] and i ∈ [1, n], at time unit
t ∈ (ts, te) either (1) there is a red packet qj ∈ Li, rt(pj) ≥ rt(qj) (Ri ≤ Oi), or (2)
for any red packet q at LWD buffer, rt(pj) +W (Ri) ≥ latt(q).

Proof. The proof is by induction on time units. Base: Consider time unit ts − 1. By
definition of iteration, at the end of ts − 1 LWD’s buffer is full. Since LWD is semi-
greedy, by Lemma 2 at time ts−1 Li ≤ Oi and, therefore,Ri ≤ Oi for every i ∈ [1, n].
Thus, the induction base follows. Hypothesis: Assume that the lemma holds for every
time unit t′ ∈ [ts−1, t), t < td. We are to show that it holds at the t-th time unit.

Induction step. Processing and Transmission: suppose that the t-th time unit is
devoted to processing all HOL packets and transmitting fully processed packets. In this
case, either every nonempty queue Lj is active (in this case Oj is active too regardless
of how many processing cycles remains in HOL packet of Oj by definition of OPT
(property (3))) or the processing cycles of HOL packets of Li and Oi are decreased by
one. Assume that during t ∈ (ts, te), Oj is active and transmits a packet p; while Li

is idle. In this case by condition (2) LWD’s buffer does not contain any red packet that
means the iteration is already over, hence, t ≥ te, which is a contradiction.

Arrival of a packet p to Qi: Note that if OPT accepts p, its buffer has free space
since by definition OPT never pushes out already accepted packets.

OPT and LWD reject p: The induction hypothesis holds at time t.

Essential Traffic Parameters for Shared Memory Switch Performance 11

OPT accepts p, but LWD rejects: LWD’s buffer is congested. Furthermore, since
p is rejected by LWD, its required processing exceeds that of any packet in Li. Suppose
that p is at the l’s position in Oi after acceptance, l ≤ |Oi|. If ql ∈ Li is red, condition
(1) holds (the required processing of p is at least the required processing of any packet
in Li, including all red packets in Li). If ql ∈ Li is white or l > |Li|, assume that
there is a red packet whose latency is more than rt(p) + W (Ri). If l > |Li|, rt(p) +
W (Ri) = rt(p) + W (Li) that is (by definition of LWD) at least W (Lj) since p is
rejected. Thus, condition (2) holds. If ql ∈ Li is white then rt(ql) +W (Ri) ≥W (Rj),
for any j ∈ [1, n] (by definition of red packet); rt(ql) ≤ rt(p) (otherwise, LWD will
not drop p). Therefore, condition (2) holds, and the induction hypothesis holds too.

OPT and LWD accept p: 1. If rt(p) is less than at least one red packet in Li then
p is recolored in red and the last red packet in Li is recolored in white. Since no new
red packets are added to the queues other than Li, condition (1) holds in these queues.
By Theorem 1(i), condition (1) holds for any red packet in Ri. Next we show that
condition (2) continues to hold for any OPT packet that is not covered by condition (1).
Since the maximal latency among red packets does not increase for any queue except
j, condition (2) holds. Consider a packet ul ∈ Oj corresponding to ql recolored from
red to white; by condition (1) of the induction hypothesis, rt(ul) ≥ rt(ql). Therefore,
rt(ul) +W (Rj) ≥ rt(ql) +W (Rj), and (2) holds.

2. If the value of rt(p) is at least the required processing of any red packet in Li then
if rt(p) +W (Ri) is less than the latency of some red packet in LWD’s buffer, recolor p
in red, but the red packet ql with a maximal latency in LWD’s buffer recolor in white.
Otherwise, p remains white.

If p is white then condition (1) follows by induction hypothesis. Since p is white,
rt(p) +W (Ri) is at least the latency of any red packet in LWD’s buffer (otherwise, p is
recolored in red). If p is recolored in red, condition (2) follows similar to case 1.Since
only Qi is affected, condition (1) is satisfied for any Qm, m 6= i and holds for Qi by
Lemma 1(ii).

OPT rejects, LWD accepts: 1. Consider the case when LWD’s buffer is not con-
gested. (i) If rt(p) is at least the remaining processing of some white packet in Qi, the
set of the red packets is not changed. Also since OPT rejects p the set of OPT’s packets
is not changed also. Hence, conditions (1) and (2) hold. (ii) Otherwise, if rt(p)+W (Ri)
is less than the latency of the red packet q with a maximal latency in LWD’s buffer then
recolor p in red and q in white. Denote by p an OPT packet in the position |Ri| + 1 of
Oi. If |Oi| > |Ri| just before p is arrived, rt(p) +W (Ri) is more than the latency of q.
Hence, rt(p)+W (Ri) > rt(p)+W (Ri) and therefore, rt(p) > rt(p). Thus, condition
(1) holds. Condition (2) holds similar to case 1.2. LWD’s buffer is congested. If a white
packet is pushed out, we can drop it and run the case when the congestion did not occur
as in case 1. If the pushed out packet is red then recolor a new packet p in red and apply
case (ii).

The main result of this section is the following theorem (see proof in Appendix).

Theorem 5. For a shared memory n × n switch with a buffer B, LWD is at most 1 +
B

T+B -competitive, where T is the minimal number of packets transmitted between any
two consecutive iterations.

12 Eugster, Kesselman, Kogan, Nikolenko, Sirotkin

Proof. By Lemma 3, during (ts, te) OPT cannot transmit more packets than LWD. Note
that during te it is possible that OPT transmits L more packets than LWD, 0 ≤ L < N .
By definition of OPT, at the end of an iteration OPT gets all remaining B − L packets
for free, and its buffer is empty. By Lemma 2, between two consecutive iterations OPT
cannot transmit more than LWD. So if OPT transmits T ≥ 0 packets between two
consecutive iterations, P packets during the iteration, the OPT’s throughput is at most
T + P + B − L = T + 2B, whereas LWD transmits T + P − L = T + B. Thus,
LWD is at most 1 + B

T+B -competitive.

6 Scheduling with Heterogeneous Values

In this section, we consider a model with values: each incoming packet has an output
port from 1 to n and an intrinsic value from 1 to V ; in this model all packets have
uniform processing requirements. The objective is to maximize the total transmitted
value. Similar to the model with heterogeneous processing requirements, the work [15]
showed that in the model with values LQD is at least

(
3
√
k − o

(
3
√
k
))

-competitive. In
Section 5, we have shown that LWD with PQ processing is 2-competitive in the model
with heterogeneous processing requirements. Therefore, we begin with LWD’s counter-
part for this model: the Minimal-Total-Value-Drop policy (MTVD) that has packets in
each queue sorted in non-increasing order of values; MTVD tries to process and trans-
mit packets with maximal value first but in case of congestion MTVD drops a packet
with minimal value. Proofs of all results in this section can be found in the Appendix.

Minimal-Total-Value-Drop (MTVD): during the arrival of a packet p with output
port i and value v, (1) if the buffer is not full, accept p into Qi; (2) if the buffer is full
and v exceeds the minimal value of some packet, push out a packet with the smallest
value from the buffer and accept p into Qi; else drop p.

For a single queue, MTVD is optimal by reasoning similar to LWD. Unfortunately,
this does not generalize to the shared memory switch, as the following theorem shows.

Theorem 6. The Minimal-Total-Value-Drop (MTVD) algorithm is at least V n−(n−1)
V -

competitive in the model with values (this is n− o(n) unless V = o(n)).

Proof. In the first burst, there arrive B packets with value V for output port 1 and B
packets with value V − 1 for every other output port 2..n. MTVD accepts B packets to
the first queue, while OPT accepts B/n packets to each queue. In B/n steps, MTVD
will have transmitted total value BV/n, while OPT will have transmitted total value
(V + (V − 1)(n− 1))B/n, and the first burst repeats, getting the bound.

Theorem 6 shows that in the model with values the total value characteristic is
insufficient and additional parameters should be included if an “ideal” online policy
that achieves a constant competitiveness exists. This is why the work [15] introduced
the Maximal-Ratio-Drop policy that considers both buffer occupancy and values as a
potential policy that achieves constant competitiveness.

Maximal-Ratio-Drop (MRD): during the arrival of a packet p with output port i
and value v, denote j∗ = arg maxj{|Qj |/Vj}, where Vj is the total value of packets

Essential Traffic Parameters for Shared Memory Switch Performance 13

in queue j and |Qj | is the queue length; then: (1) if buffer is not full, accept p into Qi;
(2) if buffer is full and v exceeds the minimal value of a packet from queue Qj∗ , push
out a packet from Qj∗ with minimal value and accept p into Qi; else drop p.

Theorem 7. The Maximal-Ratio-Drop (MRD) algorithm is at least V -competitive if
n ≥ B − V 2 + 1.

Proof. In the first burst, there arrive 2(m−1) packets of value 1 destined to output ports
[1,m− 1], 2 packets per port, followed by B packets of value V destined to output port
m, where B > V is the buffer size and m = B − V 2 + 1. OPT accepts only packets
of value V accruing the total value of BV . On the other hand, MRD accepts just V
packets of value V at which point the ratio of the length to the average value becomes
1 and it retains m− 1 packets of value 1 gaining the total value of V 2 +m− 1. Thus,
the competitive ratio of MRD is BV

V 2+m−1 = V .

Unfortunately, the MRD example shows that even both values and buffer occupancy
together are not enough to achieve constant competitiveness. As a result, we are more
pessimistic regarding the existence of a policy in this model with constant competitive-
ness (the open problem posed in SIGACT News [18, p. 22]).

7 Conclusion

Over the recent years, there has been a growing interest in understanding the impact
of buffer architecture on network performance. The needs and (bursty) behavior of
many modern data center applications further add incentive to fill this knowledge gap.
In this work, we study the tradeoffs inevitable on the path to a “perfect” policy in a
shared memory switch, both analytically and with simulations. Recent research advo-
cates smaller buffers in routers, aiming to reduce queueing delay in the presence of
(mostly) TCP traffic; however, it sidesteps the issue that as buffers get smaller, the ef-
fect of processing delay becomes much more pronounced. The majority of currently
deployed admission control policies do not take into account (at least explicitly) the
importance of heterogeneous packet processing. In this work, we study the impact
of heterogeneous processing on throughput in the shared memory switch architecture.
We demonstrate that policies attractive under uniform processing requirements perform
poorly in the worst case, which provides new insights to the practice of admission con-
trol policies. Our main result is a constant upper bound on the competitiveness of the
LWD policy that drops packets from the queues with largest total processing in case
of congestion; this is a significant improvement over [15], as our generalized model
requires different proof methods. In addition, we consider a model with heterogeneous
packet values and provide preliminary results on whether a policy with constant compet-
itiveness can exist. Simulations confirm our analytical findings and in particular demon-
strate the relevance of worst-case analysis results for understanding overall (average)
performance.

References
1. William Aiello, Alexander Kesselman, and Yishay Mansour. Competitive buffer manage-

ment for shared-memory switches. ACM Transactions on Algorithms, 5(1), 2008.

14 Eugster, Kesselman, Kogan, Nikolenko, Sirotkin

2. William Aiello, Yishay Mansour, S. Rajagopolan, and Adi Rosén. Competitive queue poli-
cies for differentiated services. J. Algorithms, 55(2):113–141, 2005.

3. Susanne Albers and Markus Schmidt. On the performance of greedy algorithms in packet
buffering. SIAM Journal on Computing, 35(2):278–304, 2005.

4. Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan Vaidyanathan, Kevin
Chu, Andy Fingerhut, Vinh The Lam, Francis Matus, Rong Pan, Navindra Yadav, and George
Varghese. CONGA: distributed congestion-aware load balancing for datacenters. In ACM
SIGCOMM 2014 Conference, pages 503–514, 2014.

5. Yossi Azar and Arik Litichevskey. Maximizing throughput in multi-queue switches. Algo-
rithmica, 45(1):69–90, 2006.

6. Yossi Azar and Yossi Richter. An improved algorithm for CIOQ switches. ACM Transactions
on algorithms, 2(2):282–295, 2006.

7. BBC News. US Watchdog to Propose New Net Neutrality Rules, 2014. http://www.
bbc.com/news/technology-27141121.

8. Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Analysis. Cambridge
University Press, 1998.

9. Wu chang Feng, Dilip D. Kandlur, Debanjan Saha, and Kang G. Shin. Stochastic fair blue:
A queue management algorithm for enforcing fairness. In INFOCOM, pages 1520–1529,
2001.

10. Mosharaf Chowdhury, Yuan Zhong, and Ion Stoica. Efficient coflow scheduling with varys.
In SIGCOMM, pages 443–454, 2014.

11. Pavel Chuprikov, Sergey I. Nikolenko, Kirill Kogan. Priority Queueing with Multiple Packet
Characteristics. In INFOCOM, pages 1–9, 2015.

12. Paolo Costa, Austin Donnelly, Antony I. T. Rowstron, and Greg O’Shea. Camdoop: Exploit-
ing in-network aggregation for big data applications. In Proc. 9th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 2012), pages 29–42, 2012.

13. Sujal Das and Rochan Sankar. Broadcom smart-buffer technology in data center switches
for cost-effective performance scaling of cloud applications, 2012. https://www.
broadcom.com/collateral/etp/SBT-ETP100.pdf.

14. Matthias Englert and Matthias Westermann. Lower and upper bounds on FIFO buffer man-
agement in QoS switches. Algorithmica, 53(4):523–548, 2009.

15. Patrick Eugster, Kirill Kogan, Sergey Nikolenko, and Alexander Sirotkin. Shared memory
buffer management for heterogeneous packet processing. In ICDCS, 2014.

16. Sally Floyd and Van Jacobson. Random early detection gateways for congestion avoidance.
pages 397–413, 1993.

17. CAIDA The Cooperative Association for Internet Data Analysis. [Online] http://www.
caida.org/.

18. Michael Goldwasser. A survey of buffer management policies for packet switches. SIGACT
News, 41(1):100–128, 2010.

19. Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mohan Nanduri,
and Roger Wattenhofer. Achieving high utilization with software-driven WAN. In ACM
SIGCOMM 2013 Conference, pages 15–26, 2013.

20. Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun Singh,
Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, Jon Zolla, Urs Hölzle, Stephen
Stuart, and Amin Vahdat. B4: experience with a globally-deployed software defined wan. In
ACM SIGCOMM 2013 Conference, pages 3–14, 2013.

21. Isaac Keslassy, Kirill Kogan, Gabriel Scalosub, and Michael Segal. Providing performance
guarantees in multipass network processors. IEEE/ACM Trans. Netw., 20(6):1895–1909,
2012.

Essential Traffic Parameters for Shared Memory Switch Performance 15

22. Alexander Kesselman, Kirill Kogan, and Michael Segal. Packet mode and QoS algorithms
for buffered crossbar switches with FIFO queuing. Distributed Computing, 23(3):163–175,
2010.

23. Alexander Kesselman, Kirill Kogan, and Michael Segal. Improved competitive performance
bounds for CIOQ switches. Algorithmica, 63(1-2):411–424, 2012.

24. Alexander Kesselman, Kirill Kogan, and Michael Segal. Best Effort and Priority Queuing
Policies for Buffered Crossbar Switches. Chicago Journal of Theoretical Computer Science,
2012.

25. Alexander Kesselman, Kirill Kogan. Nonpreemptive Scheduling of Optical Switches. IEEE
Transactions on Communications,55(6): 1212-1219, 2007.

26. Alexander Kesselman, Zvi Lotker, Yishay Mansour, Boaz Patt-Shamir, Baruch Schieber,
and Maxim Sviridenko. Buffer overflow management in QoS switches. SIAM Journal on
Computing, 33(3):563–583, 2004.

27. Alexander Kesselman, Zvi Lotker, Yishay Mansour, Boaz Patt-Shamir, Baruch Schieber,
and Maxim Sviridenko. Buffer overflow management in QoS switches. SIAM J. Comput.,
33(3):563–583, 2004.

28. Alexander Kesselman and Yishay Mansour. Harmonic buffer management policy for shared
memory switches. Theor. Comput. Sci., 324(2-3):161–182, 2004.

29. Kirill Kogan, Alejandro López-Ortiz, Sergey Nikolenko, Gabriel Scalosub, and Michael Se-
gal. Large profits or fast gains: A dilemma in maximizing throughput with applications to
network processors. CoRR, abs/1202.5755, 2013.

30. Kirill Kogan, Alejandro López-Ortiz, Sergey Nikolenko, Alexander Sirotkin. Multi-queued
network processors for packets with heterogeneous processing requirements. In COM-
SNETS, pages 1–10, 2013.

31. Kirill Kogan, Alejandro López-Ortiz, Sergey Nikolenko, Gabriel Scalosub, and Michael Se-
gal. Balancing work and size with bounded buffers. In COMSNETS, pages 1–8, 2014.

32. Kirill Kogan, Alejandro López-Ortiz, Sergey Nikolenko, Alexander Sirotkin, Denis Tu-
garyov. FIFO Queueing Policies for Packets with Heterogeneous Processing. In MedAlg,
pages 248–260, 2012.

33. Kirill Kogan, Alejandro López-Ortiz, Sergey Nikolenko, Alexander Sirotkin. A taxonomy
of Semi-FIFO policies. In IPCCC, pages 295–304, 2012.

34. Kirill Kogan, Sergey Nikolenko, Srinivasan Keshav, Alejandro López-Ortiz. Efficient de-
mand assignment in multi-connected microgrids with a shared central grid. In SustainIT,
pages 1–5, 2013.

35. Yishay Mansour, Boaz Patt-Shamir, and Ofer Lapid. Optimal smoothing schedules for real-
time streams. Distributed Computing, 17(1):77–89, 2004.

36. Sergey I. Nikolenko, Kirill Kogan. Single and Multiple Buffer Processing. Encyclopedia of
Algorithms, Springer 2015.

37. Daniel Dominic Sleator and Robert Endre Tarjan. Amortized efficiency of list update and
paging rules. Communications of the ACM, 28(2):202–208, 1985.

38. Hung-chih Yang, Ali Dasdan, Ruey-Lung Hsiao, and Douglas Stott Parker Jr. Map-reduce-
merge: simplified relational data processing on large clusters. In Proc. ACM SIGMOD Inter-
national Conference on Management of Data, pages 1029–1040, 2007.

39. Yuan Yu, Pradeep Kumar Gunda, and Michael Isard. Distributed aggregation for data-parallel
computing: interfaces and implementations. In SOSP, pages 247–260, 2009.

