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Heterogeneous Packet Processing in Shared Memory
Buffers

Patrick Eugster, Kirill Kogan, Sergey I. Nikolenko, Alexander V. Sirotkin

Abstract—Packet processing increasingly involves heteroge-
neous requirements. We consider the well-known model of a
shared memory switch with bounded-size buffer and generalize it
in two directions. First, we consider unit-sized packets labeled with
an output port and a processing requirement (i.e., packets with
heterogeneous processing), maximizing the number of transmitted
packets. We analyze the performance of buffer management
policies under various characteristics via competitive analysis
that provides uniform guarantees across traffic patterns [10]. We
propose the Longest-Work-Drop policy and show that it is at most
2-competitive and at least

√
2-competitive. Second, we consider

another generalization, posed as an open problem in [19], where
each unit-sized packet is labeled with an output port and intrinsic
value, and the goal is to maximize the total value of transmitted
packets. We show first results in this direction and define a
scheduling policy that, as we conjecture, may achieve constant
competitive ratio. We also present a comprehensive simulation
study that validates our results.

I. INTRODUCTION

The modern network edge is required to perform tasks
with heterogeneous complexity, including, to list just a few,
advanced VPN services, deep packet inspection, firewalling,
and intrusion detection. This trend is further exacerbated by
the advent of new network management models like Software-
Defined Networking, which create new opportunities for ad-
vanced services. Each of these services may require to consider
various characteristics (e.g., amount of processing or packet
values) to achieve efficient implementation at the network
processor and may present new challenges for traditional archi-
tectures, resulting in performance and implementation issues.
Hence, the way how packets are processed may significantly
affect throughput. For example, increasing per-packet process-
ing requirements for some flows can increase congestion even
for traffic with relatively modest burstiness characteristics.

This work is an extended version of [16]. This version contains rewritten and
extended Sections I, II, and V, new Figure 4, Tables I and II, new examples
that illustrate the proposed algorithms.
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A. Shared Memory Switch

The main functionalities of a network element include re-
ceiving packets on ingress ports, applying specific policies to
them, identifying their destination ports, and sending them out
through egress ports. When application-induced traffic bursts
create an imbalance between incoming and outgoing packet
rates to a given port, packets must be queued in the switch
packet buffer. The available queue size on a port determines the
port’s ability to hold the packet until the egress port can emit it.
When buffer queue entries are exhausted, packets are dropped,
resulting in poor performance. The allocation and availability
of the switch’s buffer resources to its ports — determined not
only by the buffer’s size but also by the buffering architecture
of the network element.

Overprovisioning in terms of buffer capacity at each network
node to absorb bursty behavior is not viable, as networks
do not have unlimited resources; quite conversely, cloud data
centers can only scale out as fast as the effective per-port cost
and power consumption. These factors, in turn, are driven by
the chosen buffering architecture. The shared memory switch
allows to absorb traffic bursts in the best way since the whole
buffer can be utilized by a same output port if needed. Being
an actual choice in practice [14] we focus our efforts in this
paper on this type of buffer architecture.

The paradigm of shared memory switch in general is very
flexible since it can support both complete sharing, where the
same buffer serves all output ports, and complete partition,
where each output port gets a de facto dedicated buffer. Com-
plete sharing utilizes the entire buffer space but can hamper
fairness: a single output port may monopolize shared memory
and drop packets dedicated to other output ports. On the other
hand, complete partitioning ensures fairness but may lead to
significantly underutilized buffer space, losing more packets in
case of congestion. But how to get the best of both worlds?

B. Throughput Optimization

There are two major tasks performed by network elements:
(1) changing the properties of single packets (e.g., recolor-
ing, encapsulation) and (2) changing the properties of packet
streams (rate-limiting, shaping); the latter may require buffers.
Devising a buffering architecture and its management is a fun-
damental problem in network switch design. To accommodate
for network size, number of transport requests, and efficient
reuse of network infrastructure, the Internet currently imple-
ments “best-effort” servicing that during congestion prioritizes
some types of traffic over others to optimize desired objectives.
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Efficient methods for buffer management beyond fairness ob-
jective functions lead to new challenges in performance and
implementation for traditional switch architectures. Inherited
from the Internet, fairness is in fact a design choice which can
conflict with other objectives in various economic models (e.g.,
utilization of network infrastructure, or profit [8], [21], [22]).
Furthermore, utilization of network infrastructure and profit can
be formulated as a weighted throughput optimization.

C. Admission Control - beyond Buffer Occupancy

The modern network edge is required to perform tasks
with heterogeneous complexity, including features such as
advanced VPN services, deep packet inspection, firewalling,
and intrusion detection (to list just a few). This trend is further
exacerbated by the advent of new paradigms like Software-
Defined Networking [35], Fog Computing [9] which create new
opportunities for advanced services.

Implementing such services, which give rise to different
traffic types, requires considering various parameters of packets
(different amounts of processing or intrinsic values) to achieve
efficient implementation at the network processor. This leads
to new challenges in performance and implementation for
traditional architectures.

Most admission control policies are based on a simple char-
acteristic as buffer occupancy, whereas traffic has additional
important characteristics such as processing requirements and
values that are not explicitly taken into account.

Because of the store-and-forward nature of packet processing
— in contrast to OS scheduling — packets are processed in
a “run-for-completion” manner where no two different cores
can access the same packet during its processing to avoid
expensive rescheduling [11], [13]1. In this setting, an efficient
input buffer architecture and management become crucial. The
best way to accommodate traffic burstiness is to adopt a single
queue architecture, where the whole buffer is shared among
all types of traffic and every core is able to process any type
of traffic (see the top of Fig 1). In this architecture an online
greedy policy that implements priority queuing (PQ), where
packets are ordered in non-decreasing order of their processing
requirement and can be pushed out upon arrival of new packets,
has optimal throughput [23].

However this simple approach has important drawbacks.
First, PQ order is required: with a simpler to implement FIFO
processing order the competitive ratio degrades to Ω(log k)
with respect to the optimal clairvoyant algorithm [31], where
k is the maximal possible processing per packet. Second, it
can cause starvation of packets with higher processing require-
ments, which implicitly leads to setting priorities among traffic
types and thus services so that they are rigged to the inverse of
the processing requirements. Second, handling several traffic
types on individual cores leads to increased complexity of the

1The admission control and processing are two separate logical entities in
network processor architectures (e.g., [11], [13]), where only during processing
multiple threads can access a shared memory in parallel. Since processing in
these network processors is implemented in run-for-completion manner there
is no real contention during processing. From the other side the admission
control in these architectures are implemented as a centralized unit with a
desired value of speedup.
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Fig. 1: Two different buffer management models. Left: each
core can process any traffic type, IPsec, SSL, or firewall (FW);
right: each core processes a specific traffic type from its own
queue, but all queues share the same buffer.

programs loaded onto these cores, as these must implement
several services in a combined manner.

We thus consider a shared memory switch where the buffer is
shared among all types of traffic but in contrast to the previous
single queue model each core processes only one type of traffic.
The single queue buffer architecture is in fact a special case of
a shared memory switch (see the bottom of Fig 1). Since all
arriving packets with the same output port label have the same
traffic type, the implementation of advanced processing order
is not required (regular FIFO suffices). Furthermore, there is
no starvation of any specific type of traffic.

D. Our Contributions

To study performance, we employ competitive analysis [10],
[40]. An algorithm ALG is said to be α-competitive for some
α ≥ 1 if for any arrival sequence, the number of packets
transmitted by ALG is at least 1/α times the number of packets
transmitted by an optimal offline clairvoyant algorithm OPT.

In this paper we consider the crucial problem of throughput
maximization. We generalize the previous shared memory
switch model with uniform values and required processing [2]
and consider two different packet characteristics that define
a traffic type together with output port labels: (1) required
processing per packet and (2) packet value. Our main con-
tribution is to identify properties of an “ideal” online policy
that maximizes throughput and achieve a constant competitive
ratio [10]. We argue that required processing and packet values
have different natures. In particular, we show that to achieve a
constant competitive ratio in the case of required processing,
it is enough to consider the total work per queue but the nor-
malized work per queue cannot be used to achieve a constant
competitiveness. In the value case however (where throughput
is measured by total transmitted value) the total value per queue
constitutes a poor choice but normalized value can potentially
achieve constant competitiveness. Most considered algorithms
are greedy (accept all arrivals if there is enough buffer space)
and hence allow for simple implementations.

In the first part of this work (1) we consider heteroge-
neous processing requirements, as opposed to shared memory
switches with a single processing cycle per packet [2], [28].
In Section III, we consider a shared memory architecture
where an arriving packet has an output port label and amount
of required processing in cycles, with the constraint that
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packets accepted to a same queue have the same processing
requirements (two different queues still can accept packets with
the same required processing, see Fig. 2). Our main result
is to exhibit a novel Longest-Work-Drop (LWD) policy that
is at most 2-competitive. When processing requirements are
uniform, LWD emulates the well-known Longest-Queue-Drop
(LQD) policy [2]. As a result, LWD is at least

√
2-competitive.

In the special case when all queues accept packets with
different processing requirements LWD is at least

(
4
3 − 6

B

)
-

competitive for k ≥ 6, where B is the buffer size. We also
demonstrate a number of lower bounds for several policies
that have good performance characteristics for homogeneous
processing requirements. Namely, we show that:
(1) LQD is at least (

√
k− o(

√
k))-competitive, where k is the

maximum processing required for packets;
(2) the Harmonic policy [28], which is at most O (log n)-

competitive in the model with a single processing
cycle per packet and n output ports, is at least(

1
2

√
k ln k − o(

√
k ln k)

)
-competitive in our model;

(3) the Biggest-Packet-Drop (BPD) policy that attempts to
keep packets with lowest processing requirements is at least
(ln k + γ)-competitive for γ = 0.5772 . . ..

In the second part (2) we consider a different yet re-
lated model of shared memory switch, where each unit-sized
packet is labeled with an output port and an intrinsic value
(Section IV). The objective is to optimize the total value
of transmitted packets. The existence of a scheduling policy
achieving a constant competitive ratio here was presented as an
open question in SIGACT News [19, p. 22]. To the best of our
knowledge, we provide the first results addressing this problem
as follows. First we show that the above-mentioned LQD pol-
icy is at least

(
3
√
k − o

(
3
√
k
))

-competitive. Furthermore, we
define a Minimal-Value-Drop (MVD) policy (that equivalent
to BPD) that in the case of congestion drops a packet with
minimal value. We show that MVD is at least m−1

2 -competitive
for m = min{k,B}, where k is the maximal packet value
and B is the buffer size. As a result, an ideal policy should
address a fundamental tradeoff between a number of “active”
ports (like LQD) and maximization of total admitted value
(like MVD) to achieve a constant competitiveness (similar to
LWD in the first model considered in this paper). We thus
define a Maximal-Ratio-Drop (MRD) policy that pushes out
a packet from a queue with maximal ratio |Qj |aj

, where aj is
the average value in the j-th output queue Qj and |Qj | is the
size of Qj . The competitiveness of MRD is at least

√
2. We

also conduct a comprehensive simulation study validating our
theoretical results in Section V.

II. RELATED WORK

Our current work can also be viewed as part of a larger
research effort concentrated on studying competitive algorithms
for buffer management of bounded buffers. Initiated in [27],
[33], this line of research has received tremendous attention
over the past decade. Various models have been proposed and
studied, including QoS-oriented models where packets have
individual weights [3], [15], [27], [33] and models where
packets have dependencies [24], [34]. A related field that has

recently attracted much attention focuses on various switch
architectures and aims to design competitive algorithms for
multi-queued scenarios therein (cf. [4], [6], [7], [25], [26]).
However, these models do not cover the case of packets with
heterogeneous processing requirements.

Pruhs [39] provides a comprehensive overview of competi-
tive online scheduling for server systems. Note that scheduling
for server systems usually concentrates on average response
time, while we focus mostly on throughput. Furthermore,
scheduling of server systems does not allow jobs to be dropped,
which is an inherent aspect of our model due to size limitations
on buffers.

The efforts most closely related to the present work are
those of Aiello et al. [2] and of Kesselman and Mansour [28].
Aiello et al. [2] propose a non-push-out buffer management
policy called Harmonic that is at most O(log n)-competitive
and establish a lower bound of Ω( logn

log logn ) on the performance
of any online non-push-out deterministic policy, where n is
the number of output ports. Kesselman and Mansour [28]
demonstrate that the LQD policy is at most 2- and at least√

2-competitive. Both these works consider packets with an
invariably single required processing cycle and the proposed
algorithms have no good competitiveness results in the models
with heterogeneous processing requirements and packet values.

Another line of closely related research considers packets
with heterogeneous processing requirements. In particular, the
works [5], [23], [29], [31] discuss the impact of processing
order and admission control policies for a single queue ar-
chitecture, where packets have heterogeneous processing re-
quirements with uniform values. Kogan et al. [32] studied the
model for packets with heterogeneous length and processing re-
quirements. Recently, Chuprikov et al. [12] considered packets
with both heterogeneous processing and heterogeneous values,
proving a general lower bound on any online algorithm in this
setting. Kogan et al. [30] evaluate various buffer management
policies for multiple separated queues in various settings. A
survey by Nikolenko et al. [36] provides a good overview of
this field.

III. PACKET SCHEDULING WITH HETEROGENEOUS

PROCESSING REQUIREMENTS

A. Model Description

We consider an l × n shared memory switch with a buffer
of size B; l and n represent the number of input and output
ports, respectively. We assume that B ≥ n. Each ith output port
manages a single output queue Qi, 1 ≤ i ≤ n; the number of
packets in Qi is denoted by |Qi|. Each Qi implements first-in-
first-out (FIFO) processing order. Each packet p(d,w) arriving
at an input port is labeled with the output port number d and
its required work w in processing cycles (1 ≤ d ≤ n and
1 ≤ w ≤ k), where k denotes the global upper bound on
required work per packet. In what follows, we denote by w a
packet with required work w; by h× w , a burst of h packets
with required work w each.

Time is slotted; we divide each time slot into two phases
(see Fig. 2): During the (1) arrival phase a burst of new
packets arrives at each input port, and the (buffer management)
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Fig. 2: A sample time slot of Non-Push-Out-Harmonic-Dynamic-Threshold (NHDT), Longest-Queue-Drop (LQD), Biggest-
Packet-Drop (BPD), and Longest-Work-Drop (LWD) policies with maximal processing k = 3, 4 output ports (there are two
different ports with the same processing requirement 2, denoted by rectangular and rhomboidal packets respectively), and a
shared buffer of size B = 8.

Algorithm Lower bound Upper bound

Homogeneous processing

General 4
3 -

General non-push-out Ω( logn
log logn ) -

NHDT - O(log n)
LQD

√
2 2

TABLE I: Results summary: lower and upper bounds for
homegeneous processing requirements; n is a number of output
ports.

policy decides which ones should be admitted; we assume
that during the arrival phase input ports are served in a fixed
order from input port 1 to input port l with no restriction
on the burst size (at the same time slot more than l arrivals
are allowed); the arrivals are adversarial and do not assume
any specific traffic distribution except a single constraint: all
packets arriving with output port label i have the same required
processing wi, 1 ≤ wi ≤ k. Note that two different output
queues Qi and Qj , 1 ≤ i, j ≤ n can still accept packets
with the same processing requirement, wi = wj . Without loss
of generality, we assume that queues are sorted in the order
of their processing requirement: if i < j then wi ≤ wj .
An accepted packet can be later dropped from the buffer
when another packet is accepted instead; in this case we say
that a packet p is pushed out by another packet q, and a
policy that allows this is called a push-out policy. During
the (2) transmission phase, required work of the head-of-line
packet in FIFO order at each non-empty queue is reduced by
one, and every packet with zero residual work is transmitted.

B. Choosing the Right Properties for Buffer Management

Next we attempt to explore properties of a “perfect” policy
that provides constant competitiveness — if it exists — in the
generalized model with heterogeneous processing requirements
and for any switch configuration, that is, any assignment of

specific processing requirements to cores. We consider, in turn,
several algorithms that are either simple, look like natural
candidates, or have been proven to be efficient for the case
of uniform processing [2], [28] (see Table I).

For each algorithm, we show a fast growing lower bound
that indicates that this algorithm does not really extend compet-
itively to our generalized model with heterogeneous processing.
Rather than choosing respective corner-case configurations for
each considered policy, i.e., assigning required processing
values to output ports in a specific maximally adversarial
way for every policy, we show all lower bounds in the same
configuration of the model above: the case when there are
exactly k output ports, and queue Qi contains packets with
required processing i. We call this the contiguous case since
required processing in different queues is ordered in a contigu-
ous sequence from 1 to k. Even in the contiguous case, we
show that established policies do not rise up to the challenges
of heterogeneous processing, showing large lower bounds for
each of them.

Thus, a good policy has to account for the processing
requirements explicitly; still, it remains to learn how to account
for it. We first consider the BPD policy that drops packets with
largest required processing in case of congestion, but also show
a fast growing lower bound for BPD. Then we proceed to the
LWD policy for which we prove (in the general case, not only
the contiguous case) a constant upper bound, the main result
of this paper.

1) Non-Push-Out Policies: In the case of a single queue,
non-push-out greedy policies perform poorly (they are k-
competitive) on packets with heterogeneous processing re-
gardless of processing order [23], [31]. In our model, we
begin with two simple cases of greedy non-push-out buffer
management policies with static thresholds. The first policy
sets static thresholds on each queue inversely proportional to
required processing, while the second simply uses identical
thresholds for all queues. Interestingly, the second policy has
a better competitive ratio. We denote Z =

∑n
i=1

1
ri

(sum of
inverse values of required processing for each port); also, in
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what follows we omit b·c and d·e for clarity, assuming that B
divides all we need it to divide.

Non-Push-Out-Harmonic-Static-Threshold (NHST): dur-
ing the arrival of a packet p with output port i, if |Qi| < B

riZ
,

accept p into Qi; else drop p.

Theorem 1. NHST is (kZ + o(kZ))-competitive.

Proof. For the lower bound, consider a burst of B × k .
NHST will only accept B

kZ of them, while OPT is free to
accept all. After all packets are processed, the process repeats,
getting the kZ lower bound. The matching upper bound in this
case follows since all queues are isolated and process packets
separately, so worst case analysis is reduced to a single queue
architecture.

Non-Push-Out-Equal-Static-Threshold (NEST): during
the arrival of a p with output port i, if |Qi| < B/n packets
then accept p into Qi, else drop p.

Theorem 2. NEST is (n+ o(n))-competitive.

Proof. Each queue is simply a separate homogeneous (and
hence optimal) queue with buffer size B

n .

Next we consider the Non-Push-Out-Harmonic-Dynamic-
Threshold (NHDT) policy, previously considered in [28]. In the
NHDT policy, thresholds for queues are dynamic and depend
on the number of packets in the queues. The idea is that for
each 1 ≤ m ≤ k, m queues with most packets in them
should contain at most B

Hk

(
1 + 1

2 + . . .+ 1
m

)
packets, where

Hk = 1 + 1
2 + . . .+ 1

k is the k-th harmonic number.
Non-Push-Out-Harmonic-Dynamic-Threshold (NHDT):

during the arrival of a packet p with output port i, denote by
j1, j2, . . ., jm = i the queues for which |Qjs | ≥ |Qi|; if

m∑

s=1

|Qjs | <
B

Hk

(
1 +

1
2

+ . . .+
1
m

)

then accept p into Qi, else drop p.
The NHDT policy is illustrated with an example on Fig. 2; it

is the first policy on the left. Initial buffer state is shown on the
left: |Q3| = 0, |Q♦

2 | = 1, |Q�
2 | = 3 and |Q1| = 1 for B = 8

and k = 3, so there are two free slots in the buffer. Here we
have Hk = 1 + 1

2 + 1
3 = 11

6 , and B
Hk

= 36
11 . There arrive four

packets, 2
♦

, 3 , 1 , and 2 (arriving in this order). When

2
♦

arrives, it is accepted because the dynamic threshold for
two longest queues is (1 + 1

2 ) 36
11 = 57

11 > 5. When 3 arrives,
it is accepted to the empty queue. The reasoning for 1 is

the same as 2
♦

. When 2 arrives, it is dropped because the
dynamic threshold for one longest queue is 36

11 < 4. Thus,
after all arrivals we have |Q3| = 1, |Q♦

2 | = 1, |Q2| = 3, and
|Q1| = 2, and processing transmits one 1 and reduces the
processing of the other three head-of-line packets by one.

For packets with homogeneous processing, NHDT was
shown to be at most O(log n)-competitive for n output
ports [28] (in our model, there are k output ports). It turns
out that for heterogeneous processing requirements, NHDT is
still lacking: although we have not been able to prove a linear

bound similar to Theorem 1 for NHST, the following lower
bound still grows too fast.

Theorem 3. If B is asymptotically greater than k, the NHDT
policy is at least

(
1
2

√
k ln k − o(

√
k ln k)

)
-competitive in the

sequential case.

Proof. We denote A = B
ln k . To show the lower bound, consider

an input burst consisting of B(m+ 1) packets with processing
requirements k, k − 1, . . ., k −m, and finally 1; here m is a
number from 1 to k − 1 that will be chosen below.

The packets arrive in reverse order: first B × k , then B ×
k − 1 , and so on. As a result, NHDT accepts A× k , A

2 ×
k − 1 , . . ., A

k−m+1 × 1 . OPT, on the other hand, accepts
only one packet for each of the queues from k to (k−m) and
fills the rest of its buffer with 1 s, accepting (B−k+m)× 1 .
Then every ith time slot, another i arrives for k−m ≤ i ≤ k,
so OPT’s queues are always busy.

In A
k−m+1 rounds of processing, NHDT transmits all of its

1 s and then proceeds to process only higher queues. In B −
k+m− A

k−m+1 more rounds, OPT also runs out of 1 s. By this
time (B−k+m time slots in total), OPT has processed (B−k+
m)(1+Hk−Hm) packets, while NHDT has processed (B−k+
m)(Hk−Hm)+A/(k−m+1) packets; then another large burst
arrives, and the process is repeated, getting the competitive ratio

1 +Hk −Hm

Hk −Hm + A
(B−k+m)(k−m+1)

≈ ln k − lnm+ 1
ln k − lnm+ 1

(k−m) ln k

(discarding asymptotically smaller terms and assuming that
asymptotically B is greater than k).

It now remains to optimize this ratio by choosing suitable m;

setting m = k −
√

k
ln k , since − ln

(
1−

√
1

k ln k

)
≈
√

1
k ln k ,

we get the ratio of

− ln
(

1−
√

1
k ln k

)
+ 1

− ln
(

1−
√

1
k ln k

)
+
√

1
k ln k

≈ 1
2

√
k ln k − o(

√
k ln k).

At this point, it is unclear how to generalize NHDT to
heterogeneous processing better; this remains an interesting
problem for future research.

2) Push-Out Policies: We now proceed to push-out poli-
cies, starting with the well-known Longest-Queue-Drop that
overlooks required processing and only considers queue sizes.

Longest-Queue-Drop (LQD): during the arrival of a packet
p with output port i, denote by j∗ = arg maxj{|Qj |+[i = j]}
where [i = j] = 1 if i = j and 0 otherwise (i.e., Qj∗ is the
longest queue once we virtually add p to Qi; we choose one
with largest required processing if there are several); then do
the following:

(1) if the buffer is not full, accept p into Qi;
(2) if the buffer is full and i 6= j∗, push out last packet from

Qj∗ and accept p into Qi; else drop p.

LQD is illustrated on Fig. 2; it is the second policy on the
left. The initial buffer state is, again, |Q3| = 0, |Q♦

2 | = 1,
|Q�

2 | = 3 and |Q1| = 1 for B = 8 and k = 3, There arrive four
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packets, 2
♦

, 3 , 1 , and 2 (arriving in this order). When

2
♦

and 3 arrive, they are accepted since the buffer is not full
yet. When 2 arrives, it is dropped because the buffer is full,
and Q2 is already the longest queue. When 1 arrives, it would
make Q1 as long as Q2, so considering that it has a smaller
processing requirement, it is accepted, and 2 is dropped from
the buffer; thus, at this point we have |Q3| = 1, |Q2| = 2, and
|Q1| = 3. When 2 arrives, it would make Q2 as long as Q1,
so it is dropped since it has a larger processing requirement.
Therefore, after arrival we have |Q3| = 1, |Q♦

2 | = |Q�
2 | = 2,

|Q1| = 3, and processing transmits one 1 and reduces the
processing of the other three head-of-line packets by one.

In case of homogeneous processing, LQD is at least
√

2-
and at most 2-competitive [2]. For heterogeneous required
processing, the situation is worse.

Theorem 4. For sufficiently large B, LQD is at least (
√
k −

o(
√
k))-competitive in the sequential case.

Proof. We introduce a parameter m to be defined later. Over
the first burst, there arrive B packets of each of the following
kinds:

1 , k , k − 1 , . . . , k −m+ 1 .

LQD evenly distributes the packets among queues and has
B/m packets in each of its nonempty queues (throughout the
proof we assume that B is large and is divisible by everything
we need it to be). OPT accepts (B − m + 1) × 1 and one
each in the remaining queues. Packets with required processing
from k−m+ 1 to k keep coming so OPT always has packets
in these queues to work on, but there are no more 1 s. Thus,
after B/m time slots LQD runs out of 1 ’s; by this time,
both LQD and OPT have processed B

m + B
mβk,m packets,

where βk,m = 1
k + 1

k−1 + . . . + 1
k−m+1 , and OPT still has(

Bm−1
m −m

)
× 1 in the first queue. Therefore, over the next

Bm−1
m steps LQD processes Bm−1

m βk,m packets while OPT
processes Bm−1

m (1 + βk,m)−m packets. The total ratio is

B
m + B

mβk,m +Bm−1
m (1 + βk,m)−m

B
m + B

mβk,m +Bm−1
m βk,m

=

1 +
m−1
m − m

B
1
m +

(
1− m

B

)
βk,m

−O(1/Bm).

To optimize the bound with respect to m, we choose m = kα,
approximate the bound for large B as 1+ kα−1

1+kαβk,m
, and recall

that

βk,m =
1
k

+ . . .+
1

k −m+ 1
= ln

k

k −m + o(
1
m

) =

ln
k

k − kα + o(k−α).

For α < 1 and large k,

ln
k

k − kα = − ln(1− kα−1) = kα−1 + o(kα−1),

which yields the bound as

1 +
kα

1 + kαkα−1
+ o(k−α) = 1 +

kα

1 + k2α−1
+ o(k−α),

and this fraction reaches its maximum of
√
k−o(

√
k) for α =

1/2.

Next we propose a policy that aims to minimize total
required processing in case of congestion by pushing out
packets with maximal processing requirements.

Biggest-Packet-Drop (BPD): during the arrival of a packet
p with output port i, denote by Qj the nonempty queue with
largest processing requirement; then do the following:
(1) if the buffer is not full, accept p into Qi;
(2) if the buffer is full and i ≤ j, push out last packet from

Qj and accept p into Qi;
(3) if the buffer is full and i > j, drop p.

Figure 2 shows a sample time slot of the BPD policy; it is
the second policy on the right. The initial buffer state is now
|Q3| = 1, |Q♦

2 | = 2, |Q�
2 | = 2, and |Q1| = 1 for B = 8

and k = 3, There arrive four packets, 2
♦

, 3 , 1 , and 2

(arriving in this order). When 2
♦

and 3 arrive, they are
accepted since the buffer is not full yet. When 1 arrives, it
pushes out 3 as the biggest packet, and we have |Q3| = 1,
|Q1| = 3. When 2 arrives, it pushes out another 3 , so there
are none of them left. Therefore, after arrival we have |Q3| = 0,
|Q♦

2 | = |Q�
2 | = 3, and |Q1| = 1, and processing transmits one

1 and reduces the processing of two packets with required
processing 2 by one.

Theorem 5. For B ≥ k(k+1)
2 , BPD is at least (ln k + γ)-

competitive in the sequential case, where γ = 0.5772 . . . is the
Euler–Mascheroni constant.

Proof. The counterexample is the following: every time slot,
there arrive B× 1 , B× 2 , . . . , B× k (a full set of packets);
BPD accepts only B× 1 and keeps processing only 1 packet
per time slot, i.e., k! packets per k! time slots, while OPT is
free to accept the packets evenly and get k!+k!/2+ . . .+k!/k
packets per k! time slots, getting the bound as

1 +
1
2

+
1
3

+ . . .+
1
k

= Hk ≥ ln k + γ.

As an improvement over LQD, we propose a policy that
pushes packets out of the queue with most required work; we
denote the total work in queue Qi (sum of remaining work for
packets in Qi) by Wi.

Longest-Work-Drop (LWD): during the arrival of a packet
p with output port i, let j∗ = arg maxj{Wj + [i = j]ri} (i.e.,
Wj∗ is maximal once we virtually add p to Qi; we choose
maximal among those queues if there are several); then do the
following:
(1) if the buffer is not full, accept p into Qi;
(2) if the buffer is full and i 6= j∗, push out last packet from

Qj∗ and accept p into Qi; else drop p.
LWD is the rightmost policy illustrated on Fig. 2. The initial

buffer state is now |Q3| = 1, |Q♦
2 | = 1, |Q�

2 | = 2, and |Q1| =
2 for B = 8 and k = 3, There arrive four packets, 2

♦
, 3 , 1 ,

and 2 (arriving in this order). When 2
♦

and 3 arrive, they
are accepted since the buffer is not full yet. When 1 arrives,
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it is accepted and 3 is dropped because W3 = 6 is the largest
work (we could have pushed out 2 instead, the queues are
identical). When 2 arrives, it is dropped because with is, we
would have W2 = 6 to be the largest work. Therefore, after
arrival we have |Q3| = 1, |Q♦

2 | = 1, and |Q2| = |Q1| = 3,
and processing transmits one 1 and reduces the processing of
three other head-of-line packets by one.

Theorem 6. If k ≥ 6, LWD is at least
(

4
3 − 6

B

)
-competitive

in the sequential case.

Proof. Over the first burst, there arrive B× 1 , B4 × 2 , B6 ×
3 , and B

12 × 6 ; LWD accepts B
2 × 1 and all the other

packets, while OPT accepts one of each larger packets and,
correspondingly, (B − 3) × 1 . Then packets with required
processing 2, 3, and 6 keep arriving as needed to keep OPT’s
queues busy. Thus, over the first B

2 time slots both OPT and
LWD process B

2

(
1 + 1

2 + 1
3 + 1

6

)
= B packets, but LWD has

now run out of 1 packets while OPT still has B
2 − 3 more,

so over the next B
2 − 3 time slots OPT processes B

2 − 3 +⌊
B/2−3

2

⌋
+
⌊
B/2−3

3

⌋
+
⌊
B/2−3

6

⌋
≥ B−9 packets while LWD

can only process
⌊
B/2−3

2

⌋
+
⌊
B/2−3

3

⌋
+
⌊
B/2−3

6

⌋
≤ B

2 packets.
After that, the first burst arrives again, and the sequence repeats
itself, getting the bound as B+B−9

B+B/2 = 4
3 − 6

B .

Since LWD is equivalent to LQD when packets in all queues
have the same processing requirement, LWD is at least

√
2-

competitive in this setting [2]. Note that our lower bound for
LWD in the contiguous case is less than the

√
2 lower bound of

LQD in the model with uniform processing requirements. LWD
optimizes a “local” state by dropping packets from queues
with maximal latency. On the other hand, OPT can leave
these packets and keep these ports active when OPT knows
that there will be no later arrivals to high-latency queues,
whereas the corresponding ports of LWD will be idle; a similar
phenomenon explains the non-optimality of LQD in the model
with uniform processing. But in the contiguous case of the
generalized model it is significantly harder for OPT to win
much in this way since LWD will drop less packets from
queues with the highest latencies (proportional to the required
processing).

C. Upper Bound on the Competitiveness of LWD

Judging from the lower bounds presented in the previous
section, LWD is the most promising policy among all we have
considered. We now present the main result of this work:
a constant upper bound on its competitive ratio. Note that
although this bound is equal to the upper bound on LQD in
the homogeneous processing model [2], the mapping routine
is actually very different.

Theorem 7. LWD is at most 2-competitive.

Proof. The latency latALGt (p) of a packet p in a buffer is the
number of time slots needed before p is transmitted (assuming
it will not be pushed out). We define the latency of an already
transmitted packet as −1 and the latency of a packet that has
not yet arrived as∞. A port of ALG’s buffer is called active at

time slot t if it transmits during t; otherwise, it is called idle.
Since OPT is an offline optimal algorithm, we can assume
that it never pushes out packets. To prove that LWD is 2-
competitive, we will map each packet transmitted by OPT to
a packet transmitted by LWD in such a way that at most two
OPT packets correspond to each LWD packet. A packet p in
OPT buffer mapped to an already transmitted LWD packet is
called ineligible for mapping; otherwise p is called eligible.

To avoid ambiguity during the arrival phase, a reference
time t should be interpreted as the arrival of a single packet.
If several packets arrive at the same time slot, we consider
them independently, in the sequence in which they arrive. If
several output ports are active during the same transmission
phase, t should be interpreted as processing and (if needed)
transmission by a single output port in the following order: first,
output ports with non-empty queues in LWD buffer, from 1 to
n; then, remaining output ports with non-empty queues in OPT
buffer, from 1 to n. A well-defined processing order of output
ports during the transmission phase is necessary to process
eligible OPT packets when mapping changes. The mapping
routine is shown on Fig. 3, and Fig. 4 contains illustrative
examples for each of the steps.

Lemma 8. Let p be an eligible packet at position i (not count-
ing ineligible packets) of QOPT

j at time t. If QLWD
j contains a

packet q at the same position at time t, p is mapped to q by
step A0, and latOPT

t (p) ≥ latLWD
t (q). Otherwise, p is mapped

to an LWD packet q′ by step A1, and latOPT
t (p) ≥ latLWD

t (q′).
Moreover, at most one OPT packet is mapped to an LWD packet
by each of the steps A0 and A1, and all OPT packets are
mapped.

Proof. We prove the lemma by induction on the number of
mapping changes. Since all ports process packets at the same
rate (one processing cycle per time slot for each head-of-line
packet), the mapping may change only when algorithms accept
or transmit packets. For the base case, consider the first packet
p accepted by OPT, say to QOPT

j . If |QLWD
j | > 0, there is a

head-of-line packet q ∈ QLWD
j (maybe q = p) that could be

accepted before p, and therefore may be partially processed, so
p is mapped to q by step A0 and the lemma holds. If |QLWD

j | =
0, p is not accepted by LWD, so LWD’s buffer is full, and
LWD’s buffer must contain a packet q that satisfies the latency
constraint; thus, we map p to q by step A1, and the lemma
holds again.

Assume by induction that the lemma holds for any t′ < t. We
are to show that it holds after the tth mapping change. Let t−

be the time just before arrival or processing at timeslot t. Since
packets cannot be accepted or transmitted during (t − 1, t−],
the induction hypothesis holds at time t−. The following two
cases are possible for a packet transmitted at time t by OPT
or LWD from Qj .

(1) Neither QLWD
j nor QOPT

j is empty at time t−. Let p
be the first eligible packet in QOPT

j (if it exists) and q be
the first packet in QLWD

j . If p does not exist then during t
the latency of a packet in QLWD

j may only decrease, and the
induction hypothesis holds at the end of t. Otherwise, since
the induction hypothesis holds at time t−, p is mapped to q
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Consider the time t∗ after transmission of a head-of-line packet p from Qj by OPT or LWD, just before the mapping is updated.
• T0: If LWD transmits p from Qj then its image in the OPT buffer becomes ineligible (we are to show that OPT never transmits

eligible for mapping packet from Qj if LWD does not transmit from Qj at time t).
Consider the time t∗ after acceptance of an i-packet p by OPT or LWD, just before the mapping is updated (if necessary).

• A0 (same queue): if p is accepted by OPT to the lth position (all ineligible packets are not accounted) of QOPT
i and there is a

packet q (can be p) at the same position of QLWD
i , map p to q.

• A1 (other queue): if a packet p accepted by OPT is not mapped by A0, find any other packet q in LWD’s memory that has no
assignment of any OPT packet by step A1 and latOPT

t∗ (p) ≥ latLWD
t∗ (q); map p to q.

• A2 (push out): if LWD’s packet p′ of Qj is pushed out by p, clear all mappings to p′ and for each OPT packet q that was assigned
to p′ (at most one by step A0 and at most one by step A1) find a packet p′′ in LWD’s buffer that has no assignment by step A1
and map q to p′′.

• A3 (release A1): if p is accepted by LWD and p is mapped to an OPT packet q by step A0 at time t and q was previously mapped
by step A1, clear A1 mapping from q and its LWD pre-image.

Fig. 3: Mapping Routine for LWD policy.

j j 4...

j j 1...

Qj

Qj

j j 3 OPT...

j j j LWD...

T0: a transmitted packet makes its preimage ineligible

j j 2
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LWD
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A1: if A0 fails, find
a free packet with lower latency

before mapping update after update

j j 4

j 1
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A0: if there is a packet at the same position, use it

before mapping update after mapping update

j j 4

j 1
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j

i

i i

i

Qj
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Qi

j j 2

j

i

i i

i

i

i
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j

i

i i

ii

Qj
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clear old A1 if possible
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Qi

Qi

j j 2

j

i
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i

i

i

j j 2

j

i

i i

i

i

i

j

Fig. 4: The mapping routine. Shaded rectangles denote ineligible packets; rectangles with gradient fill, packets with two preimages
(A0 and A1).

at time t− by step A0 and latOPT
t− (p) ≥ latLWD

t− (q), so either
both algorithms or LWD only may transmit at time t. In both
cases, mapping for eligible packets does not change at the end
of t. Since output ports are served in the same order, and each
non-empty output port reduces required processing by a single
cycle, after the tth mapping change the latency constraint holds
for all packets mapped with A0 and A1. Moreover, since there
were no new arrivals all OPT packets are mapped at the end
of t.

(2) OPT transmits an eligible packet p from QOPT
j but

QLWD
j is empty at time t−. Since at time t− all OPT packets

are mapped and QLWD
j is empty, it must be the case that p is

mapped to an LWD packet q by step A1. Since output ports
are processed in the same order, p cannot be eligible at time
t−, so this case is impossible.

The following two cases are possible when a packet is
accepted at time t by OPT or LWD to Qj .

(3) A packet is accepted at time t by OPT to the lth position
(ineligible packets are not counted) of QOPT

j , and there are at
most |QLWD

j | eligible packets in QOPT
j . So the lth LWD packet

q in QLWD
j is available for mapping by step A0. Moreover,

since the latency constraint holds for each of the first i − 1

eligible OPT packets and all packets admitted to Qj require
the same processing, latOPT

t (p) ≥ latLWD
t (q). If p is accepted

by LWD and pushes out another packet p′ from QLWD
n then

we need to find LWD’s packets available for mapping by step
A1 for the pre-image of p′ in OPT buffer. Since the induction
hypothesis holds at time t−, at most one packet is mapped to
p′ by each of the steps A0 and A1. Also, since p′ is pushed
out by LWD, its latency is highest in LWD’s buffer, so any
LWD packet (including p) that has no assignment by step A1
is available for mapping. Since LWD pushes out at time t,
LWD’s buffer was full at time t−, so (since buffer sizes are
equal) there are enough packets available to map the pre-image
of p′ by step A1.

(4) A packet q is accepted at time t by LWD to the lth

position, and there are more than |QLWD
j | eligible packets

in QOPT
j . Since latency constraints hold for the first l − 1

eligible OPT packets mapped by step A0 and only j-packets are
admitted to Qj , the latency constraint holds for the lth eligible
OPT packet and the lth LWD packet in Qj . By step A3, the
A1 mapping is cleared from the image of the lth eligible OPT
packet. Therefore, if a packet q is accepted by OPT and even
if LWD’s buffer is not full q can be mapped to p′′ by step
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A1. If q is accepted by LWD and pushes out another packet
p′, LWD’s buffer is already full at time t−; moreover, p′ has
the highest latency in LWD’s buffer at time t−. Similar to (3),
LWD has enough packets to map the image of p′ by step A1.

Thus, the induction hypothesis holds at the end of t.

By Lemma 8, each packet transmitted by LWD is the image
of at most two OPT packets (one by step A0 and another
by step A1), and at any time all OPT packets are mapped.
Theorem 7 immediately follows.

IV. PACKET SCHEDULING WITH HETEROGENEOUS VALUES

We now proceed to the packet scheduling problem with
heterogeneous values in a shared memory switch architecture.
In this model, each unit-sized packet with required work 1 has
two parameters: an output port label and an intrinsic value; the
objective is to maximize the total transmitted value. It has been
formulated as an open problem in SIGACT News [19, p. 22]:
“What happens in the shared memory, multiple output queue
model with general-valued packets? Is constant competitiveness
achievable?” In this section we provide the first results in this
direction. Note that here we consider a more general model
and allow packets with heterogeneous values to sojourn in the
same queue. As result, in all policies below we use the most
favourable processing order in each queue corresponding to
an output port, assuming they are priority queues (PQ) where
most valuable packets are processed first. This can only be an
improvement over FIFO processing or any other order since
priority queue is optimal in the case of a single queue.

A. Model Description

We consider an l×n switch with shared memory of size B,
with l input ports and n output ports. Each output port i has
one corresponding output queue Qi; we assume that B ≥ n.
Packets arrive at input ports, each labeled with a destination
output port and an intrinsic value of at most k, B ≥ k ≥ 1.
Note that unlike the previous model, each packet requires only
a single processing cycle. In what follows, we denote by v a
packet with value v; by x× v , a burst of x packets with value
v each. All admitted packets in an output queue are ordered
in non-increasing order of values; the number of packets in Qi
is denoted by |Qi|. Time is slotted; we divide each time slot
into two phases (see Fig. 5). During the (1) arrival phase a
burst of new packets arrives at each input port, and the buffer
management policy decides which packets to admit; we assume
that during the arrival phase input ports are served in a fixed
order from input port 1 to input port n, with no restriction on
the burst size. During the (2) transmission phase, the head-
of-line packet in each non-empty output queue is transmitted.
An accepted packet can again later be dropped from the buffer
when another packet is accepted instead (push-out policy). Note
that for unit values this reduces to the model of [2], so the 4/3
lower bound on any online policy shown there holds in our
case too.

B. Choosing the Right Properties for Buffer Management

Even if processing order is fixed, it is unclear which traffic
should be admitted; there may be a tradeoff between traffic
that opens new active ports and traffic that increases the total
admitted value. We do not consider non-push-out policies since
it is straightforward that a greedy non-push-out policy that
accepts a packet if there is available space is at least k-
competitive (fill the buffer with 1 s, then send in the k s).
We define several push-out scheduling policies that greedily
optimize the number of active ports, total admitted value, or a
combination of both. The algorithms are illustrated on Fig. 5.

First, we consider the Longest-Queue-Drop (LQD) heuristic
again; in this model, LQD drops the last (lowest value) packet
from the longest queue when a buffer is congested, balancing
the queue sizes.

It is illustrated on the left of Fig. 5. Here and in all other
examples, B = 8, and the queues start from 0 packets in Q1,
one 1 in Q2, 1 , 2 , and 3 in Q3, and 1 and 4 in
Q4; on this sample step, there arrive one 3 to queue 1, one
1 to queue 2, and 2 × 3 to queue 3. In this example, we

need to drop two packets, and queue 3 is by far the longest, so
LQD drops the two lowest value packets from queue 3 (like all
other queues, it processes arrving packets in PQ order). Then
we process four highest-value packets, one from each queue.

However, in the value-based model LQD again fails to
reach constant competitiveness. Note that constructions in
Theorems 9, 10, and 11 below all fall into an interesting
special case of the general model, when a packet’s value is
uniquely defined by its output port label. This special case
makes practical sense: often a different subset of cores is
assigned to process specific types of traffic, and these types
can be defined either by required processing, as in Section III,
or by value, as in this special case. Obviously, the same bounds
apply in the general case as well.

Theorem 9. The competitive ratio of LQD is at least(
3
√
k − o

(
3
√
k
))

.

Proof. In this construction, a packet’s value is equal to its
output port label. Fix a, 1 ≤ a ≤ k. On the first time slot,
there arrive B packets of every value from 1 to a and B more
packets of value k. LQD balances the queues, leaving B

a in
each of them (throughout the paper, we assume that B divides
everything we need it to divide). At the same time, OPT takes
in B packets of value k. Then, on each time slot packets with
values from 1 to a arrive but packets of value k do not. Thus,
over the next B time slots OPT transmits B(a+1) packets with
total value B( 1

2a(a− 1) + k) while LQD transmits B(a+ 1
a )

packets with total value B( 1
2a(a− 1) + k/a). Then the initial

burst arrives again, and the construction repeats itself, getting
a competitive ratio of

1
2a(a−1)+k

1
2a(a−1)+k/a

. This expression is maxi-

mized for a ≈ 3
√
k, with the resulting ratio of 3

√
k−o( 3

√
k).

The next policy greedily maximizes total admitted value by
pushing out packets with minimal current value.

Minimal-Value-Drop (MVD): during the arrival of an m -
packet p that is destined to the i-th port, denote by Qj the
nonempty queue that contains a packet with minimal value (if
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Fig. 5: A sample time slot of Longest-Queue-Drop (LQD), Minimal-Value-Drop (MVD), and Maximal-Ratio-Drop (MRD) with
maximal value k = 4, 4 output ports, and a shared buffer of size B = 8.

there are several such queues, choose the longest among them);
then do the following: (1) if the buffer is not full, accept p into
Qi; (2) if the buffer is full and the minimal admitted value is
less than m , push out last packet from Qj and accept p into
Qi; (3) if the buffer is full and the minimal admitted value is
at most m , drop p.

MVD is the middle policy shown on Fig. 5. Again, B = 8,
the queues start from nothing in Q1, one 1 in Q2, 1 , 2 ,
and 3 in Q3, and 1 and 4 in Q4; there arrive one 3 to
Q1, one 1 to Q2, and 2× 3 to Q3. Again, we need to drop
two packets, and the MVD algorithm drops two packets with
lowest values, in this case two 1 s out of three; to break ties,
it makes sense to drop packets from the longest queues, so we
drop 1 s from Q3 and Q4. Then we process four highest-value
packets, one from each queue.

The MVD algorithm prioritizes packets of maximal value.
Unfortunately, MVD has a linear lower bound on competitive-
ness in the worst case.

Theorem 10. MVD is at least m−1
2 -competitive for m =

min{k,B}.
Proof. Again, each packet’s value equals its output port label.
On each time slot, there arrive B packets of every value from
1 to m. As a result, MVD only processes packets of value m
while the optimal algorithm processes each value from 1 to m,
getting a competitive ratio of m(m−1)/2

m .

Note that a corresponding policy to MVD in the model with
heterogeneous processing requirements is BPD that minimizes
a total required processing. But in difference from MVD, BPD
can achieve a relatively good competitive ratio that demonstrate
a significant difference between required processing require-
ments and packet’s values characteristic.

As a policy that we conjecture may reach constant competi-
tive ratio, we propose a combination of these two characteris-
tics, an idea similar to the LWD policy in the previous model
that we have shown to be 2-competitive in Section III-C. A
natural idea would be to try to combine these two heuristics,
prioritizing packets with high value only if they come from
shorter queues. One implementation of such an idea is given
in the MAXIMAL RATIO DROP algorithm.

Maximal-Ratio-Drop (MRD): during the arrival of an m -
packet p that is destined to the i-th port, denote by Qj the

nonempty queue with a maximal value of |Qj |aj
, where aj is an

average value in Qj (if there are several such queues, choose
as Qj a queue that contains a packet with a smaller value) then
do the following:

(1) if the buffer is not full, accept p into Qi;
(2) if the buffer is full and has admitted values smaller than

m , push out last packet from Qj and accept p to Qi;
(3) if the buffer is full and minimal admitted value in the buffer

is bigger than m , drop p.

A sample MRD time slot shown on the right of Fig. 5, Again,
B = 8, the queues start from nothing in Q1, one 1 in Q2,
1 , 2 , and 3 in Q3, and 1 and 4 in Q4; there arrive

one 3 to Q1, one 1 to Q2, and 2 × 3 to Q3. To choose
the two extra packets to drop, MRD computes the ratio of
queue size to average packet value for queues with new packets
added to them: r1 = 1

3 , r2 = 2
1 = 2, r3 = 5

12/5 = 25
12 , r4 =

2
5/2 = 4

5 . The maximal ratio is r3, so we drop the lowest valued

packet 1 from Q3. Then r3 changes to r3 = 4
11/4 = 16

11 ,

Q2 becomes the maximal ratio queue, and we drop 1 from
there. Then MRD processes four highest-value packets, one
from each queue.

Note that MRD emulates LQD in case all packets have unit
values, and the lower bound

√
2 shown in [2] applies. We can

also show a constant lower bound for MRD in the special case
when each packet’s value is equal to its output port label.

Theorem 11. MRD is at least 4
3 -competitive in case each

packet’s value is equal to its output port label.

Proof. Consider the first burst with B packets of value 1, 2, 3,
and 6 each. Balancing the size-value ratio, MRD will accept
B
2 × 6 , B

4 × 3 , B
6 × 2 , and B

12 × 1 , while OPT accepts
(B−3)× 6 and one packet of each other value. Then packets
of value 1, 2, and 3 keep coming so that OPT always has
something to do but packets of value 6 do not arrive any more.
Thus, in B−3 steps OPT will have transmitted for a total value
12(B−3), while MRD will have total value 12B2 +6(B2 −3) =
9B − 18, getting the bound.

It remains an interesting open problem to show whether
MRD has a constant competitive ratio in the worst case.
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OPT NHST NEST NHDT LQD BPD BPD1 LWD
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Fig. 6: Simulation results for the heterogeneous required processing model. Graphs show the competitive ratio as a function of:
left column – k for B = 500, C = 1; middle column – B for k = 25, C = 1; right column – C for k = 25, B = 500; rows
have different burst intensity λ: first, fourth, and fifth row – λ = 0.5, second row – λ = 1.0, third row – λ = 2.0. The fourth
row shows the results with two possible processing values; the fifth row, with three.

V. SIMULATIONS

In this section, we present a comprehensive simulation study
that complements our theoretical results. While we have shown
that, e.g., LWD is provably better in the worst case than
other policies, this result would have much less relevance if
in practice LWD performed significantly worse on average.
Hence, we have experimented with the proposed policies to
study their performance in a practical context.

A. Experimental Setting

To see how the proposed policies compare in actual ap-
plications, we have conducted an extensive simulation study.
It would be valuable to test the proposed policies on real
life traces, but, unfortunately, available datasets such as
CAIDA [18], first, do not contain traces with heterogeneous
processing requirements, and second, do not contain enough
information about the hardware and network processor con-
figuration to determine the time scale. Naturally, our model
and policies crucially depend on how long a timeslot should
last: it determines how much congestion there will be in the
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buffer. Thus, we have conducted three series of experiments on
synthetic traces, studying how the competitive ratio depends on
maximal packet size (i.e., the number of queues) k, the buffer
size B, and the number of processing cores for each queue C
(performance speedup).

Note that the actual optimal algorithm in our model has
prohibitive computational cost. Thus, to provide a gold standard
against which to compare our policies we have used an
algorithm which is actually better than optimal: a single priority
queue that processes smallest packets first (resp., packets with
largest value) and has kC cores. This algorithm has been
proven optimal in the single queue model, so in our model,
where some queues may be congested and others idle, it
performs even better than optimal.

As for traffic generation, it is well known that network
traffic has a long-tail distribution due to its bursty nature and
long-range dependencies exhibited by network traffic [41] that,
unlike many other kinds of data streams, does not conform to
Poisson models [38]. Many mathematical models have been
put forward to simulate long-tail traffic, including Markov-
modulated Poisson processes [17], [20] and fractional Brow-
nian motion [37]. In this work, we are using the probably
most successful traffic model to date, the Poisson Pareto burst
process (PPBP) [1], [42]. In PPBP, the traffic is modeled with
multiple overlapping bursts whose lengths conform to a Pareto
(long-tail) distribution. We use PPBP to model the stream of
incoming packets.

As for required processing, output ports, and values, lacking
real life data on these secondary parameters we have decided to
test the following plausible variations: (1) uniform distribution
used in most of our experiments; (2) distribution of required
processing where only values 1 and k are possible (row 4 on
Fig. 6); (3) distribution where only values 1, k/2, and k are
possible (row 5 on Fig. 6).

B. Heterogeneous Processing Experiments

Figure 6 shows simulation results presented in terms of
competitive ratio: each graph shows the competitive ratio
(ratio of packets processed) w.r.t. to the “better than optimal”
reference algorithm (in black; always equals 1.0). The figure
shows the results of experiments with unit packet value and
variable processing requirements.

Across all simulations, it is clear that LWD is the best algo-
rithm on average, with LQD a close second. BPD in this setting
is abysmally bad, clearly the worst of all algorithms; this is due
to the fact that BPD pushes out large packets independently of
queue size, so it consistently underuses available cores. Since
it does not make sense to push out the last packet remaining in
a queue, thus artificially reducing the number of active ports,
we also introduce the BPD1 algorithm that works similar to
BPD but does not push out the last packet in a queue; BPD1

does much better than BPD but still loses to other algorithms.
In the first set of simulations (the first column of Fig. 6,

graphs (1), (4), (7), (10), (13)), we study competitive ratio
as a function of the maximal packet size k. Naturally, the
competitive ratio of all algorithms drops as k grows (the
better-than-optimal OPT is by default better at using available

resources), but non-preemptive algorithms clearly deteriorate
faster.

In the second set (second column of Fig. 6, graphs (2), (5),
(8), (11), (14)), we study competitive ratio as a function of
the buffer size B, covering various values from small to very
large buffer sizes; in this set of simulations, we attempted to
cover the transition from small buffers with large dropout rates
into a situation with nearly no congestion. Here, all algorithms
improve similar to each other, and the only algorithm that
fails to take advantage of a larger buffer and starts losing
to non-preemtive algorithms is BPD (including BPD1). Other
preemptive algorithms do better than non-preemptive ones, and
LWD remains the best option throughout.

In the third set of experiments, we look at competitive ratio
as a function of the speedup C imposed on each core. We
see that preemptive algorithms can make better use of this
advantage and catch up with the optimal algorithm faster than
non-preemptive ones. Again, LWD is the best algorithm in this
case.

Experiments with alternative distributions of required pro-
cessing (graphs (10)-(15)) show virtually the same picture
as experiments with the uniform distribution; keep in mind
that the same values of k now correspond to much more
congested traffic since there are no intermediate values of
required processing.

C. Heterogeneous Value Experiments

Figure 7 shows the results of experiments in the model with
variable packet values and unit required processing. Note that
in the case of unit processing a much larger incoming intensity
and smaller buffers are required to achieve the same kind of
congestion, so intensities in these experiments are increased
by a factor of 10 (we use λ = 5.0, 10.0, and 20.0) while the
default value of buffer size is now B = 20. Again, we ran
three series of experiments, varying n, B, and C for different
intensities λ.

The first set of experiments (left column on Fig. 7, graphs 1,
4, and 7) contains experiments with varying number of output
ports n. An interesting pattern emerges: as n increases, the
competitive ratios of MRD and MVD first deteriorate but then
begin to improve. This is due to the following effect: for high λ
and small n, it is advantageous for OPT to have larger n since
our overly optimistic version of OPT does not care about output
ports; but then (especially for n > B) it actually becomes easier
for other algorithms as the probability that they can just put in
one packet per output port and send them all out immediately
increases. LQD here lags behind MRD and MVD because it
does not distinguish between packets in a specific queue, and
this is exactly what is needed when there is room for one packet
per queue only. MRD is the clear winner in most settings.

The second set (middle column, graphs (2), (5), and (8) on
Fig. 7) varies the buffer size B. Again, first OPT makes better
use of increased buffer size but then larger buffers basically
begin to equate the differences between algorithms. Here again
MRD wins over both LQD and MVD.

Finally, the third set (right column, graphs (3), (6), and (9)
on Fig. 7) increases C, the number of processing cores at
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Algorithm Lower bound Upper bound

Heterogeneous processing

NHST kZ + o(kZ) kZ + o(kZ)
NEST n+ o(n) n+ o(n)
NHDT 1

2

√
k ln k − o(

√
k ln k) -

LQD
√
k − o(

√
k)) -

BPD ln k + γ -

LWD 4/3− 6/B 2

Heterogeneous values

LQD 3
√
k − o

(
3
√
k
)

-

MVD (m− 1)/2 -

MRD 4/3 -

TABLE II: Results summary: lower and upper bounds.

work. For the case of heterogeneous values and unit processing,
it is obvious that very soon we achieve the situation where
all packets residing in the buffer are processed at every time
slot, and the remaining differences between algorithms are
constant and are entirely due to their admission policies (as
they still cannot accept more than B packets at a time). In this
specific setting, MVD is naturally the best algorithm because
it optimizes precisely what is needed to optimize in this case;
note that it keeps improving for longer than MRD and LQD
due to longer individual queues allowed by MVD.

Generally speaking, we can conclude that in most situations
of congestion MRD is the better policy of the three. MVD,
however, wins in a special case of both very small buffers and
high computational power, when all or almost all of the packets
in the buffer can be consistently processed on every time slot
but the buffer does not have room to store all incoming packets.
In this case, output ports are no longer relevant and the problem
basically degenerates to a priority queue, so MVD is clearly
the right choice.

VI. CONCLUSION

Cloud applications bring new challenges to the design of
network elements, in particular how to accommodate the bursti-
ness of traffic workloads. Over the recent years, there has
been a growing interest in understanding the impact of buffer
architecture on network performance. Since shared memory
switches represent the best candidate architecture to exploit
buffer capacity, in this paper we analyze the performance of
this architecture. Our goal is to explore the impact of additional
traffic characteristics such as varying processing requirements.

In this work, we study the tradeoffs inevitable on the path to
a “perfect” policy in a shared memory switch, both analytically
and with simulations. Recent research advocates the use of
smaller buffers in routers, aiming to reduce queueing delay
in the presence of (mostly) TCP traffic; however, it sidesteps
the issue that as buffers get smaller, the effect of processing
delay becomes much more pronounced. The majority of cur-
rently deployed admission control policies do not take into
account (at least explicitly) the importance of heterogeneous

packet processing. Our theoretical results are summarized in
Table II. In the first part of this work, we study the impact of
heterogeneous processing on throughput in the shared memory
switch architecture. We demonstrate that policies such as
LQD or NHDT — very attractive under uniform processing
requirements — perform poorly in the worst case. We believe
that this observation will provide new insights to the practice
of admission control policies.

In addition, we have considered an open problem that op-
timizes transmission of unit-sized packets with heterogeneous
values in a shared memory switch architecture. We provide
the first results in this direction and define the most promising
directions for further studies. We have also conducted a com-
prehensive simulation study that validates our intuition obtained
in the worst case. In particular, LQD indeed does turn out to
be worse than the policies we have proposed for this setting,
namely LWD in case of heterogeneous processing requirements
and MRD in case of heterogeneous packet values.
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