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Abstract—Packet processing increasingly involves heteroge-
neous requirements. We consider the well-known model of a
shared memory switch with bounded-size buffer and generalize it
in two directions. First, we consider unit-sized packets labeled with
an output port and a processing requirement (i.e., packets with
heterogeneous processing), maximizing the number of transmitted
packets. We analyze the performance of buffer management
policies under various characteristics via competitive analysis
that provides uniform guarantees across traffic patterns [7]. We
propose the Longest-Work-Drop policy and show that it is at most
2-competitive and at least

√
2-competitive. Second, we consider

another generalization, posed as an open problem in [10], where
each unit-sized packet is labeled with an output port and intrinsic
value, and the goal is to maximize the total value of transmitted
packets. We show first results in this direction and define a
scheduling policy that, as we conjecture, may achieve constant
competitive ratio. We also present a comprehensive simulation
study that validates our results.

I. INTRODUCTION

The modern network edge is required to perform tasks

with heterogeneous complexity, including features such as

advanced VPN services, deep packet inspection, firewalling,

and intrusion detection (to list just a few). This trend is further

exacerbated by the advent of new paradigms like Software-

Defined Networking [17], [23], Fog Computing [6] which

create new opportunities for advanced services.

Implementing such services, which give rise to different

traffic types, requires considering various parameters of packets

(different amounts of processing or intrinsic values) to achieve

efficient implementation at the network processor. This leads

to new challenges in performance and implementation for

traditional architectures.

Because of the store-and-forward nature of packet processing

— in contrast to OS scheduling — packets are processed in

a “run-for-completion” manner where no two different cores

can access the same packet during its processing to avoid

expensive rescheduling. In this setting an efficient input buffer

architecture and management become crucial. The best way

to accommodate traffic burstiness is to adopt a single queue
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architecture, where the whole buffer is shared among all types

of traffic and every core is able to process any type of

traffic (see the top of Fig 1). In this architecture an online

greedy policy that implements priority queuing (PQ), where

packets are ordered in non-decreasing order of their processing

requirement and can be pushed out upon arrival of new packets,

has optimal throughput [11].

However this simple approach has important drawbacks.

First, PQ order is required: with a simpler to implement FIFO

processing order the competitive ratio degrades to Ω(log k)
with respect to the optimal clairvoyant algorithm [19], where

k is a maximal processing per packet. Second, it can cause

starvation of packets with higher processing requirements,

which implicitly leads to setting priorities among traffic types

and thus services so that they are rigged to the inverse of

the processing requirements. Second, handling several traffic

types on individual cores leads to increased complexity of the

programs loaded onto these cores, as these must implement

several services in a combined manner.

We thus consider a shared memory switch where the buffer is

shared among all types of traffic but in contrast to the previous

single queue model each core processes only one type of traffic.

The single queue buffer architecture is in fact a special case of

a shared memory switch (see the bottom of Fig 1). Since all

arriving packets with the same output port label have the same

traffic type, the implementation of advanced processing order

is not required (regular FIFO suffices). Furthermore, there is

no starvation of any specific type of traffic.

The paradigm of shared memory switch in general is very

flexible since it can support both complete sharing, where the

same buffer serves all output ports, and complete partition,

where each output port gets a de facto dedicated buffer. Com-

plete sharing utilizes the entire buffer space but can hamper

fairness: a single output port may monopolize the shared

memory and drop packets dedicated to other output ports. On

the other hand, complete partitioning ensures fairness but may

lead to significantly underutilized buffer space, losing more

packets in case of congestion. But how to get the best of both

worlds?

To study performance, we employ competitive analysis [7],

[26]. An algorithm ALG is said to be α-competitive for some
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Fig. 1: Two different buffer management models. Left: each

core can process any traffic type, IPsec, SSL, or firewall (FW);

right: each core processes a specific traffic type from its own

queue, but all queues share the same buffer.

α ≥ 1 if for any arrival sequence, the number of packets

transmitted by ALG is at least 1/α times the number of packets

transmitted by an optimal offline clairvoyant algorithm OPT.

Our contributions. In this paper we consider the cru-

cial problem of throughput maximization. We generalize the

previous shared memory switch model with uniform values

and required processing [1] and consider two different packet

characteristics that define a traffic type together with output port

labels: (1) required processing per packet and (2) packet value.

Our main contribution is to identify properties of an “ideal”

online policy that maximizes throughput and achieve a constant

competitive ratio [7]. We argue that required processing and

packet values have different natures. In particular, we show that

to achieve a constant competitive ratio in the case of required

processing, it is enough to consider the total work per queue

but the normalized work per queue cannot be used to achieve

a constant competitiveness. In the value case however (where

throughput is measured by total transmitted value) the total

value per queue constitutes a poor choice but normalized value

can potentially achieve constant competitiveness. Most consid-

ered algorithms are greedy (accept all arrivals if there is enough

buffer space) and hence allow for simple implementations.

In the first part of this work (1) we consider heteroge-
neous processing requirements, as opposed to shared memory

switches with a single processing cycle per packet [1], [16].

In Section III, we consider a shared memory architecture

where an arriving packet has an output port label and amount

of required processing in cycles, with the constraint that

packets accepted to a same queue have the same processing

requirements (two different queues still can accept packets with

the same required processing, see Fig. 2). Our main result

is to exhibit a novel Longest-Work-Drop (LWD) policy that

is at most 2-competitive. When processing requirements are

uniform, LWD emulates the well-known Longest-Queue-Drop

(LQD) policy [1]. As result LWD is at least
√
2. In the special

case when all queues accept packets with different processing

requirements LWD is at least
(
4
3 − 6

B

)
-competitive, where B is

the buffer size. We also demonstrate a number of lower bounds

for several policies that have good performance characteristics

for homogeneous processing requirements. Namely, we show

that: (1) LQD is at least (
√
k − o(

√
k))-competitive, where

k is the maximum processing required for packets; (2) the

Harmonic policy [16], which is at most O (log n)-competitive

in the model with a single processing cycle per packet and n

output ports, is at least
(

1
2

√
k ln k − o(

√
k ln k)

)
-competitive

in our model; (3) the Biggest-Packet-Drop (BPD) policy that

attempts to keep packets with lowest processing requirements

is at least (ln k + γ)-competitive for γ = 0.5772 . . ..
In the second part (2) we consider a different yet re-

lated model of shared memory switch, where each unit-sized

packet is labeled with an output port and an intrinsic value
(Section IV). The objective is to optimize the total value

of transmitted packets. The existence of a scheduling policy

achieving a constant competitive ratio here was presented as an

open question in SIGACT News [10, p. 22]. To the best of our

knowledge, we provide the first results addressing this problem

as follows. First we show that the above-mentioned LQD pol-

icy is at least
(

3
√
k − o

(
3
√
k
))

-competitive. Furthermore, we

define a Minimal-Value-Drop (MVD) policy (that equivalent

to BPD) that in the case of congestion drops a packet with

minimal value. We show that MVD is at least m−1
2 -competitive

for m = min{k,B}, where k is the maximal packet value

and B is the buffer size. As a result, an ideal policy should

address a fundamental tradeoff between a number of “active”

ports (like LQD) and maximization of total admitted value

(like MVD) to achieve a constant competitiveness (similar to

LWD in the first model considered in this paper). We thus

define a Maximal-Ratio-Drop (MRD) policy that pushes out

a packet from a queue with maximal ratio
|Qj |
aj

, where aj is

the average value in the j-th output queue Qj and |Qj | is the

size of Qj . The competitiveness of MRD is at least
√
2. We

also conduct a comprehensive simulation study validating our

theoretical results in Section V.

II. RELATED WORK

The efforts most closely related to the present work are

those of Aiello et al. [1] and of Kesselman and Mansour [16].

Aiello et al. [1] propose a non-push-out buffer management

policy called Harmonic that is at most O(log n)-competitive

and establish a lower bound of Ω( logn
log logn ) on the performance

of any online non-push-out deterministic policy, where n is

the number of output ports. Kesselman and Mansour [16]

demonstrate that the LQD policy is at most 2- and at least√
2-competitive. Note that both these works consider packets

with an invariably single required processing cycle.

The additional line of research considers packets with hetero-

geneous processing [11], [18]–[20] but no one of them consider

shared-memory switch.

Our current work can be viewed as part of a larger research

effort concentrated on studying competitive algorithms for

management of bounded buffers. A survey by Goldwasser [10]

provides an excellent overview of this field. Initiated in [15],

[21], this line of research has received tremendous attention

over the past decade. Various models have been proposed and

studied, including QoS-oriented models where packets have

individual weights [2], [8], [15], [21] and models where packets

have dependencies [12], [22]. A related field that has recently
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attracted much attention focuses on various switch architectures

and aims to design competitive algorithms for multi-queued

scenarios therein (cf. [3]–[5], [13], [14], [25]). However, these

models do not cover the case of packets with heterogeneous

processing requirements. Pruhs [24] provides a comprehensive

overview of competitive online scheduling for server systems.

Note that scheduling for server systems usually concentrates on

average response time, while we focus mostly on throughput.

Furthermore, scheduling of server systems does not allow jobs

to be dropped, which is an inherent aspect of our model due

to size limitations on buffers.

III. PACKET SCHEDULING WITH HETEROGENEOUS

PROCESSING REQUIREMENTS

A. Model Description

We consider an l × n shared memory switch with a buffer

of size B; l and n represent the number of input and output

ports, respectively. We assume that B ≥ n. Each ith output port

manages a single output queue Qi, 1 ≤ i ≤ n; the number of

packets in Qi is denoted by |Qi|. Each Qi implements first-in-

first-out (FIFO) processing order. Each packet p(d, w) arriving

at an input port is labeled with the output port number d and

its required work w in processing cycles (1 ≤ d ≤ n and

1 ≤ w ≤ k), where k denotes the global upper bound on

required work per packet. In what follows, we denote by w a

packet with required work w; by h× w , a burst of h packets

with required work w each.

Time is slotted; we divide each time slot into two phases

(see Fig. 2): During the (1) arrival phase a burst of new

packets arrives at each input port, and the (buffer management)
policy decides which ones should be admitted; we assume

that during the arrival phase input ports are served in a fixed

order from input port 1 to input port l with no restriction

on the burst size (at the same time slot more than l arrivals

are allowed); the arrivals are adversarial and do not assume

any specific traffic distribution except a single constraint: all

packets arriving with output port label i have the same required

processing wi, 1 ≤ wi ≤ k. Note that two different output

queues Qi and Qj , 1 ≤ i, j ≤ n can still accept packets

with the same processing requirement, wi = wj . Without loss

of generality, we assume that queues are sorted in the order

of their processing requirement: if i < j then wi ≤ wj .

An accepted packet can be later dropped from the buffer

when another packet is accepted instead; in this case we say

that a packet p is pushed out by another packet q, and a

policy that allows this is called a push-out policy. During

the (2) transmission phase, required work of the head-of-line

packet in FIFO order at each non-empty queue is reduced by

one, and every packet with zero residual work is transmitted.

B. Choosing the Right Properties for Buffer Management

Next we attempt to explore properties of a “perfect” policy

that provides constant competitiveness — if it exists — in the

generalized model with heterogeneous processing requirements

and for any switch configuration, that is, any assignment of

specific processing requirements to cores. We consider, in turn,

several algorithms that are either simple, look like natural

candidates, or have been proven to be efficient for the case

of uniform processing [1], [16].

For each algorithm, we show a fast growing lower bound

that indicates that this algorithm does not really extend compet-

itively to our generalized model with heterogeneous processing.

Rather than choosing respective corner-case configurations for

each considered policy, i.e., assigning required processing

values to output ports in a specific maximally adversarial

way for every policy, we show all lower bounds in the same

configuration of the model above: the case when there are

exactly k output ports, and queue Qi contains packets with

required processing i. We call this the contiguous case since

required processing in different queues is ordered in a contigu-

ous sequence from 1 to k. Even in the contiguous case, we

show that established policies do not rise up to the challenges

of heterogeneous processing, showing large lower bounds for

each of them.

Thus, a good policy has to account for the processing

requirements explicitly; still, it remains to learn how to account

for it. We first consider the BPD policy that drops packets with

largest processing, but also show a fast growing lower bound

for BPD. Then we proceed to the LWD policy for which we

prove (in the general case, not only the contiguous case) a

constant upper bound, the main result of this paper.

1) Non-Push-Out Policies: In the case of a single queue,

non-push-out greedy policies perform poorly (they are k-

competitive) on packets with heterogeneous processing re-

gardless of processing order [11], [19]. In our model, we

begin with two simple cases of greedy non-push-out buffer

management policies with static thresholds. The first policy

sets static thresholds on each queue inversely proportional to

required processing, while the second simply uses identical

thresholds for all queues. Interestingly, the second policy has

a better competitive ratio. We denote Z =
∑n

i=1
1
ri

(sum of

inverse values of required processing for each port); also, in

what follows we omit �·� and �·� for clarity, assuming that B
divides all we need it to divide.

Non-Push-Out-Harmonic-Static-Threshold (NHST): dur-

ing the arrival of a packet p with output port i, if |Qi| < B
riZ

,

accept p into Qi; else drop p.

Theorem 1. NHST is (kZ + o(kZ))-competitive.

Proof: For the lower bound, consider a burst of B × k .

NHST will only accept B
kZ of them, while OPT is free to

accept all. After all packets are processed, the process repeats,

getting the kZ lower bound. The matching upper bound in this

case follows since all queues are isolated and process packets

separately, so worst case analysis is reduced to a single queue

architecture.

Non-Push-Out-Equal-Static-Threshold (NEST): during

the arrival of a p with output port i, if |Qi| < B/n packets

then accept p into Qi, else drop p.

Theorem 2. NEST is (n+ o(n))-competitive.

Proof: Each queue is simply a separate homogeneous (and
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Fig. 2: A sample time slot of Non-Push-Out-Harmonic-Dynamic-Threshold (NHDT), Longest-Queue-Drop (LQD), Biggest-

Packet-Drop (BPD), and Longest-Work-Drop (LWD) policies with maximal processing k = 3, 4 output ports (there are two

different ports with the same processing requirement 2, denoted by rectangular and rhomboidal packets respectively), and a

shared buffer of size B = 8.

hence optimal) queue with buffer size B
n .

Next we consider the Non-Push-Out-Harmonic-Dynamic-

Threshold (NHDT) policy, previously considered in [16]. In the

NHDT policy, thresholds for queues are dynamic and depend

on the number of packets in the queues. The idea is that for

each 1 ≤ m ≤ k, m queues with most packets in them

should contain at most B
Hk

(
1 + 1

2 + . . .+ 1
m

)
packets, where

Hk = 1 + 1
2 + . . .+ 1

k is the k-th harmonic number.

Non-Push-Out-Harmonic-Dynamic-Threshold (NHDT):

during the arrival of a packet p with output port i, denote

by j1, j2, . . ., jm = i the queues for which |Qj | ≥ |Qi|; if∑m
s=1 |Qjs | < B

Hk

(
1 + 1

2 + . . .+ 1
m

)
accept p into Qi, else

drop p.

For packets with homogeneous processing, NHDT was

shown to be at most O(log n)-competitive for n output

ports [16] (in our model, there are k output ports). It turns

out that for heterogeneous processing requirements, NHDT is

no better than NHST in the worst case.

Theorem 3. If B is asymptotically greater than k, the NHDT
policy is at least

(
1
2

√
k ln k − o(

√
k ln k)

)
-competitive in the

sequential case.

Proof: We denote A = B
ln k . To show the lower bound,

consider an input burst consisting of B(m + 1) packets with

processing requirements k, k−1, . . ., k−m, and finally 1; here

m is a number from 1 to k− 1 that will be chosen below. The

packets arrive in reverse order: first B× k , then B× k − 1 ,

and so on. As a result, NHDT accepts A× k , A
2 × k − 1 , . . .,

A
k−m+1 × 1 . OPT, on the other hand, accepts only one packet

for each of the queues from k to (k−m) and fills the rest of its

buffer with 1 s, accepting (B−k+m)× 1 . Then every ith time

slot, another i arrives for k−m ≤ i ≤ k, so OPT’s queues are

always busy. In A
k−m+1 rounds of processing, NHDT transmits

all of its 1 s and then proceeds to process only higher queues.

In B − k + m − A
k−m+1 more rounds, OPT also runs out of

1 s. By this time (B − k + m time slots in total), OPT has

processed (B−k+m)(1+Hk−Hm) packets, while NHDT has

processed (B − k+m)(Hk −Hm) +A/(k−m+1) packets;

then another large burst arrives, and the process is repeated,

getting the competitive ratio

1 +Hk −Hm

Hk −Hm + A
(B−k+m)(k−m+1)

≈ ln k − lnm+ 1

ln k − lnm+ 1
(k−m) ln k

(discarding asymptotically smaller terms and assuming that

asymptotically B is greater than k). It now remains to optimize

this ratio by choosing suitable m; setting m = k−
√

k
ln k , since

− ln
(
1−

√
1

k ln k

)
≈

√
1

k ln k , we get the ratio of

− ln
(
1−

√
1

k ln k

)
+ 1

− ln
(
1−

√
1

k ln k

)
+

√
1

k ln k

≈ 1

2

√
k ln k − o(

√
k ln k).

At this point, it is unclear how to generalize NHDT to

heterogeneous processing better; this remains an interesting

problem for future research.

2) Push-Out Policies: We now proceed to push-out poli-

cies, starting with the well-known Longest-Queue-Drop that

overlooks required processing and only considers queue sizes.

Longest-Queue-Drop (LQD): during the arrival of a packet

p with output port i, denote by j∗ = arg maxj{|Qj |+[i = j]}
where [i = j] = 1 if i = j and 0 otherwise (i.e., Qj∗ is the

longest queue once we virtually add p to Qi; we choose one

with largest required processing if there are several); then do

the following: (1) if the buffer is not full, accept p into Qi;

(2) if the buffer is full and i 
= j∗, push out last packet from

Qj∗ and accept p into Qi; else drop p.

In case of homogeneous processing, LQD is at least
√
2-

and at most 2-competitive [1]. For heterogeneous required

processing, the situation is worse.
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Theorem 4. For sufficiently large B, LQD is at least (
√
k −

o(
√
k))-competitive in the sequential case.

Proof: We introduce a parameter m to be defined later.

Over the first burst, there arrive B packets of each of the

following kinds: 1 , k , k − 1 , . . . , k −m+ 1 . LQD

evenly distributes the packets among queues and has B/m
packets in each of its nonempty queues (throughout the proof

we assume that B is large and divides everything we need it

to divide). OPT accepts (B − m + 1) × 1 and one each in

the remaining queues. Packets with required processing from

k − m + 1 to k keep coming so OPT always has packets in

these queues to work on, but there are no more 1 s. Thus,

after B/m time slots LQD runs out of 1 ’s; by this time,

both LQD and OPT have processed B
m + B

mβk,m packets

for βk,m = 1
k + 1

k−1 + . . . + 1
k−m+1 , and OPT still has(

Bm−1
m −m

)× 1 in the first queue. Therefore, over the next

Bm−1
m steps LQD processes Bm−1

m βk,m packets while OPT

processes Bm−1
m (1 + βk,m)−m packets. The total ratio is

B
m + B

mβk,m +Bm−1
m (1 + βk,m)−m

B
m + B

mβk,m +Bm−1
m βk,m

=

1 +
m−1
m − m

B
1
m +

(
1− m

B

)
βk,m

−O(1/Bm).

To optimize the bound with respect to m, we choose m = kα,

approximate the bound for large B as 1+ kα−1
1+kαβk,m

, and recall

that βk,m = 1
k + . . .+ 1

k−m+1 = ln k
k−m + o( 1

m ) = ln k
k−kα +

o(k−α). For α < 1 and large k, ln k
k−kα = − ln(1− kα−1) =

kα−1 + o(kα−1), so we can roughly estimate the bound as

1 + kα

1+kαkα−1 = 1 + kα

1+k2α−1 , and this fraction reaches its

maximum of
√
k − o(

√
k) for α = 1/2.

Next we propose a policy that aims to minimize total

required processing in case of congestion by pushing out

packets with maximal processing requirements.
Biggest-Packet-Drop (BPD): during the arrival of a packet

p with output port i, denote by Qj the nonempty queue with

largest processing requirement; then do the following: (1) if

the buffer is not full, accept p into Qi; (2) if the buffer is full

and i ≤ j, push out last packet from Qj and accept p into Qi;

(3) if the buffer is full and i > j, drop p.

Theorem 5. For B ≥ k(k+1)
2 , BPD is at least (ln k + γ)-

competitive in the sequential case, where γ = 0.5772 . . . is the
Euler–Mascheroni constant.

Proof: The counterexample is the following: every time

slot, there arrive B × 1 , B × 2 , . . . , B × k (a full set

of packets); BPD accepts only B × 1 and keeps processing

only 1 packet per time slot, i.e., k! packets per k! time slots,

while OPT is free to accept the packets evenly and get k! +
k!/2 + . . .+ k!/k packets per k! time slots, getting the bound

as 1 + 1
2 + 1

3 + . . .+ 1
k = Hk ≥ ln k + γ.

As an improvement over LQD, we propose a policy that

pushes packets out of the queue with most required work; we

denote the total work in queue Qi (sum of remaining work for

packets in Qi) by Wi.

Longest-Work-Drop (LWD): during the arrival of a packet

p with output port i, let j∗ = arg maxj{Wj + [i = j]ri} (i.e.,

Wj∗ is maximal once we virtually add p to Qi; we choose

maximal among those queues if there are several); then do the

following: (1) if the buffer is not full, accept p into Qi; (2) if

the buffer is full and i 
= j∗, push out last packet from Qj∗

and accept p into Qi; else drop p.

Theorem 6. If k ≥ 6, LWD is at least
(
4
3 − 6

B

)
-competitive

in the sequential case.

Proof: Over the first burst, there arrive B × 1 , B
4 × 2 ,

B
6 × 3 , and B

12 × 6 ; LWD accepts B
2 × 1 and all the other

packets, while OPT accepts one of each larger packets and,

correspondingly, (B − 3) × 1 . Then packets with required

processing 2, 3, and 6 keep arriving as needed to keep OPT’s

queues busy. Thus, over the first B
2 time slots both OPT and

LWD process B
2

(
1 + 1

2 + 1
3 + 1

6

)
= B packets, but LWD has

now run out of 1 packets while OPT still has B
2 − 3 more,

so over the next B
2 − 3 time slots OPT processes B

2 − 3 +⌊
B/2−3

2

⌋
+

⌊
B/2−3

3

⌋
+

⌊
B/2−3

6

⌋
≥ B−9 packets while LWD

can only process
⌊
B/2−3

2

⌋
+
⌊
B/2−3

3

⌋
+
⌊
B/2−3

6

⌋
≤ B

2 packets.

After that, the first burst arrives again, and the sequence repeats

itself, getting the bound as B+B−9
B+B/2 = 4

3 − 6
B .

Since LWD is equivalent to LQD when packets in all queues

have the same processing requirement, LWD is at least
√
2-

competitive in this setting [1]. Note that our lower bound for

LWD in the contiguous case is less than the
√
2 lower bound of

LQD in the model with uniform processing requirements. LWD

optimizes a “local” state by dropping packets from queues

with maximal latency. On the other hand, OPT can leave

these packets and keep these ports active when OPT knows

that there will be no later arrivals to high-latency queues,

whereas the corresponding ports of LWD will be idle; a similar

phenomenon explains the non-optimality of LQD in the model

with uniform processing. But in the contiguous case of the

generalized model it is significantly harder for OPT to win

much in this way since LWD will drop less packets from

queues with the highest latencies (proportional to the required

processing).

C. Upper Bound on the Competitiveness of LWD

Judging from the lower bounds presented in the previous

section, LWD is the most promising policy among all we have

considered. We now present the main result of this work:

a constant upper bound on its competitive ratio. Note that

although this bound is equal to the upper bound on LQD in

the homogeneous processing model [1], the mapping routine

is actually very different.

Theorem 7. LWD is at most 2-competitive.

Proof: The latency latALG
t (p) of a packet p in a buffer

is the number of time slots needed before p is transmitted

(assuming it will not be pushed out). We define the latency

of an already transmitted packet as −1 and the latency of a

packet that has not yet arrived as ∞. A port of ALG’s buffer
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Consider the time t∗ after transmission of a head-of-line packet p from Qj by OPT or LWD, just before the mapping is updated.

• T0: If LWD transmits p from Qj then its image in the OPT buffer becomes ineligible (we are to show that OPT never transmits
eligible for mapping packet from Qj if LWD does not transmit from Qj at time t).

Consider the time t∗ after acceptance of an i-packet p by OPT or LWD, just before the mapping is updated (if necessary).

• A0 (same queue): if p is accepted by OPT to the lth position (all ineligible packets are not accounted) of QOPT
i and there is a

packet q (can be p) at the same position of QLWD
i , map p to q.

• A1 (other queue): if a packet p accepted by OPT is not mapped by A0, find any other packet q in LWD’s memory that has no
assignment of any OPT packet by step A1 and latOPT

t∗ (p) ≥ latLWD
t∗ (q); map p to q.

• A2 (push out): if LWD’s packet p′ of Qj is pushed out by p, clear all mappings to p′ and for each OPT packet q that was assigned
to p′ (at most one by step A0 and at most one by step A1) find a packet p′′ in LWD’s buffer that has no assignment by step A1
and map q to p′′.

• A3 (release A1): if p is accepted by LWD and p is mapped to an OPT packet q by step A0 at time t and q was previously mapped
by step A1, clear A1 mapping from q and its LWD pre-image.

Fig. 3: Mapping Routine for LWD policy.

is called active at time slot t if it transmits during t; otherwise,

it is called idle. Since OPT is an offline optimal algorithm,

we can assume that it never pushes out packets. To prove that

LWD is 2-competitive, we will map each packet transmitted

by OPT to a packet transmitted by LWD in such a way that

at most two OPT packets correspond to each LWD packet. A

packet p in OPT buffer mapped to an already transmitted LWD

packet is called ineligible for mapping; else p is called eligible.

To avoid ambiguity during the arrival phase, a reference

time t should be interpreted as the arrival of a single packet.

If several packets arrive at the same time slot, we consider

them independently, in the sequence in which they arrive. If

several output ports are active during the same transmission

phase, t should be interpreted as the processing and (if needed)

transmission by a single output port in the following order: first,

output ports with non-empty queues in LWD buffer, from 1 to

n; then, remaining output ports with non-empty queues in OPT

buffer, from 1 to n. A well-defined processing order of output

ports during the transmission phase is necessary to process

eligible OPT packets when mapping changes. The mapping

routine is shown in Fig. 3.

Lemma 8. Let p be an eligible packet at the ith-position
(not counting ineligible packets) of QOPT

j at time t. If QLWD
j

contains a packet q at the same position at time t, p is mapped
to q by step A0, and latOPT

t (p) ≥ latLWD
t (q). Otherwise, p is

mapped to an LWD packet q′ by step A1, and latOPT
t (p) ≥

latLWD
t (q′). Moreover, at most one OPT packet is mapped to

an LWD packet by each of the steps A0 and A1, and all OPT
packets are mapped.

Proof: We prove the lemma by induction on the number of

mapping changes. Since all ports process packets at the same

rate (one processing cycle per time slot for each head-of-line

packet), the mapping may change only when algorithms accept

or transmit packets. For the base case, consider the first packet

p accepted by OPT, say to QOPT
j . If |QLWD

j | > 0, there is a

head-of-line packet q ∈ QLWD
j (maybe q = p) that could be

accepted before p, and therefore may be partially processed, so

p is mapped to q by step A0 and the lemma holds. If |QLWD
j | =

0, p is not accepted by LWD, so LWD’s buffer is full, and

LWD’s buffer must contain a packet q that satisfies the latency

constraint; thus, we map p to q by step A1, and the lemma

holds again.
Assume by induction that the lemma holds for any t′ < t. We

are to show that it holds after the tth mapping change. Let t−

be the time just before arrival or processing at timeslot t. Since

packets cannot be accepted or transmitted during (t − 1, t−],
the induction hypothesis holds at time t−. The following two

cases are possible for a packet transmitted at time t by OPT

or LWD from Qj .
(1) Neither QLWD

j nor QOPT
j is empty at time t−. Let p

be the first eligible packet in QOPT
j (if it exists) and q be

the first packet in QOPT
i . If p does not exist then during t

the latency of a packet in QLWD
j may only decrease, and the

induction hypothesis holds at the end of t. Otherwise, since

the induction hypothesis holds at time t−, p is mapped to q
at time t− by step A0 and latOPT

t− (p) ≥ latLWD
t− (q), so either

both algorithms or LWD only may transmit at time t. In both

cases, mapping for eligible packets does not change at the end

of t. Since output ports are served in the same order, and each

non-empty output port reduces required processing by a single

cycle, after the tth mapping change the latency constraint holds

for all packets mapped with A0 and A1. Moreover, since there

were no new arrivals all OPT packets are mapped at the end

of t.
(2) OPT transmits an eligible packet p from QOPT

j but

QLWD
j is empty at time t−. Since at time t− all OPT packets

are mapped and QLWD
j is empty, it must be the case that p is

mapped to an LWD packet q by step A1. Since output ports

are processed in the same order, p cannot be eligible at time

t−, so this case is impossible.
The following two cases are possible when a packet is

accepted at time t by OPT or LWD to Qj .
(3) A packet is accepted at time t by OPT to the lth position

(ineligible packets are not counted) of QOPT
j , and there are at

most |QLWD
j | eligible packets in QOPT

j . So the lth LWD packet

q in QLWD
j is available for mapping by step A0. Moreover,

since the latency constraint holds for each of the first i − 1
eligible OPT packets and all packets admitted to Qj require

the same processing, latOPT
t (p) ≥ latLWD

t (q). If p is accepted

by LWD and pushes out another packet p′ from QLWD
n then

we need to find LWD’s packets available for mapping by step
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A1 for the pre-image of p′ in OPT buffer. Since the induction

hypothesis holds at time t−, at most one packet is mapped to

p′ by each of the steps A0 and A1. Also, since p′ is pushed

out by LWD, its latency is highest in LWD’s buffer, so any

LWD packet (including p) that has no assignment by step A1

is available for mapping. Since LWD pushes out at time t,
LWD’s buffer was full at time t−, so (since buffer sizes are

equal) there are enough packets available to map the pre-image

of p′ by step A1.

(4) A packet q is accepted at time t by LWD to the lth

position, and there are more than |QLWD
j | eligible packets

in QOPT
j . Since latency constraints hold for the first l − 1

eligible OPT packets mapped by step A0 and only j-packets are

admitted to Qj , the latency constraint holds for the lth eligible

OPT packet and the lth LWD packet in Qj . By step A3, the

A1 mapping is cleared from the image of the lth eligible OPT

packet. Therefore, if a packet q is accepted by OPT and even

if LWD’s buffer is not full q can be mapped to p′′ by step

A1. If q is accepted by LWD and pushes out another packet

p′, LWD’s buffer is already full at time t−; moreover, p′ has

the highest latency in LWD’s buffer at time t−. Similar to (3),

LWD has enough packets to map the image of p′ by step A1.

Thus, the induction hypothesis holds at the end of t.
By Lemma 8, each packet transmitted by LWD is the image

of at most two OPT packets (one by step A0 and another

by step A1), and at any time all OPT packets are mapped.

Theorem 7 immediately follows.

IV. PACKET SCHEDULING WITH HETEROGENEOUS VALUES

We now move to the packet scheduling problem with hetero-

geneous values in a shared memory switch architecture. In this

model, each unit-sized packet with required work 1 has two

parameters: an output port label and an intrinsic value. The

objective function is to maximize the total transmitted value. It

has been formulated as an open problem in SIGACT News [10,

p. 22]: “What happens in the shared memory, multiple output

queue model with general-valued packets? Is constant competi-

tiveness achievable?” In this section we provide the first results

in this direction. Note that here we consider a more general

model and allow packets with heterogeneous values sojourn in

the same queue. As result, in all policies below, we use the

most favourable processing order in each queue corresponding

to an output port: we assume they are priority queues (PQ)

where most valuable packets are processed first. This can only

be an improvement over FIFO processing or any other order

since priority queue is optimal in the case of a single queue.

A. Model Description

We consider an l × n switch with shared memory of size

B; l and n represent the number of input and output ports,

respectively. The ith output port has one corresponding output

queue Qi; we assume that B ≥ n. Packets arrive at input ports.

Each packet is labeled with the destination output port and

intrinsic value of at most k, B ≥ k ≥ 1. Note that unlike the

previous model, each packet requires only a single processing

cycle. In what follows, we denote by v a packet with value v;

by x× v , a burst of x packets with value v each. All admitted

packets in an output queue are ordered in non-increasing order

of values; the number of packets in Qi is denoted by |Qi|. Time

is slotted; we divide each time slot into two phases (see Fig. 4).

During the (1) arrival phase a burst of new packets arrives

at each input port, and the buffer management policy decides

which packets should be admitted; we assume that during the

arrival phase input ports are served in a fixed order from input

port 1 to input port n, with no restriction on the burst size.

During the (2) transmission phase, the head-of-line packet in

each non-empty output queue is transmitted out. An accepted

packet can again later be dropped from the buffer when another

packet is accepted instead (push-out policy). Note that for unit

values this reduces to the model of [1], so the 4/3 lower bound

on any online policy shown there holds in our case too.

B. Choosing the Right Properties for Buffer Management

Even if processing order is fixed, it is unclear which traffic

should be admitted; there may be a tradeoff between traffic

that opens new active ports and traffic that increases the total

admitted value. We do not consider non-push-out policies since

it is straightforward that a greedy non-push-out policy that

accepts a packet if there is available space is at least k-

competitive (fill the buffer with 1 s, then send in the k s).

We define several push-out scheduling policies that greedily

optimize the number of active ports, total admitted value, or a

combination of both. The algorithms are illustrated on Fig. 4.

First, we consider the Longest-Queue-Drop (LQD) heuristic

again; in this model, LQD drops the last (lowest value) packet

from the longest queue when a buffer is congested, balancing

the queue sizes. However, in the value-based model it again

fails to reach constant competitiveness. Note that constructions

in Theorems 9, 10, and 11 below all fall into an interesting

special case of the general model, when a packet’s value is

uniquely defined by its output port label. This special case

makes practical sense: often a different subset of cores is

assigned to process specific types of traffic, and these types

can be defined either by required processing, as in Section III,

or by value, as in this special case. Obviously, the same bounds

apply in the general case as well.

Theorem 9. The competitive ratio of LQD is at least(
3
√
k − o

(
3
√
k
))

.

Proof: In this construction, a packet’s value is equal to

its output port label. Fix a, 1 ≤ a ≤ k. On the first time

slot, there arrive B packets of every value from 1 to a and B
more packets of value k. LQD balances the queues, leaving
B
a in each of them (throughout the paper, we assume that B
divides everything we need it to divide). At the same time,

OPT takes in B packets of value k. Then, on each time slot

packets with values from 1 to a arrive but packets of value k do

not. Thus, over the next B time slots OPT transmits B(a+1)
packets with total value B(12a(a−1)+k) while LQD transmits

B(a+ 1
a ) packets with total value B( 12a(a−1)+k/a). Then the

initial burst arrives again, and the construction repeats itself,
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Fig. 4: A sample time slot of Longest-Queue-Drop (LQD), Minimal-Value-Drop (MVD), and Maximal-Ratio-Drop (MRD) with

maximal value k = 4, 4 output ports, and a shared buffer of size B = 8.

getting a competitive ratio of
1
2a(a−1)+k

1
2a(a−1)+k/a

. This expression is

maximized for a ≈ 3
√
k, with the resulting ratio of

3
√
k−o( 3

√
k).

The next policy greedily maximizes total admitted value by

pushing out packets with minimal current value.
Minimal-Value-Drop (MVD): during the arrival of an m -

packet p that is destined to the i-th port, denote by Qj the

nonempty queue that contains a packet with minimal value (if

there are several such queues, choose the longest among them);

then do the following: (1) if the buffer is not full, accept p into

Qi; (2) if the buffer is full and the minimal admitted value is

less than m , push out last packet from Qj and accept p into

Qi; (3) if the buffer is full and the minimal admitted value is

at most m , drop p.
The MVD algorithm prioritizes packets of maximal value.

Unfortunately, MVD has a linear lower bound on competitive-

ness in the worst case.

Theorem 10. MVD is at least m−1
2 -competitive for m =

min{k,B}.
Proof: Again, each packet’s value equals its output port

label. On each time slot, there arrive B packets of every value

from 1 to m. As a result, MVD only processes packets of value

m while the optimal algorithm processes each value from 1 to

m, getting a competitive ratio of
m(m−1)/2

m .
Note that a corresponding policy to MVD in the model with

heterogeneous processing requirements is BPD that minimizes

a total required processing. But in difference from MVD, BPD

can achieve a relatively good competitive ratio that demonstrate

a significant difference between required processing require-

ments and packet’s values characteristic.
As a policy that we conjecture may reach constant competi-

tive ratio, we propose a combination of these two characteris-

tics, an idea similar to the LWD policy in the previous model

that we have shown to be 2-competitive in Section III-C.
Maximal-Ratio-Drop (MRD): during the arrival of an m -

packet p that is destined to the i-th port, denote by Qj the

nonempty queue with a maximal value of
|Qj |
aj

, where aj is an

average value in Qj (if there are several such queues, choose

as Qj a queue that contains a packet with a smaller value) then

do the following: (1) if the buffer is not full, accept p into Qi;

(2) if the buffer is full and a minimal admitted value is less

than m , push out last packet from Qj and accept p into Qi;

(3) if the buffer is full and a minimal admitted value in the

buffer is bigger than m , drop p.

Note that MRD emulates LQD in case all packets have unit

values, and the lower bound
√
2 shown in [1] applies. We can

also show a constant lower bound for MRD in the special case

when each packet’s value is equal to its output port label.

Theorem 11. MRD is at least 4
3 -competitive in case each

packet’s value is equal to its output port label.

Proof: Consider the first burst with B packets of value

1, 2, 3, and 6 each. Balancing the size-value ratio, MRD will

accept B
2 × 6 , B

4 × 3 , B
6 × 2 , and B

12 × 1 , while OPT

accepts (B−3)× 6 and one packet of each other value. Then

packets of value 1, 2, and 3 keep coming so that OPT always

has something to do but packets of value 6 do not arrive any

more. Thus, in B − 3 steps OPT will have transmitted for

a total value 12(B − 3), while MRD will have total value

12B
2 + 6(B2 − 3) = 9B − 18, getting the bound.

It remains an interesting open problem to show whether

MRD has a constant competitive ratio in the worst case.

V. SIMULATIONS

A. Experimental Setting

In this section, we present the results of a simulation study

performed to validate our theoretical results for both models.

To the best of our knowledge, publicly available traffic traces

(e.g., CAIDA [9]) do not contain information on processing

requirements of packets, and such requirements are difficult to

extract since they depend on specific hardware and network

processor configuration. Another handicap of such traces is

that they provide no information about time scale, namely how

long a timeslot should last. This information is essential in our

model in order to determine both the number of processing

cycles per timeslot and traffic burstiness. We therefore perform

three series of experiments on synthetic traces, studying the

dependence of the competitive ratio on the maximal packet

size (i.e., the number of queues) k, the buffer size B, and the

number of processing cores for each queue (speedup) C.
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OPT NHST NEST NHDT LQD BPD BPD1 LWD
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0.4

0.6

0.8

1

(1) k, B = 500, C = 1, λON = 0.25

2 4 6 8

·104

0.7

0.8

0.9

1

(2) B, k = 25, C = 1, λON = 0.1

1 2 3 4 5 6 7

0.6

0.8

1

(3) C, k = 25, B = 500, λON = 0.25

OPT LQD MVD MVD1 MRD

20 30 40 50 60 70

0.96

0.98

1

(4) k, B = 200, C = 1, λON = 2.0

200 400 600 800 1,000 1,200

0.96

0.98

1

(5) B, k = 50, C = 1, λON = 2.0

1 2 3 4 5 6 7
0.85

0.9

0.95

1

(6) C, k = 50, B = 200, λON = 10.0

OPT NHST NEST NHDT LQD MVD MVD1 MRD

20 30 40 50 60 70
0.4

0.6

0.8

1

(7) k, B = 500, C = 1, λON = 1.5

100 150 200 250 300 350 400 450
0.75

0.8

0.85

0.9

(8) B, k = 25, C = 1, λON = 1.0

1 2 3 4 5 6 7
0.5

0.6

0.7

0.8

(9) C, k = 10, B = 100, λON = 1.5

Fig. 5: Simulation results: competitive ratio in the required processing model as a function of (1) k, (2) B, (3) C; in the value

model with uniform distributions of output port and value as a function of (4) k, (5) B, (6) C; in the value model with values

uniquely assigned to ports as a function of (7) k, (8) B, (9) C. Specific simulation parameters are shown in graph captions.

Since it is computationally prohibitive to compute the true

optimal policy, we used a single priority queue that first pro-

cesses the smallest packets (resp., packets with largest value)

and has kC cores. This algorithm has been proven optimal in

the single queue model, so in case of congestion it may perform

even better than optimal in our model, as our experiments show.

The traffic is generated as the interleaving of 500 independent

sources. Each source is an on-off bursty process modeled by

a Markov-modulated Poisson process (MMPP); it has packet

rate λon in the “on” state and does not emit packets in the

“off” state. We ran all experiments for 2 · 106 time slots with

periodic “flushouts”.

B. Results in the Heterogeneous Processing Model

Experimental results are shown on Fig. 5. The top row

shows results in the model with unit packet value and variable

processing requirements. In the first set of experiments, we

study competitive ratio as a function of the maximal packet

size k. The performance of all algorithms decreases as k grows,

but non-preemptive algorithms clearly deteriorate faster. BPD

turns out to be a very poor heuristic: since it pushes out large

packets independently of queue size it consistently underuses

available cores and thus loses much ground. To avoid artificially

reducing the number of active ports, we introduce the BPD1

algorithm that works as BPD but does not push out the last

packet in a queue; BPD1 does better but remains a poor fit.

In the second set of experiments, we study how the competi-

tive ratio changes as a function of the buffer size B, progressing

from small to very large buffer sizes to show the transition into

a situation with nearly no congestion. Here, non-preemptive

algorithms become worse at first (OPT can make better use of

a larger buffer) but then come back when OPT stops improving.

Preemptive algorithms do better than non-preemptive ones,

with BPD and BPD1 outperforming non-preemptive algorithms

as congestion reduces, and LWD retains best throughout.

In the third set of experiments, we look at competitive ratio

as a function of the speedup C imposed on each core. Again,

preemptive algorithms pick up on this advantage quicker than

non-preemptive ones, and again, LWD is the best algorithm.

C. Results in the Heterogeneous Value Model

The bottom two rows of Fig. 5 show results in the model

with variable packet values and unit required processing. The

middle row (graphs 4-6) presents the results with both output

port and value chosen uniformly at random, so the distribution

of values in each queue is also uniform. One difference with

Section V-B is that now growing k indicates less congestion

and more throughput, and graph (4) shows that at first the
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optimal algorithm can make better use of it, but then congestion

reduces, and suboptimal algorithms catch up; the same is true

about graph (6) that shows that a single priority queue can make

better use of speedup until congestion begins to resolve. Similar

to Section V-B, we see that the MRD algorithm outperforms all

other algorithms, but the difference with LQD is rather small.

Both MVD and MVD1 (that does not push out single packets

in a queue) trail relatively far behind.
One important special case is when the value uniquely

corresponds to the output port; note that all lower bounds in

Section IV actually deal with this special case. Non-preemptive

algorithms in this case translate without change, except for

NHST where it is now more desirable to have high-value

packets, so we reverse the thresholds to B
(k−i+1)Hk

for queue

with value i. In this special case, MRD performs noticeably

better than LQD; in general, our experiments suggest that MRD

is never explicitly worse than LQD, and its advantage grows

for distributions that prioritize certain values at specific queues.

Again, preemptive algorithms outperform non-preemptive ones,

with the exception of MVD, even in its enhanced MVD1

version. One interesting case appears on the graph (6): as

speedup grows, MVD begins to outperform both LQD and

MRD. This is caused by situations when a burst can be

processed almost entirely in a single time slot (due to large

speedup) but cannot fit in the buffer size (due to high intensity

λ); in this case MVD is indeed the best policy.

VI. CONCLUSION

Over the recent years, there has been a growing interest

in understanding the impact of buffer architecture on network

performance. In this work, we study the tradeoffs inevitable on

the path to a “perfect” policy in a shared memory switch, both

analytically and with simulations. Recent research advocates

the use of smaller buffers in routers, aiming to reduce queueing

delay in the presence of (mostly) TCP traffic; however, it

sidesteps the issue that as buffers get smaller, the effect

of processing delay becomes much more pronounced. The

majority of currently deployed admission control policies do

not take into account (at least explicitly) the importance of

heterogeneous packet processing. In the first part, we study the

impact of heterogeneous processing on throughput in the shared

memory switch architecture. We demonstrate that policies such

as LQD or NHDT — very attractive under uniform processing

requirements — perform poorly in the worst case. We believe

that this observation will provide new insights to the practice

of admission control policies. In addition, we consider an open

problem that optimizes transmission of unit-sized packets with

heterogeneous values in a shared memory switch architecture.

We provide the first results in this direction and define the most

promising direction for further studies.
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