
Journal of Network and Computer Applications 74 (2016) 31–43
Contents lists available at ScienceDirect
Journal of Network and Computer Applications
http://d
1084-80

n Corr
E-m

alopez-o
sgabriel
journal homepage: www.elsevier.com/locate/jnca
Large profits or fast gains: A dilemma in maximizing throughput
with applications to network processors

Kirill Kogan a, Alejandro López-Ortiz b, Sergey I. Nikolenko c,d, Gabriel Scalosub e,
Michael Segal e,n

a IMDEA Networks Institute, Madrid, Spain
b School of Computer Science, University of Waterloo, Canada
c National Research University Higher School of Economics, St. Petersburg, Russia
d Steklov Mathematical Institute, St. Petersburg, Russia
e Department of Communication Systems Engineering, Ben-Gurion University of the Negev, Israel
a r t i c l e i n f o

Article history:
Received 5 June 2015
Received in revised form
9 March 2016
Accepted 29 July 2016
Available online 5 August 2016

Keywords:
Online buffer management
Online scheduling
x.doi.org/10.1016/j.jnca.2016.07.010
45/& 2016 Elsevier Ltd. All rights reserved.

esponding author.
ail addresses: kirill.kogan@imdea.org (K. Koga
@uwaterloo.ca (A. López-Ortiz), sergey@logic
@bgu.ac.il (G. Scalosub), segal@bgu.ac.il (M. S
a b s t r a c t

We consider the fundamental problem of managing a bounded size queue buffer where traffic consists of
packets of varying size, each packet requires several rounds of processing before it can be transmitted
out, and the goal is to maximize the throughput, i.e., total size of successfully transmitted packets. Our
work addresses the tension between two conflicting algorithmic approaches: favoring packets with
fewer processing requirements as opposed to packets of larger size. We present a novel model for
studying such systems and study the performance of online algorithms that aim to maximize
throughput.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Over the recent years, there has been a growing interest in
understanding the effects that buffer sizing has on network per-
formance. The main motivation for these studies is to understand
the interplay between buffer size, throughput, and queueing delay.
Broadly speaking, one can identify three main types of delay that
contribute to packet latency: transmission and propagation delay,
processing delay, and queueing delay. Recent research that ad-
vocates the usage of small buffers in core routers, aiming to reduce
queueing delay in the presence of (mostly) TCP traffic, sidesteps
the issue that as buffers get smaller, the effect of processing delay
becomes much more pronounced (Ramaswamy et al., 2009). The
importance of these phenomena is further emphasized by in-
creasing heterogeneity of network traffic processing. The modern
network edge is required to perform tasks with ever-increasing
complexity including features such as advanced VPNs services,
deep packet inspection, firewall, intrusion detection etc. Each of
these features may require a different processing effort at the
routers (Wolf and Franklin, 2000), and such features directly affect
processing delay. As a result, the processing method of packets and
the way how these packets are processed (“run-for-completion”,
n),
.pdmi.ras.ru (S.I. Nikolenko),
egal).
processing with preemptions, etc.) may have significant impact on
queueing delay and throughput; increasing the required proces-
sing per packet in some of the flows may cause increased con-
gestion even for traffic with relatively modest burstiness
characteristics.

We should note that in the general case, processing require-
ments are independent of packet lengths, thus decoupling the
amount of work required for a router to process a packet from the
throughput gained upon its successful transmission. Processing
requirement and packet length are indeed two independent
characteristics in the modern networks: a short packet may re-
quire complex processing policies while a long packet may simply
go through almost untouched and vice versa. This independence
lets us design processing policies better suited for different ob-
jective functions (e.g., by optimizing bytes transmitted per pro-
cessing cycle).

This situation leads to several questions relevant to the design
and implementation of router architectures. For instance, in light
of heterogeneous processing requirements in the traffic, does one
need to implement input buffering before a packet is handled by
the network processor? If so, what should the size of such a buffer
be, and what admission control policy should be applied? Another
question is related to adapting common active queue management
(AQM) policies so that they account for heterogeneous processing
required by traffic. In this respect, the main question is whether
current AQM approaches are capable of considering these char-
acteristics; if not, what form should new policies take? In this

www.sciencedirect.com/science/journal/10848045
www.elsevier.com/locate/jnca
http://dx.doi.org/10.1016/j.jnca.2016.07.010
http://dx.doi.org/10.1016/j.jnca.2016.07.010
http://dx.doi.org/10.1016/j.jnca.2016.07.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2016.07.010&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2016.07.010&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2016.07.010&domain=pdf
mailto:kirill.kogan@imdea.org
mailto:alopez-o@uwaterloo.ca
mailto:sergey@logic.pdmi.ras.ru
mailto:sgabriel@bgu.ac.il
mailto:segal@bgu.ac.il
http://dx.doi.org/10.1016/j.jnca.2016.07.010

Table 1
Results summary: lower and upper bounds on the competitive ratio.

Algorithm Lower bound Upper bound

NPO, any priority kL (+)k L 1
PO, SRPT priority L L2
PO, LP priority k +k 3
PO, MEP priority { }k Lmin ,9

16
–

K. Kogan et al. / Journal of Network and Computer Applications 74 (2016) 31–4332
work, we initiate the study of these questions and the tradeoffs
they encompass. We focus on improving our understanding of
effects that processing disciplines have on throughput in cases of
bounded buffers where traffic is heterogeneous in terms of both
packet processing requirements and packet length.

In what follows, we adopt the terminology used to describe
queue management within a router in a packet-switched network.
We focus our attention on a general model for the problem where
we are required to manage the admission control and scheduling
units in a single bounded size queue, where arriving traffic con-
sists of packets, such that each packet is labeled with its size (e.g.,
in bytes), and processing requirement (in processor cycles). A packet
is successfully transmitted once the scheduling unit has scheduled
the packet for processing for at least its required number of cycles,
while the packet resides in the buffer. If a packet is dropped from
the buffer, either upon arrival due to admission control policies or
after being admitted and possibly partially, but not fully, processed
(in scenarios where push-out is allowed), such a packet is irre-
vocably lost. We focus our attention on maximizing the throughput
of the queue, measured by the total number of bytes of packets
that are successfully transmitted by the queue.
2. Our contributions

In this work we provide a formal model for studying problems
of online buffer management and online scheduling in settings
where packets have both varying size and heterogeneous proces-
sing requirements, and one has a limited size buffer to store ar-
riving packets. Our model lets us study the interplay between
potentially conflicting approaches, favouring large packets and
favouring packets with less required processing, in the situation
where the goal is to maximize the total length of transmitted
packets. At least at this point, it is unclear which one is more
significant: if one policy processes longest packets first while an-
other processes packets with minimal residual work, which is
better? The offline version of this problem is NP-hard, as it en-
compasses Knapsack as a special case. For the more natural online
setting, we propose algorithms with provable worst case perfor-
mance guarantees that greedily optimize each one of these char-
acteristics (or a combination of the both). We focus our attention
on priority-based buffer management and scheduling in both
push-out (PO) settings, where admitted packets are allowed to be
pushed out of the queue prior to having its processing completed
(in which case the packet does not contribute to the system's
throughput), and in the non-push-out (NPO) case, where buffer
management decisions are limited to admission control.

Specifically, we consider the following priority queueing re-
gimes: (i) Shortest-Remaining-Processing-Time (SRPT) first, com-
mon in job scheduling environments; (ii) Longest-Packet (LP) first;
(iii) Most-Effective-Packet (MEP) first, prioritizing packets by the
ratio of residual processing requirement to size. We study buffer
management algorithms for these priorities, proving bounds in
terms of (i) maximum packet size and (ii) maximum number of
processing cycles per packet. In the push-out case, to reduce the
number of combinations considered, the same characteristic de-
fines both processing order and push-out mechanism. Our results
are summarized in Table 1.
3. Related work

In recent years, there has been a surge in the study of the ef-
fects of buffer size on traffic queueing delays arising in networking
systems. Appenzeller et al. (2004) studied this problem in the
context of statistical multiplexing, focusing mostly on TCP flows.
More recently, broader aspects of these question were studied, and
a comprehensive overview of perspectives on router buffer sizing
can be found in Vishwanath et al. (2009).

The works (Keslassy and Kogan, 2012; Kogan et al., 2012, 2013;
Azar and Gilon, 2015) considered buffer management and sche-
duling in the context of network processors, where arriving traffic
has heterogeneous processing requirements for unit-sized packets.
They study schedulers with various processing orders in both
push-out and non-push-out buffer management regimes. They
focused on the case where packets are of unit size and showed
competitive algorithms, as well as lower bounds, for such settings.
In particular, an algorithm with logarithmic competitiveness was
introduced in Kogan et al. (2016) and, further, a 2-competitive
algorithm was proposed in Kogan et al. (2012). Also recently, Azar
and Gilon (2015) have considered unit-sized packets with het-
erogeneous processing requirements and proposed a different
2-competitive algorithm than (Kogan et al., 2012) for a single
queue architecture with FIFO processing order and allowed push-
outs.

We believe that the assumption made in Keslassy and Kogan
(2012) that packets are of unit size is rather restrictive, since in
real life NPs have to deal with packets of varying size, and it is
unclear how one should design algorithms that ensure good
throughput guarantees in such highly heterogeneous scenarios.

In the conference version of this work (Kogan et al., 2014), we
stated that the PO policy with MEP-based priorities could have
constant competitiveness in some cases; in particular, this policy is

()+ − −1 L k k L
B

ln -competitive. Here, we will show that in general the

PO policy with MEP-based priority is at least

(){ }k Lmin ,9
16

-competitive, so it is no better than the two other

priorities considered in Kogan et al. (2014) in the worst case.
Our current work can be viewed as part of a larger research

effort that focuses on studying competitive algorithms for buffer
management and scheduling, and specifically the study of such
algorithms in bounded-buffers settings (see, e.g., a recent survey
by Nikolenko and Kogan (2015) which provides an overview of the
latest results). Recently Chuprikov et al. (2015) considered a
weighted throughput optimization for unit-sized packets with
heterogeneous values and processing requirements.

The SRPT algorithm has been studied extensively in OS sche-
duling for multithreaded processors, and it is well known to be
optimal for mean response (Schrage, 1968). However, the SRPT
algorithm as it is understood in literature is not the same as we
study in this work: in the context of job scheduling (Schrage,
1968), SRPT is assumed to have an unlimited buffer and does not
allow for push-out, while we use a limited buffer with push-out.

Additional objectives, models, and algorithms have been stu-
died extensively in this context; see, e.g., Leonardi and Raz (1997),
Muthukrishnan et al. (2005), Rajeev Motwani (1994), Kesselman
and Kogan (2007), Kesselman et al. (2012a,b, 2010), and Kesselman
(2013). A comprehensive overview of competitive online sche-
duling for server systems can be found in Pruhs (2007); however,
OS scheduling is mostly concerned with average response time
and average slowdown, while we focus on providing worst-case
guarantees on the throughput. Furthermore, OS scheduling does

K. Kogan et al. / Journal of Network and Computer Applications 74 (2016) 31–43 33
not allow for dropping jobs, which is an inherent aspect of our
model, as implied by the fact we have a limited-size buffer, and
overflowing packets must be dropped. The model considered in
our work is also closely related to Job-shop scheduling problems
(Brucker et al., 2006), most notably to hybrid flow-shop scheduling
(Ruiz et al., 2010), in scenarios where machines have bounded
buffers. However, while these works focus on system delay, our
main focus is system throughput.

Recently, Sivaraman et al. (2015) explored what should be
flexible to express buffer management policies for different ob-
jectives and suggested the usage of a single queue buffering
architecture.
Fig. 1. An outline of the model. The top subfigure shows the transmission phase,
the middle subfigure shows the arrival phase where packets might be discarded,
and the bottom subfigure shows the assignment and processing phase. The length
of a packet represents its size, and the number stamped on the packet represents
the number of its (residual) required processing cycles.
4. Model description and algorithmic framework

Consider a buffer with bounded capacity of B bytes handling
the arrival of a sequence of packets. Each arriving packet p has a
size { }ℓ() ∈ …p L1, , (in bytes) and a number of required proces-
sing cycles { }() ∈ …r p k1, , ; both ℓ()p and r(p) are known for
every arriving p. Note that required processing characteristics on a
network processor are often highly regular and predictable for a
fixed configuration of network elements (Wolf et al., 2003), so per-
packet processing requirements are expected to be available and
well-defined as a function of the features associated with the flow
and the network element configuration. Our assumption that the
size may be as small as one byte is made for simplicity and can be
viewed as a scaling assumption. The values of maximal required
processing k and maximal size L will play a fundamental role in
our analysis; however, that none of our algorithms need to know k
in advance.

The queue performs two main tasks: buffer management, i.e.,
admission control of new packets and push-out of currently stored
packets, and scheduling, i.e., which of the currently stored packets
are scheduled for processing. The scheduler will be determined by
the priority policy employed by the queue. We assume a multi-core
environment with C processors, so that at most C packets may be
assigned for processing in any given time. Below we assume C¼1;
this setting suffices to show both the intrinsic difficulties of the
model and our algorithmic scheme. We assume slotted time,
where each time slot t consists of 3 phases: (i) transmission, when
packets with zero remaining required processing leave the queue;
(ii) arrival, when new packets arrive, and the buffer management
unit performs both admission-control and possibly push-out; (iii)
assignment and processing, when a single packet is assigned for
processing by the scheduling unit. Fig. 1 depicts our general model.
If a packet is dropped prior to being transmitted (i.e., while it still
has a positive number of required processing cycles), it is lost; we
can drop a packet either upon arrival or due to a push-out decision
while it is in the buffer. A packet contributes its size to the ob-
jective function only upon being successfully transmitted. The goal
of a buffer management algorithm is to maximize the overall
throughput, i.e., total number of bytes transmitted.

We define a greedy buffer management policy as a policy that
accepts all arrivals whenever there is available buffer space in the
queue. We only consider work-conserving schedulers, i.e. sche-
dulers that never leave the processor idle unnecessarily. An ar-
riving packet p pushes out a packet q that has already been ac-
cepted into the buffer iff q is dropped in order to free up buffer
space for p and p is admitted to the buffer instead. A buffer
management policy is called push-out (PO) if it allows packets to
push out currently stored packets and non-push-out (NPO) if it
does not. For an algorithm ALG and a time slot t, we define IBt

ALG

as the set of packets stored in ALG's buffer at time t. The number of
processing cycles of a packet is key to our algorithms. For a time
moment t and a packet p currently stored in the queue, its number
of residual processing cycles rt(p) is defined to be the number of
processing cycles it requires before it can be successfully
transmitted.

We focus our attention on priority queueing disciplines that
define both scheduling and buffer management behavior of the
queue. Specifically, we employ three disciplines that prioritize the
following parameters: (i) processing (SRPT): the packet with the
least number of residual cycles has top priority; (ii) length (LP): the
largest packet has top priority; (iii) processing-to-length (MEP): the
packet with the least residual cycles to size ratio has top priority.

We use competitive analysis (Sleator and Tarjan, 1985; Borodin
and El-Yaniv, 1998) to evaluate performance guarantees provided
by our online algorithms. An algorithm ALG is said to be α-com-
petitive (for some α ≥ 1) if for any arrival sequence s, the total
length of packets successfully transmitted by ALG is at least α1/
times the total length of packets successfully delivered by an op-
timal solution (denoted OPT), obtained by an offline clairvoyant
algorithm.

Next we define the algorithms used below for all types of
characteristics. The Non-Push-Out Algorithm (NPO) is a simple
greedy work-conserving policy that accepts a packet if there is
buffer space available. In the push-out case, the PO algorithm is
defined in Algorithm 2. Note that PO is somewhat conservative in
its use of the buffer. The reason for this will be clear from our results
presented in Sections 7 and 9; the − +B L2 1 position specifically
was chosen to simplify analysis: it does not affect the worst-case
guarantees but leads to simpler proofs of our main results.

We will sometimes use the term value to denote the total
length of a set of packets, and our analysis will be based on
comparing the mapping value obtained by an optimal solution to
that of our algorithm. Specifically, we will make use of mappings

K. Kogan et al. / Journal of Network and Computer Applications 74 (2016) 31–4334
between packets transmitted by OPT and by our algorithm such
that their respective values differ only by a multiplicative factor;
this factor provides a bound on the competitive ratio.

Algorithm 1. NPO(p): buffer management policy.
1: if there is space available in the queue then
2: accept p
3: end if
Algorithm 2. PO(p): buffer management policy.
1
2

3

: accept p
: while the last packet q in the buffer starts above position

− +B L2 1 do
: drop q
: end while
4
5. Useful properties of ordered multi-sets

To facilitate our proofs, we will make use of properties of or-
dered (multi-)sets. These notions, as well as properties we show
they satisfy, will enable us to compare the performance of our
proposed algorithms with the optimal policy possible, for various
priority disciplines. In the following, we consider multi-sets of real
numbers, where we assume each multi-set is ordered in non-de-
creasing order. We will refer to such multi-sets as ordered sets. For
every ≤ ≤i A1 , we will further refer to element ∈a Ai or to []A i
as the ith element in the set A, as induced by the order. Given two
ordered sets A B, , we say ≥A B, if for every i for which both ai and
bi exist, ≥a bi i.

The following lemma, and its corollary, will be a fundamental
tool used throughout our analysis.

Lemma 1. For any two ordered sets A B, satisfying ≥A B, and any
two real numbers a b, such that ≥a b, if (i) ≤ | |b b B or (ii) | | ≤ | |A B then
Fig. 2. Cases of
the ordered sets { }′ = ∪A A a , { }′ = ∪B B b satisfy ′ ≥ ′A B .

Proof. We will refer to elements in A′ and B′ as a′ and b′, re-
spectively. Assume that i and j are the positions of ∈ ′a A and

∈ ′b B , respectively. I.e., ′ =a ai and ′ =b bk . We need to show that
for every k for which both ′a k and ′b k exist, ′ ≥ ′a bk k. We distinguish
between 2 cases:

(a) ≤i j (see Fig. 2(a)): For all <k i, ′ =a ak k, and ′ =b bk k, hence by
the assumption that ≥A B, ′ ≥ ′a bk k. By the assumption that

≥a b, and the fact A′ and B′ are ordered, for every ≥p i and
<q j we have ′ ≥ ′ ≥ ′ ≥ ′a a b bp i j q. In particular, for every

≤ <i k j we have ′ ≥ ′a bk k (by taking = =p q k). For k¼ j,
since A′ and B′ are ordered, and since in the current case ≤i j,
we have ′ ≥ ′ = ≥ = ′a a a b bj i j. For >k j we have
′ = ≥ = ′− −a a b bk k k k1 1 , where the inequality follows from the
assumption that ≥A B.

(b) >i j (see Fig. 2(b)): For all <k j, ′ =a ak k, and ′ =b bk k, hence by
the assumption that ≥A B, ′ ≥ ′a bk k. For k¼ j,

′ ≤ ′ = ≤ = ′+b b b a ak k k k k1 , which follows from the fact that b
is inserted in slot j¼k, B′ is ordered, the assumption that ≥A B
and ≤ | |b b B or | | ≤ | |A B . For < <j k i, ′ = ≤ ≤ = ′− −b b a a ak k k k k1 1 ,
which follows from the assumption that ≥A B. For k¼ i,

= ′ ≥ ≥ = ′− −a a a b bi i i i1 1 . For >k i, ′ = ≥ = ′− −a a b bk k k k1 1 .

We are therefore guaranteed to have ′ ≥ ′A B , as required. □

The following corollary shows that the same result holds if we
add an item to only one of the sets.

Corollary 2. For any two ordered sets A B, satisfying ≥A B, and any
real number b, if (i) ≤ | |b b B or (ii) | | ≤ | |A B then the ordered set

{ }′ = ∪B B b satisfies ≥ ′A B .

Proof. Assume that b is inserted in B′ in location j. Consider a
virtual item a, such that { }>a a bmax ,A . We now virtually con-
sider adding both a and b to sets A and B, respectively. By Lemma
1, it follows that the resulting sets ′ ′A B, satisfy ′ ≥ ′A B . Notice that
the first A elements of ′A is exactly the set A (by the choice of a),
Lemma 1.

K. Kogan et al. / Journal of Network and Computer Applications 74 (2016) 31–43 35
implying that we also have ≥ ′A B . □
6. Non-push-out policies

While non-push-out algorithms may have different priorities
for the admission policy (which packets to admit from a set of
simultaneously arriving packets), they cannot push already ad-
mitted packets out. As a result, the worst-case bounds are very
similar for all three priorities we consider, and we simply prove a
unified lower and upper bound on NPO performance for any ad-
mission policy.

Theorem 3. NPO is at least kL-competitive and at most
(+)k L 1 -competitive.

Proof. We begin with the lower bound. To show a lower bound,
we need to present a “hard” sequence of arriving packets. Consider
a burst of B 1-byte packets with k processing cycles arriving on the
first time slot; NPO invariably accepts them all and begins pro-
cessing, while OPT is free to reject them. On the second time slot,
there arrive B L-byte packets with 1 processing cycle each; they are
accepted by OPT, and it begins processing. After that, every kth
time slot there arrives a 1-byte packet with k processing cycle (to
fill up NPO buffer), and on other time slots L-byte packets with
1 processing cycle arrive, filling up OPT queue. As a result, OPT
transmits L bytes per time slot while NPO transmits 1 byte per k
time slots, getting the bound in question (asymptotically, since
NPO is working on the very first time slot).

To prove the upper bound, note that NPO must fill up its buffer
before it drops any packets. Moreover, so long as the NPO buffer is
not empty, after at most k time steps NPO must transmit its HOL
packet. This means that NPO is transmitting at a rate of at least
1 byte per k time steps, while OPT can transmit at most k packets
of size L each over k time slots. Hence, the number of transmitted
bytes at time t for NPO is at least t k/ (we assume that k divides t
evenly for simplicity of exposition) while OPT transmitted at most
tL bytes for a competitive ratio of kL so long as the NPO buffer is
not empty.

If NPO empties its buffer first, this means that the NPO buffer
was congested at some point, so NPO has transmitted at least B
bytes, and OPT can transmit at most B more bytes before more
packets arrive to the NPO queue. The overall ratio is therefore at
most +tL B

t k/
under the condition that ≥t B, yielding the bound. □

Thus, the simplicity of non-push-out greedy policies does have
its price. In the following sections we explore the benefits and
analyze performance of push-out policies.
7. Buffer management with SRPT priorities

In this section we address the buffer management problem of
when the queueing discipline gives higher priority to packets with
fewer required processing cycles. We show first a lower and then
an upper bound for the PO Algorithm 2 with SRPT priorities. In this
and subsequent sections we focus our attention on the push-out
case since non-push-out results have already been shown in Sec-
tion 6 for all considered priorities.

Theorem 4. For >B L2 , PO is at least L-competitive for SRPT-based
priorities.

Proof. Assume that B L/ is an integer. All packets received will
have a single residual pass. Consider the following sequence of
arrivals. At the beginning − +B L2 1 1-byte packets arrive. PO
accepts all of them. OPT drops all of them. Later on during the
same time slot B L/ packets of length L arrive, each with a single
residual pass. PO drops all of them since their value is no better
than the value of packets in its buffer, but OPT accepts all of them
and thus OPT buffer is full. During each following time slot one
1-byte packet arrives, each requiring a single processing cycle,
followed by one packet of size L bytes, requiring a single pro-
cessing cycle. PO accepts all 1-byte packets but it does not accept
any of the L-bytes packets. Thus, for each time slot when there
are arrivals, OPT transmits a packet of size L, and at the same time
PO transmits a 1-byte packet. At the end, OPT transmits B bytes
while PO transmits − +B L2 1 additional bytes. Therefore, +B nL
and − + +B L n2 1 bytes are transmitted by OPT and PO, re-
spectively, where n is a number of time slots with non-empty
arrivals. We obtain that for ⪢n B, PO cannot have a competitive
ratio better than L. □

Next, we show one of our main results, an upper bound for PO
with SRPT priorities.

Theorem 5. For >B L2 , PO is at most −L4 2-competitive for SRPT-
based priorities.

In what follows we assume that OPT never pushes out packets.
Such an optimal solution exists since one can consider the whole
input being available to OPT a priori. Thus, all packets accepted by
OPT are transmitted. Our analysis will be based on describing a
mapping of packets in OPT's buffer to packets transmitted by PO,
such that every packet q transmitted by PO has at most −L4 2
bytes of OPT associated with it. To facilitate the exposition we
describe packet processing as if packets arrive individually and
sequentially one at a time, although in reality more than one
packet might arrive at a single time step t. The mapping will be
dynamically updated for each packet arrival and for each packet
transmission, in both OPT and PO.

Mapping routine: During the transmission phase we distinguish
between three cases:

T0 If both OPT and PO do not transmit then the mapping re-
mains unchanged.
T1 If PO transmits a packet q then we remove its mapped image
in OPT's buffer from future consideration in the mapping. The
subset of these OPT packets or bytes that stay in OPT buffer at
the end of transmission phase are called of type 1.
T2 If OPT transmits a packet p but its mapped packet q in PO is
not transmitted then p is termed a packet of type 2. (We will
show next that this case never occurs).

At time t, denote by Mt
O the ordered set of residual pass values

for all non-type 1 OPT packets. All MO
t values are grouped into

blocks in the following way. A block is a minimal subset of con-
secutive MO

t values starting from the lowest position that is not
covered by any previous block, such that the overall length of the
packets associated with the block is at least L. The minimal value
in each block is called a block representative. Denote by Rt an or-
dered set of representatives at time t. In addition we denote by Mt

P

an ordered set of processing cycles values of packets in PO's buffer
at time t.

After the arrival at time t of a packet p we distinguish between
the following cases:

A0 If p is not accepted by both OPT and PO, then the mapping
remains unchanged.
A1 If after acceptance of p some PO packets were dropped then
clear the mappings by step A1 between these PO packets and its
mapped OPT mates. If p remains in PO's buffer and p is an ith
packet in it perform a (P, i)-mapping-shift (see Fig. 3(a)): for each
non-empty jth block b and jth PO packet q, with ≥j i clear the
mapping to q by step A1 and map all packets of block b to q. If p

Fig. 3. Example of the mapping used in the proof of Lemma 7, and the mapping shifts performed by the analysis. The white OPT packets should be mapped and white PO
packets are available for mapping. The blue OPT packets are of type 1. (For interpretation of the references to color in this figure caption, the reader is referred to the web
version of this paper.)

K. Kogan et al. / Journal of Network and Computer Applications 74 (2016) 31–4336
is accepted by OPT to the jth block, perform an (O,j)-mapping-
shift (see Fig. 3(b)): clear all mappings by step A1 between
packets of the old lth block and lth PO packet (if both exist),

≥l j, recompute blocks starting from the jth and map packets of
lth block to lth PO packet if both exist, ≥l j.
A2 Clear all mappings assigned by step A2. Map packets of all
unmapped blocks to the HOL PO packet.

Lemma 6. (1) The mapping is feasible.
(2) The total length of packets of the same block is at

most −L2 1.
Proof. 1. By definition PO accepts the arriving packet and all the
packets with packet start above − +B L2 1 are dropped. Hence, if
after applying step A1 of the mapping routine there are still un-
mapped OPT packets then the PO buffer must contain at least one
packet. Therefore, all OPT packets unmapped by step A1 are
mapped by step A2.

2. In the worst case an total length of all packets in the block
except the last one is −L 1 and the last packet of the same block
has length L, so the claim follows. □

Lemma 7. After the t-th packet arrives , if an OPT packet p is mapped
to a (possibly transmitted) PO packet q then () ≥ ()r p r qt t . Moreover,

K. Kogan et al. / Journal of Network and Computer Applications 74 (2016) 31–43 37
all OPT packets are mapped , and at most −L2 1 bytes are mapped to
each PO packet by step A1, and possibly at most −L2 1more bytes are
mapped to the HOL packet by step A2 at any time t.

Proof. We prove the lemma by induction on the number of ar-
rived packets. For the base, consider that the first arriving packet
p; by definition PO always accepts it. If p is dropped by OPT then
the claim trivially holds. If p is accepted by OPT, it creates a new
block with representative p. Clearly, () ≥ ()r p r p1 1 , all OPT packets
are mapped, and at most L bytes are mapped to the PO packet p,
and the base holds.

Assume by induction that for any time ′ <t t , after the arrival of
the ′t -th packet it holds that for any OPT packet p that is mapped
to a (possibly transmitted) PO packet q, () ()≥′ ′r p r qt t . Moreover, all
OPT packets are mapped and at most −L2 1OPT bytes are mapped
to each PO packet by step A1. In addition at most −L2 1 OPT bytes
are mapped to the HOL packet in PO buffer at time ′t by step A2.

Clearly, if a representative of a block ′p mapped to a PO packet q
by step A1 satisfies () ()′ ≥′ ′r p r qt t at time ′t , then for any packet ″p
of the same block () ()″ ≥′ ′r p r qt t . To show that this holds after the
tth packet arrives, it suffices to consider the ordered set of re-
presentatives −Rt 1 and its update after this arrival and show that

≥R Mt t
P . By the induction hypothesis the remaining number of

processing cycles of any OPT packet is at least the number of
processing cycles of its PO counterpart, i.e., ≥− −R Mt t

P
1 1, and there

are no OPT packets of type 2 formed while the first −t 1 packets
were accepted. Denote by ′Rt

1 a set of representatives of blocks
mapped by step A1. Since all packets of the same block are map-
ped to the same PO packet, ≤− −R Mt t

P
1

1
1 .

We denote by −t the time slot just before the arrival of the t-
th packet. First suppose that a transmission occurs before the t-th
packet arrives, i.e., between the t-th and (−)t 1 -th packet arrivals
at least one packet is transmitted by OPT or PO. By the induction
hypothesis, it is impossible for OPT to transmit a packet corre-
sponding to the first value in −Mt

P
1 before the packet whose value is

the first in −Mt
P

1, and this holds for any sequence of transmissions
prior to the t-th arrival. Therefore, if PO transmits between the

−t 1-th and t-th arrival, −Mt
P is reduced by one. On the other hand,

−Mt
O is reduced by the number of packets in the first block (if any)

mapped by step A1 to the packet sent by PO. Hence, ≤− −R Mt t
P1 .

Moreover, any value mapped by step A2 to a packet transmitted by
PO is removed from −Mt

O upon this transmission (by the definition
of Mt

O which consists of non-type 1 packets only). Thus, =− −R Rt t
1

and ≤− −R Mt t
P in this case, and the claim holds at time −t , in

particular ≥− −R Mt t
P .

Consider now the arrival of the t-th packet p. We distinguish
the following cases.

Case 0 OPT does not accept p and PO accepts and immediately
drops p. We are done.
Case 1 PO does not drop p, OPT does not accept p. In this case,

= −R Rt t and it suffices to show that ≥−R Mt t
P .

Case 1.1 ≥− −R Mt t
P : Since ≤− −R Mt t

P1 , some OPT packets
represented in −Rt are mapped by step A2. In this case, the last
packet in PO buffer occupies the (− +)B L2 1 -th byte (each
block has length ≥L, each block is mapped to a single PO
packet, and all bytes in PO buffer are available for mapping).
PO does not drop p, so the value of rt(p) is at most the last

value in Mt
P . Since OPT does not accept p, by Corollary 2(i),

{ }≥ ∪ () =− −R M r p Mt t
P

t t
P .

Case 1.2 ≤− −R Mt t
P1 : Again, since in this case OPT does not

accept p, by Corollary 2(ii), { }≥ ∪ () =− −R M r p Mt t
P

t t
P .

Case 2 OPT accepts p, PO drops p. In this case = −M Mt
P

t
P , and rt(p)

is larger than any value in MP
t . Let l be the position of p in OPT
buffer. For any ≥m l the mth OPT packet has more residual
cycles than any value in MP

t , so for any OPT packet ′p mapped to
PO packet q by step A1 ()(′) ≥r p r qt t , and we have ≥R Mt t

P .
Case 3 OPT accepts p, PO does not drop p. If ≤− −R Mt t

P or

≥− −R Mt t
P , then similar to the Cases 1.1 and 1.2, by Lemma 1

we have that { } { }′ = ∪ () ≥ ∪ () =− −R R r p M r p Mt t t
P

t t
P . There-

fore, in this case it suffices to show that ≥ ′R Rt , which in turn

implies ≥R Mt t
P . Let j denote the index of the block where p is

inserted in OPT. We have to consider two possibilities for the
position of p's number of processing cycles in ′R , which could be
either the jth or (+)j 1 -st.
Case 3.1 ()′ =⎡⎣ ⎤⎦R j r pt : In this case p now serves as the re-
presentative of block j, i.e., [] = ()R j r pt t . If ℓ() =p L then p
forms a full block and [] = [−]−R m R m 1t t

1 for all >m j.
Therefore, ≥ ′R Rt (actually, in this case we have strict equal-
ity). Otherwise, ℓ() <p L, and at least as many residual pro-
cessing cycles as the (+)l 1 th element will join the jth block
after recomputation (since such a block must add at least L to
total length). We therefore have [] ≥ []−R m R mt t

1 for all >m j.
Since ′ = −−⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦R m R m 1t , >m j, this case follows.
Case 3.2 ()′ + =⎡⎣ ⎤⎦R j r p1 t : In this case the representative of
block j remains unchanged, i.e., ′ = = −⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦R j R j R jt t and

′ = −−⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦R m R m 1t , > +m j 1. Since p belongs to the jth
block after acceptance and rt(p) is not a representative of the
block, then [+] ≥ ()R j r p1t t . Since after recomputation re-
presentatives will move up for no more than one block in Rt
compared to −Rt 1, [] ≥ [−]−R m R m 1t t , > +m j 1. Therefore,

≥ ′R Rt and this case follows.

Now let us show that there are sufficiently many PO packets to
map all of OPT packets such that at most −L2 1 bytes are assigned
by step A1 to each transmitted packet of PO and additionally at
most −L2 1 bytes are assigned to the HOL packet of PO by step A2.
Recall that the claim holds for time −t . Consider the arrival of the
t-th packet p. If PO accepts p, then the claim holds, since this new
packet can support the block changes (and possible addition) that
may potentially occur if OPT also accepts p. If PO does not accept p
then by the definition of PO this can only happen if the buffer
occupancy of PO is at least − +B L2 1. Clearly, the total length of a
block mapped by step A1 to any PO packet is at most −L2 1 (by
definition). Furthermore, since we have shown that ≥R Mt t

P , and
by definition the blocks are of total length at least L, it must follow
that the total length of packets in PO covers at least this amount of
total length of packets in OPT mapped to PO by step A1. It follows
that the remaining total length of packets in the buffer of OPT that
are not mapped by step A1 can be at most −L2 1 (the possibly
unused space in PO). It follows that the total length of packets
mapped to the HOL packet of PO by step A2 is at most −L2 1, as
required. □

Theorem 5 now follows immediately from Lemma 7. Next we
generalize the previous mapping and show how to improve the
upper bound of PO for sufficiently large buffers.

Theorem 8. PO is at most (−)(+)L N
N

2 1 1 -competitive for SRPT-based
priorities , where = − +

−
⎡⎢ ⎤⎥N B L

L
2 1

2 1
.

The idea is to redistribute bytes mapped by step A2 between

different PO packets. Let = − +
−

⎡⎢ ⎤⎥N B L
L
2 1

2 1
. We consider an updated

version of step A2 that maps at most −L
N

2 1 value to each PO packet.
The mapping routine is unchanged during the transmission phase
and now it operates on Mt

O as follows. Denote by MO
t at time t the

ordered set of values of processing cycles of type 1 OPT packets
that are not mapped by the step A2 as defined below. We now
exclude from future consideration by step A1 all OPT packets

K. Kogan et al. / Journal of Network and Computer Applications 74 (2016) 31–4338
mapped by step A2 even before their PO mates are transmitted.
The definition of block, representative, Rt, and Mt

P remain un-
changed.When a packet p arrives at time t, steps A0 and A1 remain
unchanged. Next we define the steps that do change.

A2 If prior to t there are no bytes mapped by step A2 and after
the t-th A1 step there are still Y unmapped OPT bytes then a jth
portion of Y

N
bytes unmapped by step A1 map to PO packet

whose mapped block contains the ((−)(−) +)j L1 2 1 1 -st byte x,
≤ ≤j N1 . We say that x “defines” a mapping of this portion of

still unmapped bytes. Let Y be the overall length mapped by
step A2 prior to time t and still there are Y0 unmapped bytes
after applying step A1 during time t. Let the mapping of the Yth
byte assigned by step A2 be the lth byte in the OPT buffer. Map
each jth portion of Y

N
0 still unmapped by step A1 byte to PO

packet whose mapped block contains the ((−) + +)j L l2 1 1 st
byte, ≤ ≤j N1 . Observe that both these bytes can be remapped
to the other PO packet during the (O,j)-mapping-shift.
A3 Values unmapped by steps A1 and A2 are assigned to the
HOL PO packet. We will show that step A3 is never applied and
is required only for completeness.

The mapping is feasible since during arrivals the PO buffer
contains at least one packet and any value that is unmapped by
steps A1 and A2 is assigned by step A3 to the HOL PO packet.
Lemma 6(2) remains the same. The next lemma is very similar to
Lemma 7. Namely, if an OPT packet p is mapped by step A1 to a
(possibly transmitted) PO packet q then () ≥ ()r p r qt t . The fact that
the total value assigned to each PO packet is at most (−)(+)L N

N
2 1 1

follows from the fact that for each OPT packet p that is mapped by
step A1 to a PO packet q at any time t, () ≥ ()r p r qt t , the maximal
block size is −L2 1 bytes. Theorem 8 follows immediately from
Lemma 9.

Lemma 9. After arrival of the t-th packet , if an OPT packet p is
mapped to a (possibly transmitted) PO packet q then () ≥ ()r p r qt t .

Moreover, all OPT packets are mapped and at most (−)(+)L N
N

2 1 1 value is

mapped to each PO packet at time t , where = − +
−

⎡⎢ ⎤⎥N B L
L
2 1

2 1
.

Corollary 10. If > −B L L4 22 then PO is at most L2 -competitive for
SRPT-based priorities .
8. Buffer management with LP priorities

We begin with a lower bound for the PO algorithm with LP-
based priorities and then proceed to an upper bound of PO with
LP-based priorities.

Theorem 11. PO is at least k-competitive for LP-based priorities on a
sufficiently long sequence .

Proof. Here, we will consider a push-out version of OPT for sim-

plicity of description. Assume B
L
be an integer value. Consider a

cycle of L iterations of the first type and later sequence of >n 0
iterations of the second type (defined below). Each iteration of the
first type contains −k 1 time slots. At the beginning of the ith

iteration of the first type ⎡⎢ ⎤⎥B
i

packets of i bytes with k processing

cycles arrive and later during the same time slot ⎡⎢ ⎤⎥B
i

packets of i

bytes with 1 processing cycles arrive. OPT drops the first sub-
sequence and accepts the second. On the other hand, PO accepts
the first subsequence and drops the second. So during each
iteration of the first type OPT transmits (−)i k 1 bytes but PO
transmits zero bytes. At the beginning of the next iteration of the
first type both algorithms push out already admitted packets that
still remain in their buffers.

After the Lth iteration, both buffers are nearly full with packets
of size L, but with k processing cycles in the case of PO and one
residual pass in the case of OPT. Now a sequence of the second
type starts. After the last transmission by PO, +k 1 packets arrive
in the following order: first one L-byte packet with k passes and
thereafter k packets of length L with a single residual pass. The
first packet is accepted by PO and dropped by OPT. The latter −k 1
packets are dropped by PO and accepted by OPT. Each buffer is
completely full again. So during each iteration of the second type
OPT transmits kL bytes but PO only L bytes. After n iterations of the
second type the overall transmission of OPT is + +(+)(−) knL BL L k1 1

2
while PO transmits +Ln B bytes. Thus, the lower bound on com-
petitive ratio of PO is (+)(−) + +

(+)
L L k kLn B

Ln B
1 1 2 2

2
. □

Theorem 12. PO is at most (+)k 3 -competitive for LP-based prio-
rities with sufficiently big buffers.

Sketch. The mapping routine during the transmission phase re-
mains the same as in Section 7.

Mapping routine ϕ: During the transmission phase we distin-
guish between the three following cases:

T0 If neither OPT nor PO transmits then the mapping remains
unchanged.
T1 If PO transmits a packet q then we remove its mapped image
in OPT's buffer from future consideration in the mapping. A
subset of these OPT packets or bytes that stays in the OPT buffer
at the end of transmission are called of type 1.
T2 If OPT transmits a packet p but its mapped packet q in PO is
not transmitted then p is termed a packet of type 2.

During the arrival of a packet p at time t steps A0, A2 and A3 are
the same as in Theorem 8. At time t, denote by Mt

O a set of non-
type 1 packets sojourns in OPT buffer and not mapped by step A2.
In addition is ordered in non-increasing order of packet length. All
MO

t packets are grouped into blocks in the following way. Let q be
an ith packet in PO buffer at time t. An ith block is defined in the
following way. Consider a minimal set B0 of packets starting from
the lowest position that are represented in MO

t and not covered by
any other block whose overall required work is at least rt(q). If the
overall length of all packets in B0 is at least ℓ()q then B0 forms a
block. Otherwise, add to B0 a minimal set of packets B1 starting
from the first packet that is represented in MO

t and not covered by
B0 such that the overall length of packets in ∪B B0 1 will be at least
ℓ()q . In this case a set of packets that is covered by ∪B B0 1 defines a
block. Denote by ℓ()X the overall length of packets and by rt(X) the
overall required work in a set of packets X at time t. A block b that
is mapped to a PO packet q is called fully mapped to a packet q at
time t if ℓ() ≥ ℓ()b q and () ≥ ()r b r qt t . Observe that it is possible that
ℓ()B0 will be less than its PO counterpart. In this case OPT may
later accept packets that will not be accepted by PO.

We define a new step A1 where the blocks are recomputed
after a (P,i)-mapping-shift.

A1 If after p is accepted some PO packets were dropped then
clear the mappings by step A1 between these PO packets and its
OPT counterparts. If p remains in PO buffer and p is the ith
packet in PO buffer, perform a (P,i)-mapping-shift: clear all
mappings by step A1 between packets of the old lth block in
OPT buffer and lth packet in PO buffer, ≥l j, recompute blocks
from jth and map packets of lth block to the lth PO packet if
both exist, ≥l j. If p is accepted by OPT to the jth block, perform
an (O,j)-mapping-shift: clear all mappings by step A1 between
packets in OPT buffer of the old lth block and lth packet in PO

K. Kogan et al. / Journal of Network and Computer Applications 74 (2016) 31–43 39
buffer (if both exist), ≥l j, recompute blocks from jth and map
packets of lth block to lth PO packet if both exist, ≥l j.

Clearly, the mapping is feasible since if OPT accepts some
packet that is not accepted by PO, PO buffer contains at least one
packet. Since affected blocks are recomputed after each (P,i)-
mapping-shift and (O,j)-mapping-shift and by definition of a block b
that is mapped to a PO packet q at time t, ℓ() ≥ ℓ()b q and

() ≥ ()r b r qt t . Thus, we will consider sufficiently big buffers where
−L

B
2 1 tends to zero and because of the above properties of the block
step A2 will introduce at most additional ϵ value for each PO
packet. Hence, for each packet q transmitted by PO, OPT transmits
at most (+) () + ϵk l q1 by steps A1 and A2. Denote by T the total
number of bytes transmitted by PO and by P the total number of
bytes transmitted by OPT during processing of pushed-out PO
packets. Thus, the competitive ratio is at most (+ +) +k e T P

T
1 . Now let

us estimate P and substitute it into the previous expression. For
each pushed-out by PO packet p denote by T(p) a number of time
slots when p was HOL before it was pushed-out. Clearly, that the
process of push-outs of packets that have positive T(p) will be
stopped once all packets will have a maximal packet length L or it
can continue during each time slot when there is at least one
packet in PO buffer of length smaller than L. Moreover, if push-out
happens the buffer occupancy is at least − +B L2 1. Denote by a
set of PO packets pushed-out during this interval of time. So for
each − +B L2 1 bytes transmitted by PO, P is bounded by
∑ () () ≤ ∑ ()] ≤ (+)∈ ∈T p l p kl p kL L 1 /2p p . Thus, PO is at most

(+ +ϵ) + (+)
(− +)

k B kL L
B L

2 1 1
2 2 1

-competitive. For the buffers that are significantly

bigger than (+)kL L 1 , PO is at most +k 3-competitive. □
9. Buffer management with MEP priorities

In this section we study the performance of a BM implementing
PQ, where priorities are set in accordance with the non-increasing
order of processing cycles divided by packet length. This priority is
dubbed the Most Effective Packet first priority (MEP), or the effec-
tive-ratio priority. Recall that our objective here is to maximize the
number of bytes transmitted in total. Non-push-out results are
similar to Section 6.

The following theorem provides a lower bound on the perfor-
mance of the push-out MEP policy. Note that it is significantly

larger (worse) than the lower bound of ()+ − −1 L k k L
B

ln previously

proven in Kogan et al. (2014) (Theorem 13); while we had hoped
that MEP priorities might have good competitiveness guarantees,
the following result shows a linear lower bound, making MEP
basically no better than the other policies in the worst case.

Theorem 13. PO with MEP-based priorities is at least

(){ }k Lmin ,9
16

-competitive.

Proof. We show the bound for the case of = = =B k L n. On the
first time slot, there arrives an n

2
-byte packet with n processing

cycles followed by a 1-byte packet with 2 processing cycles. PO
begins processing the larger packet, while OPT drops it and begins
processing the 2-byte packet. On the second time slot, there arrives
an +n 2

2
-byte packet with n processing cycles followed by a 1-byte

packet with 2 processing cycles. Since >+
(−)

n
n

n
n

2
2 2 1

, it pushes out the
previous large packet, and PO begins processing the large packet.
This is repeated until on the n

4
-th time slot, there arrives an n-byte

packet with n processing cycles. By this point, PO has not processed
a single packet, and its buffer contains only the last n-byte packet,
while OPT has already processed n

8
1-byte packets and has n

8
more

of them in the queue. In a time slot, there arrive n, 1-byte packets
with 1 processing cycle each; PO does not accept them since their
ratio is worse than
−
n

n 1
; OPT buffer is now full of these 1-byte

packets. For the next − 1n
2

steps, PO keeps processing the large
packet while OPT keeps processing the 1-byte packets. Finally,
when PO has a packet with n bytes and − 1n

2
processing cycles, a

packet with 2 bytes and 1 processing cycle arrives, replacing it in PO
buffer, and then both algorithms finish their packets. As a result of
this sequence, OPT has processed +n n

8
bytes in total while PO has

processed 2 bytes, getting the bound. □
10. Simulation study

10.1. General remarks

In order to obtain a better understanding of the differences
between our proposed solutions, we conducted a simulation study
where we evaluate the performance of each policy in terms of
throughput and address the effect of variable processing require-
ments on the average delay in the system.

Publicly available traffic traces (such as CAIDA) do not contain,
to the best of our knowledge, information on the processing re-
quirements of packets. Furthermore, these requirements are dif-
ficult to extract since they depend on the specific hardware and NP
configuration of the network elements. Another handicap of such
traces is that they provide no information about time-scale, and
specifically, how long should a time-slot last. This information is
essential in our model in order to determine both the number of
processing cycles per time-slot, as well as traffic burstiness. We
therefore perform our simulations on synthetic traces. Our simu-
lation results are based on traffic composed of the interleaving of
100 independent sources, with each source generated by an on–off
bursty process modeled by a Markov-modulated Poisson process
(MMPP). During every time slot, each source has probability 0.05
to be switched on, and once switched on, probability 0.2 to be
switched back off. When a source is on, it emits packets with in-
tensity λon, which represents one of the parameters governing
traffic generation. Each generated packet is assigned two para-
meters: (i) required processing chosen uniformly at random from
{ }… k1, , (k being the maximum amount of processing required by
any packet), and (ii) packet length, chosen uniformly at random
from { }… L1, , (L being the maximum length of a packet in the
system). Each of our results follows from simulating the system for
5, 000, 000 time slots; we allowed different parameters to vary in
each set of simulations in order to better understand the effect
each parameter has on system performance and further validate
our analytic results and algorithmic insights.

We simulated the throughput performance of our three pro-
posed policies, all based on the greedy algorithm depicted in Al-
gorithm 2: (i) SRPT, (ii) LP, and (iii) MEP. In order to obtain a better
qualitative differentiation between the policies, we compared
their throughput performance with that of a “virtual” policy, which
serves as an approximate upper bound on the optimal throughput
possible. This virtual policy essentially transforms each arriving
packet requiring ′ ≤k k processing cycles, and having length
ℓ′ ≤ K , into ′k distinct packets, each requiring one processing cycle,
and having length ℓ′ ′k/ , using the LP/MEP as the scheduling and
admission criteria (they are equivalent for such virtual inputs).
Clearly the performance of this virtual policy serves as an ap-
proximate upper bound on the performance of the optimal policy,
since this policy profits from any partial processing of a packet. We
use this approximation since finding the actual optimal algorithm
would be computationally prohibitive: even identifying the best
set of packets to store in a single time step is equivalent to the
knapsack problem which is NP-hard. In Figs. 4(a), 5(a) and 6(a),
which demonstrate the throughput performance of the system, the
y-axis represents the ratio between the throughput obtained by a

Fig. 4. Throughput performance (a) and latency (b) as a function of incoming stream intensity λon for three different values of maximal packet length L.

K. Kogan et al. / Journal of Network and Computer Applications 74 (2016) 31–4340
policy and the throughput obtained by the virtual policy (which
serves as an approximate upper bound on the optimal policy).

Another set of results produced by our simulation study deals
with the average queuing delay of packets for each of the policies
considered. As mentioned in the introduction, queueing delay has
long been known to be directly related to the buffer size available
for the queue. Our work tries to shed light on the role of variable
processing requirements as a major factor affecting queueing delay
in such heterogeneous environments and relate this latency per-
formance to that of the attainable throughput. In Figs. 4(b), 5
(b) and 6(b), which demonstrate the average latency in the system,
the y-axis represents the average latency (in time slots) overall
packets delivered.

We present here only a small sample of our results, aiming to
explore the effect of various parameters examined in our study.
Specifically, we consider the effect of offered-load, average num-
ber of processing required by a packet, buffer size, and average
packet length. For each of the first three parameters here men-
tioned, we present a cross section of the effect of average packet
length by providing three plots corresponding to maximum al-
lowed packet length values =L 10, 15, 25.

10.2. Varying traffic intensity

Fig. 4 shows the system performance as a function of increased
average load, where we increase the rate of each independent
source by increasing the parameter λon which governs packet in-
tensity during a burst period. Fig. 4(a) shows that, in general, MEP
is the best policy (this will always be the case throughout our si-
mulations). However, when examining the other two policies, al-
though as traffic intensity increases SRPT significantly outperforms
LP, under low load conditions and small values of L, LP outper-
forms SRPT. This indicates that under moderate load conditions,
and when packet length variability is small, it is best to prioritize
longer packets rather than by their processing requirements.
When either as traffic intensity increases (or packet length varia-
bility grows), the system will be prone to increased congestion,
whose alleviation is possibly by preferring packets which take a
shorter time to process. As for the latency, Fig. 4(b) shows that
average latency increases up to a certain point, and then steadily
decreases. This increase occurs in moderate load conditions, where
all algorithms are “forced” to accept non-favorable packets. How-
ever, as traffic intensity increases, all algorithms have a better
selection of packet to accept, and each will focus on its more
preferable packets, thus resulting in decreasing packet latency.

10.3. Increasingly heterogeneous processing requirements

Fig. 5 shows the system performance as we allow packet pro-
cessing requirement to increase, both in value and in variability. As
demonstrated in Fig. 5(a), while the MEP policy outperforms both
other policies, for relatively small L we observe a transition from
LP to SRPT as the second best policy. One can see that while the
average number of processing cycles is relatively low, the LP policy
outperforms the SRPT policy, while as the average number of re-
quired processing increases beyond some threshold, SRPT

Fig. 5. Throughput performance (a) and latency (b) as a function of maximal required work k for three different values of maximal packet length L.

K. Kogan et al. / Journal of Network and Computer Applications 74 (2016) 31–43 41
becomes superior to LP. This behavior is similar to that observed in
the study of the effect of traffic-intensity on the performance in
Section 10.2. This coincides with the intuition that the actual no-
tion of load in the system is actually the product of the average
required processing and packet arrival rate. The simulation results
presenting the effect of increasing load and increasing required
processing on the system's throughput are in accordance with the
results obtained in our analytic study, which show that the ratio
between the parameters k and L indeed corresponds to which of
the policies is expected to be superior. The latency graphs here
(Fig. 5(b)) are mostly strictly increasing, with latency becoming
pronounced as the overall arrival load (in the sense just described)
topping the system's processing service rate (this occurs at around
k¼5). When examining the differences in latency as average
packet length increases, one can see that the average latency (for
the same values of k) is inversely proportional to the average
packet length. This is due to the fact that every successful trans-
mission when packets are larger leaves reduces the delay of
packets remaining in the queue.

10.4. The effect of buffer size

Fig. 6 shows the effect buffer size has on system performance.
Fig. 6(a) shows that buffer size has relatively little effect on the
differences in throughput: all three policies relatively quickly
achieve their corresponding maximal performance and stay there
as buffer size grows further. This is due to the fact that beyond a
certain point, packet arrival rate is smoothed by the availability of
buffer space. In terms of latency, Fig. 6(b) shows a steady increase
in latency, which should be ascribed to queueing delay. However,
the LP policy exhibits the best performance in these scenarios
since it favors the transmission of longer packets first, which al-
leviate the latency sensed by the remaining packets in the buffer.

In general, our results clearly show that the MEP policy is better
than both other policies with respect to throughput. Note that in
terms of latency the best policy (MEP) does not necessarily out-
perform other policies: since it processes more packets, some of
them must wait for their turn longer.

Our simulation results and the insights they provide can serve
as a rule of thumb in choosing the best policy for a specific net-
work scenario, depending on expected traffic characteristics.
11. Conclusion

Increasingly heterogeneous packet processing requirements in
modern networks pose novel design challenges to NP architects. In
this work we study the impact of two important characteristics,
maximal required processing k and maximal packet size L, and
show the significance of the relationship between k and L. We
introduce three different priority regimes for processing: SRPT, LP,
and MEP, and study their performance in queues with bounded
buffers. We present results for both non-push-out, as well as push-
out buffer management algorithms, which give guarantees on the
worst-case performance of such algorithms, without resorting to
any assumptions on the process generating the traffic. Due to this

Fig. 6. Throughput performance (a) and latency (b) as a function of buffer size B for three different values of maximal packet length L.

K. Kogan et al. / Journal of Network and Computer Applications 74 (2016) 31–4342
approach, results can be globally applicable in various networking
environments which may deal with highly heterogenous traffic
patterns.

Our results show that implementing a push-out mechanism,
although potentially costly in terms of vendor implementation, has
a significant impact on the system's performance, primarily in
terms of throughput. In general, in this case two characteristics (size
and processing requirements) introduce a natural tradeoff between
“large profits” from processing large packets and “fast gains” from
processing packets with small processing requirements. Interest-
ingly, our results indicate that from the point of view of worst case
guarantees, it suffices to optimize only one of these characteristics,
and MEP priorities do not bring any significant improvements.

Straightforward remaining open questions include closing the
gaps between the upper and lower bounds shown in Table 1.
Another interesting direction would be to consider weighted
throughput where each packet also has an intrinsic value; this will
cover some other practical cases such as differentiation of service
frameworks.
Acknowledgments

The work of Sergey Nikolenko was partially supported by the
Government of the Russian Federation Grant 14. Z50.31.0030 and
the Russian Presidential Grant for Young pH. D.s MK-7287.2016.1.
The work of Gabriel Scalosub was supported by the Israel Science
Foundation (Grant no. 1036/14). Work by Michael Segal has been
supported by Israel Science Foundation (Grant no. 317/15), by IBM
Corporation and by Israel Ministry of Economy and Industry.
References

Guido Appenzeller, Isaac Keslassy, Nick McKeown, 2004. Sizing router buffers. In:
SIGCOMM, pp. 281–292.

Yossi Azar, Oren Gilon, 2015. Buffer management for packets with processing times.
In: Algorithms—ESA 2015—23rd Annual European Symposium, Patras, Greece,
September 14–16, 2015, Proceedings, pp. 47–58.

Borodin, Allan, El-Yaniv, Ran, 1998. Online Computation and Competitive Analysis.
Cambridge University Press, Cambridge, UK.

Brucker, Peter, Heitmann, Silvia, Hurink, Johann, Nieberg, Tim, 2006. Job-shop
scheduling with limited capacity buffers. OR Spectr 28 (2), 151–176.

Pavel, Chuprikov, Nikolenko, Sergey I., Kogan, Kirill, 2015. Priority queueing with
multiple packet characteristics. In: 2015 IEEE Conference on Computer Com-
munications, INFOCOM 2015, Kowloon, Hong Kong, April 26–May 1, 2015, pp.
1418–1426.

CAIDA The Cooperative Association for Internet Data Analysis. [Online] 〈http://
www.caida.org/〉.

Keslassy, Isaac, Kogan, Kirill, Scalosub, Gabriel, Segal, Michael, 2012. Providing
performance guarantees in multipass network processors. IEEE/ACM Trans
Netw 20 (6), 1895–1909.

Kesselman, Alexander, Kogan, Kirill, 2007. Nonpreemptive scheduling of optical
switches. IEEE Trans Commun 55 (6), 1212–1219.

Kesselman, Alexander, Kogan, Kirill, Segal, Michael, 2010. Packet mode and qos
algorithms for buffered crossbar switches with fifo queuing. Distrib Comput 23
(3), 163–175.

Kesselman, Alexander, Kogan, Kirill, Segal, Michael, 2012. Best effort and priority
queuing policies for buffered crossbar switches. Chic J Theory Comput Sci 2012.

Kesselman, Alexander, Kogan, Kirill, Segal, Michael, 2012. Improved competitive
performance bounds for cioq switches. Algorithmica 63 (1–2), 411–424.

Kesselman, Alexander, Patt-Shamir, Boaz, Scalosub, Gabriel, 2013. Competitive
buffer management with packet dependencies. Theory Comput Sci 489–490,

http://refhub.elsevier.com/S1084-8045(16)30154-0/sbref1
http://refhub.elsevier.com/S1084-8045(16)30154-0/sbref1
http://refhub.elsevier.com/S1084-8045(16)30154-0/sbref2
http://refhub.elsevier.com/S1084-8045(16)30154-0/sbref2
http://refhub.elsevier.com/S1084-8045(16)30154-0/sbref2
http://www.caida.org/
http://www.caida.org/
http://refhub.elsevier.com/S1084-8045(16)30154-0/sbref3
http://refhub.elsevier.com/S1084-8045(16)30154-0/sbref3
http://refhub.elsevier.com/S1084-8045(16)30154-0/sbref3
http://refhub.elsevier.com/S1084-8045(16)30154-0/sbref3
http://refhub.elsevier.com/S1084-8045(16)30154-0/sbref4
http://refhub.elsevier.com/S1084-8045(16)30154-0/sbref4
http://refhub.elsevier.com/S1084-8045(16)30154-0/sbref4
http://refhub.elsevier.com/S1084-8045(16)30154-0/sbref5
http://refhub.elsevier.com/S1084-8045(16)30154-0/sbref5
http://refhub.elsevier.com/S1084-8045(16)30154-0/sbref5
http://refhub.elsevier.com/S1084-8045(16)30154-0/sbref5
http://refhub.elsevier.com/S1084-8045(16)30154-0/sbref6
http://refhub.elsevier.com/S1084-8045(16)30154-0/sbref6
http://refhub.elsevier.com/S1084-8045(16)30154-0/sbref7
http://refhub.elsevier.com/S1084-8045(16)30154-0/sbref7
http://refhub.elsevier.com/S1084-8045(16)30154-0/sbref7
http://refhub.elsevier.com/S1084-8045(16)30154-0/sbref8
http://refhub.elsevier.com/S1084-8045(16)30154-0/sbref8

K. Kogan et al. / Journal of Network and Computer Applications 74 (2016) 31–43 43
75–87.
Kogan, Kirill, López-Ortiz, Alejandro, Nikolenko, Sergey I., Sirotkin, Alexander, 2013.

Multi-queued network processors for packets with heterogeneous processing
requirements. In: Proceedings of the 5th International Conference on Com-
munication Systems and Networks (COMSNETS 2013), pp. 1–10.

Kogan, Kirill, López-Ortiz, Alejandro, Nikolenko, Sergey I., Sirotkin, Alexander V.,
2012. A taxonomy of semi-FIFO policies. In: Proceedings of the 31st IEEE In-
ternational Performance Computing and Communications Conference (IPCCC
2012), pp. 295–304.

Kogan, Kirill, López-Ortiz, Alejandro, Nikolenko, Sergey I, Sirotkin, Alexander V.,
2016. Online scheduling fifo policies with admission and push-out. Theo-
ry Comput. Syst. 58 (2), 322–344.

Kogan, Kirill, López-Ortiz, Alejandro, Nikolenko, Sergey I., Scalosub, Gabriel , Segal,
Michael, 2014. Balancing work and size with bounded buffers. In: Proceedings
of the 6th International Conference on Communication Systems and Networks
(COMSNETS 2014), pp. 1–8.

Leonardi, Stefano, Raz, Danny, 1997. Approximating total flow time on parallel
machines. In: STOC, pp. 110–119.

Motwani, Rajeev, Phillips, Steven, Torng, Eric, 1994. Non-clairvoyant scheduling.
Theory Comput Sci 130 (1), 17–47.

Muthukrishnan, S., Rajaraman, Rajmohan, Shaheen, Anthony, Gehrke, Johannes E.,
2005. Online scheduling to minimize average stretch. SIAM J Comput 34 (2),
433–452.

Nikolenko, Sergey I., Kogan, Kirill, 2015. Single and multiple buffer processing. In:
Encyclopedia of Algorithms. Springer, Philadelphia.
Pruhs, Kirk, 2007. Competitive online scheduling for server systems. SIGMETRICS

Perform Eval Rev 34 (4), 52–58.
Ramaswamy, Ramaswamy, Weng, Ning, Wolf, Tilman, 2009. Analysis of network

processing workloads. J Syst Archit —Embed Syst Des 55 (10–12), 421–433.
Ruiz, Rubén, Vázquez-Rodrígue, José Antonio, 2010. The hybrid flow shop sche-

duling problem. Eur. J. Oper. Res. 205(1), 1–18.
Schrage, Linus, 1968. A proof of the optimality of the shortest remaining processing

time discipline. Oper Res 16, 687–690.
Sivaraman, Anirudh, Subramanian, Suvinay, Agrawal, Anurag, Chole, Shar-

ad, Chuang, Shang-Tse, Edsall, Tom, Alizadeh, Mohammad, Katti, Sa-
chin, McKeown, Nick, Balakrishnan, Hari, 2015. Towards programmable packet
scheduling. In: Proceedings of the 14th ACM Workshop on Hot Topics in Net-
works, Philadelphia, PA, USA, November 16–17, 2015, pp. 23:1–23:7.

Sleator, Daniel Dominic, Tarjan, Robert Endre, 1985. Amortized efficiency of list
update and paging rules. Commun. ACM, 28(2), 202–208.

Vishwanath, Arun, Sivaraman, Vijay, Thottan, Marina, 2009. Perspectives on router
buffer sizing: recent results and open problems. Comput Commun Rev 39 (2),
34–39.

Tilman Wolf, Mark A. Franklin, 2000. Commbench—a telecommunications bench-
mark for network processors. In: ISPASS, pp. 154–162.

Wolf, Tilman, Pappu, Prashanth, Franklin, Mark A., 2003. Predictive scheduling of
network processors. Comput Netw 41 (5), 601–621.

http://refhub.elsevier.com/S1084-8045(16)30154-0/sbref8
http://refhub.elsevier.com/S1084-8045(16)30154-0/sbref8
http://refhub.elsevier.com/S1084-8045(16)30154-0/sbref3466
http://refhub.elsevier.com/S1084-8045(16)30154-0/sbref3466
http://refhub.elsevier.com/S1084-8045(16)30154-0/sbref3466
http://refhub.elsevier.com/S1084-8045(16)30154-0/sbref3466
http://refhub.elsevier.com/S1084-8045(16)30154-0/sbref9
http://refhub.elsevier.com/S1084-8045(16)30154-0/sbref9
http://refhub.elsevier.com/S1084-8045(16)30154-0/sbref9
http://refhub.elsevier.com/S1084-8045(16)30154-0/sbref10
http://refhub.elsevier.com/S1084-8045(16)30154-0/sbref10
http://refhub.elsevier.com/S1084-8045(16)30154-0/sbref10
http://refhub.elsevier.com/S1084-8045(16)30154-0/sbref10
http://refhub.elsevier.com/S1084-8045(16)30154-0/sbref11
http://refhub.elsevier.com/S1084-8045(16)30154-0/sbref11
http://refhub.elsevier.com/S1084-8045(16)30154-0/sbref11
http://refhub.elsevier.com/S1084-8045(16)30154-0/sbref12
http://refhub.elsevier.com/S1084-8045(16)30154-0/sbref12
http://refhub.elsevier.com/S1084-8045(16)30154-0/sbref12
http://refhub.elsevier.com/S1084-8045(16)30154-0/sbref13
http://refhub.elsevier.com/S1084-8045(16)30154-0/sbref13
http://refhub.elsevier.com/S1084-8045(16)30154-0/sbref13
http://refhub.elsevier.com/S1084-8045(16)30154-0/sbref14
http://refhub.elsevier.com/S1084-8045(16)30154-0/sbref14
http://refhub.elsevier.com/S1084-8045(16)30154-0/sbref14
http://refhub.elsevier.com/S1084-8045(16)30154-0/sbref14
http://refhub.elsevier.com/S1084-8045(16)30154-0/sbref15
http://refhub.elsevier.com/S1084-8045(16)30154-0/sbref15
http://refhub.elsevier.com/S1084-8045(16)30154-0/sbref15

	Large profits or fast gains: A dilemma in maximizing throughput with applications to network processors
	Introduction
	Our contributions
	Related work
	Model description and algorithmic framework
	Useful properties of ordered multi-sets
	Non-push-out policies
	Buffer management with SRPT priorities
	Buffer management with LP priorities
	Buffer management with MEP priorities
	Simulation study
	General remarks
	Varying traffic intensity
	Increasingly heterogeneous processing requirements
	The effect of buffer size

	Conclusion
	Acknowledgments
	References

