
Multi-Queued Network Processors for Packets
with Heterogeneous Processing Requirements

Kirill Kogan Alejandro López-Ortiz
School of Computer Science

University of Waterloo
{kkogan, alopez-o}@uwaterloo.ca

Sergey I. Nikolenko
Steklov Mathematical Institute

St. Petersburg Academic University
St. Petersburg, Russia

sergey@logic.pdmi.ras.ru

Alexander V. Sirotkin
St. Petersburg Institute for
Informatics and Automation

St. Petersburg Academic University
St. Petersburg, Russia

alexander.sirotkin@gmail.com

Abstract—Modern network processors (NPs) increas-
ingly deal with packets with heterogeneous processing
requirements. In this work, we consider the fundamental
problem of managing a bounded size buffer at the input
queue of an NP. Incoming traffic consists of packets, each
packet requiring several rounds of processing before it can
be transmitted out of the queue. The objective is to maxi-
mize the total number of successfully transmitted packets.
In such an environment, it is well known that Shortest-
Remaining-Processing-Time (SRPT) first scheduling with
push-out is optimal [1]. However, it is hard to implement
both priority queueing (PQ) by remaining processing and
the push-out mechanism simultaneously in an NP. We
explore alternatives for this architecture, addressing the
simplicity vs. performance system design tradeoffs. We
design a simplified architecture and provide worst-case
guarantees for its throughput performance in different
settings. We also conduct a comprehensive simulation study
that validates our results.

Keywords: scheduling, buffer management, routers, on-
line algorithms, competitive analysis.

I. INTRODUCTION

Network Processors (NPs) are widely used to perform
packet processing tasks in modern high-speed routers.
These architectures are efficient for simple traffic pro-
files. However, modern intelligent networking requires
sophisticated features such as advanced VPN services,
deep packet inspection, firewalls and intrusion detection,
to name just a few [2]–[5].

Processing requirements can be approximately pre-
dicted on an NP for a given configuration [6]. Moreover,
in OpenFlow [7] reactive configuration mode required
processing can be estimated by the controller.

A buffer management policy plays a significant role
in an NP architecture to guarantee that packets with
long processing do not monopolize the processor. One
property that has significant impact on the performance
of buffer management policies is the processing order

of packets (“run-for-completion”, processing with recy-
cles etc. [1]). Another important property of a buffer
management policy is its ability to push out already
admitted packets. This can have an even stronger effect
on performance than the choice of processing order. It
is well known that, in the case of a single queue, a
greedy push-out policy PQ that processes a packet with
minimal required processing first is optimal with respect
to throughput [1]. To understand the impact of push-out
on the throughput performance, recall that a greedy push-
out policy that implements FIFO or FIFO with recycles
processing order is at least Ω(log k)-competitive versus
the optimal clairvoyant algorithm [1], [8] where k is the
maximal possible required processing. At the same time,
non-push-out policies with the same processing orders
have poor (k-competitive) performance in the worst
case [1], [8]. However, it is a complex task from both a
logical and system point of view to implement both an
advanced processing order and a push-out mechanism
simultaneously.

A. Our Approach and Contributions

The first interesting question that we study is to find a
simplified architecture that has, on one hand, comparable
throughput guarantees to a single queue architecture that
implements PQ order but, on the other hand, does not
require implementation of the push-out mechanism and
advanced processing order. As an example of such an
alternative, we consider a multi-queued system where
each queue accepts packets with a given processing
requirement, and the total size of all queue buffers is the
same as the buffer size in the single queue architecture
(see Fig. 1). One major advantage of such a system is a
significantly simpler implementation: since each queue
holds packets with the same processing requirement,
there is no need for a push-out mechanism, and a given
queue simply processes packets in FIFO order. This978-1-4673-5494-3/13/$31.00 © 2013 IEEE

separation provides an additional opportunity to allocate
different processing bandwidths to packets from different
queues in order to implement more sophisticated QoS
mechanisms; admission control can be applied to each
queue separately, in a fully distributed manner. More-
over, if queues are implemented as separate buffers then
total memory bandwidth increases proportionally to the
number of queues.

An obvious drawback of this architecture is the pre-
configured limit on the size of each queue, so that buffers
are not shared between packets with different processing
requirements. However, in many applications this is not
a limitation but rather an additional advantage since it is
desirable to limit the number of packets from the same
class. In this work, we explore the effect of such sys-
tem simplifications on performance. Our contributions
include: (1) a new queuing architecture for packets with
heterogeneous processing, (2) performance analysis for
this system, and (3) a simulation study to validate our
conclusions.

Once we have introduced a simplified multi-queue
architecture, the next step is to design a buffer manage-
ment policy with the best possible performance. At first,
we concentrate on throughput maximization. The first
question is to understand the impact of two important
characteristics: buffer occupancy and residual work. It
is unclear which one is more significant: if one policy
processes packets from the longest queue while another
processes packets with minimal residual work, which is
better? We tackle this question in Section II-A. Once
this property is clear, we define a simple greedy algo-
rithm that optimizes this property and evaluate system
performance. As a result, we estimate competitive ratios
and the value of speedup needed to achieve optimal
throughput. We demonstrate that a moderate speedup
between 3

2 and 2 suffices to obtain results on par with
the optimal single queue case. For systems with only
two kinds of processing requirements, 1 and k (this is a
special case that often occurs in practice), the proposed
algorithm has near optimal performance.

The multi-queue architecture is more flexible than the
original single queue-case; it yields a straightforward
implementation of the fairness property between dif-
ferent types of traffic identified by residual work. We
consider an implementation of fairness on two different
levels: packet-based and cycle-based. We demonstrate
that fairness does have its price, and in Section II-D,
we estimate the impact of fairness on throughput. In
Section III, we demonstrate that none of the proposed
reasonable policies are comparable in the worst case.

Although in Section IV we conduct a comprehen-

sive simulation study to validate our results, the main
emphasis of this work is on worst-case performance
guarantees for the introduced architecture. Our results
provide performance guarantees that are independent
of the incoming traffic distribution and its processing
requirements, which is desirable since properties of
heterogeneous processing often differ significantly be-
tween various locations in the network, and there are
no universal stochastic assumptions to be made about it.
An additional advantage of the worst-case approach is
that we are able to estimate the required speedup factor
(in our case number of cores) to guarantee performance
close to optimal for any type of arrivals.

B. Related Work

Keslassy et al. [1] were the first to consider a single
queue buffer management and scheduling in the context
of network processors with heterogeneous processing
requirements for arriving traffic. They studied both PQ
(Priority Queue) and FIFO schedulers with recycles, in
both the push-out and the non-push-out buffer manage-
ment cases, where a packet is recycled after processing
according to the priority policy. For the case of FIFO
with recycles, only preliminary results were obtained.
Kogan et al. [8] considered the FIFO case for packets
with heterogeneous processing and proved several upper
and lower bounds for the proposed algorithms.

Our current work can be viewed as part of a larger
research effort concentrated on studying competitive
algorithms for buffer management of bounded buffers. A
recent survey by Goldwasser [9] provides an excellent
overview of this field. This line of research, initiated
in [10], [11], has received a colossal attention over the
past decade.

Various models have been proposed and studied,
including QoS-oriented models where packets have
weights [10]–[13] and models where packets have de-
pendencies [14], [15]. A related field that has recently
attracted much attention focuses on various switch ar-
chitectures and aims to design competitive algorithms
for such multi-queued scenarios; see, e.g., [16]–[20].
However, these models do not cover the case of packets
with heterogeneous processing requirements.

Pruhs [21] provides a comprehensive overview of
competitive online scheduling for server systems. Note
that scheduling for server systems is mostly concentrated
on average response time, but we focus mostly on the
throughput estimation. Moreover, scheduling of server
systems does not allow jobs to be dropped, which is an
inherent aspect of our model due to limited-size buffer.

Fig. 1. A sample time slot. On the left: a single priority queue with buffer of size B = 6; on the right: a multi-queued switch with three
queues (here k = 3) and buffer of size B = 2 each. Dashed lines enclose buffers. Note that the sets of packets in the buffers at the end of the
time slot are different.

C. Model Description
Consider a system with k separate queues, each queue

holding packets with the same initial required process-
ing. In what follows we assume that all queues are of
the same size B. For the case of a single core NP
architecture, we consider k×1 input-queued switch. For
the multi-core case, we consider the same k × 1 input-
queued switch with a speedup of S, i.e., with S general
purpose cores that can process packets from any one of
k queues.

We consider a model with arbitrary packet arrival,
i.e., incoming traffic is not governed by any specific
stochastic process and may be adversarial. Arrivals come
in a sequence of unit-sized packets. Each arriving packet
p is labelled by the number of required processing
cycles r(p) ∈ {1, . . . ,k} that defines the corresponding
input queue. This number is essentially the number of
times the packet should be processed before it can be
successfully transmitted. In practice, r(p) may be an
approximation, or may become known after the first pass
rather than from the start.

In what follows, we adopt the terminology used in
[22]. A policy performs two main tasks, namely buffer
management, which handles admission control of newly
arrived packets, and scheduling that chooses a queue
whose head of line (HOL) packet will be processed
next. We assume discrete slotted time, each time slot t
consisting of three phases: (i) arrival: new packets arrive,
and the buffer management unit performs admission
control; (ii) scheduling: a packet is processed according
to a scheduling policy; (iii) transmission: packets with
zero required processing are transmitted and leave the

queue. In case of nontrivial speedup S > 1, scheduling
and transmission run S times per time slot.

Note that unlike the optimal single-queued architec-
ture, a packet may be dropped only upon arrival (there
is no push-out). A packet contributes one unit to the
objective function when it is successfully transmitted.
The goal is to devise buffer management algorithms that
maximize the overall throughput, i.e., the total number
of packets transmitted from the queue.

We define a greedy buffer management policy as a
policy that accepts all arrivals if there is available buffer
space in the queue. A policy is work-conserving if it
always processes whenever it has admitted packets that
require processing in the queue.

The number of processing cycles of a packet is key to
our algorithms. Formally, for every time slot t and every
packet p currently stored in the queue, its number of
residual processing cycles, denoted rt(p), is defined to
be the number of processing cycles it requires before it
can be successfully transmitted. The required processing
of an already transmitted packet is zero. A packet p is
better than packet q at time t if rt(p) ≤ rt(q). We denote
by r(p) the required work of a packet p during arrival.
In what follows, we denote by m a packet that requires
m ≤ k processing cycles; by l× m , a burst of l packets
where each one requires m processing cycles.

In this work, we do not assume any specific traffic dis-
tribution but rather analyze our switching policies against
adversarial traffic using competitive analysis [23], [24],
which provides a uniform throughput guarantee for all
traffic patterns. An online algorithm A is said to be α-
competitive (for some α ≥ 1) if for any arrival sequence

σ the number of packets successfully transmitted by A
is at least 1/α times the number of packets successfully
transmitted by an optimal solution (denoted OPT) ob-
tained by an offline clairvoyant algorithm.

II. PRICE OF SIMPLICITY

In this section we evaluate the price of simplicity.
The multi-queue setting has no push-out mechanism and
does not have to sort packets by required processing –
so how much worse is it? Here we concentrate on
maximizing throughput performance and ignore other
additional important properties such as fairness; we will
return to them later: the impact of fairness on throughput
performance will be evaluated in Section II-D.

A. Throughput Maximization

In this section, we analyze the impact of different
characteristics on throughput maximization. Once the
“dominant” characteristic is found, we define a simple
greedy algorithm that optimizes this characteristic and
evaluate system performance in these settings from the
perspective of worst-case performance under adversarial
traffic. We identify two major characteristics that can
potentially affect throughput performance: buffer occu-
pancy and required processing.

First, we concentrate on the buffer occupancy char-
acteristic and propose the Longest-Queue-First (LQF)
online policy that proactively processes the HOL packet
of a currently longest queue to accommodate with the
future potential incoming burst. Note that a lower bound
on the competitive ratio is bad news for the policy:
it means that it is that much worse than the optimal;
conversely, an upper bound shows that the policy is at
least that good.

Theorem 1: LQF is at least m
2 -competitive for m =

min{k,B}.
Proof: In this case, in the first burst we send m× m

and m× 1 . Over the next m+ 1 steps, LQF processes
2 packets (one 1 and one m) while OPT processes
m packets from queue 1. Then the burst is repeated.

Theorem 1 demonstrates that a processing order that is
based on buffer occupancy statistics does not really help
in bursty traffic. Next, we introduce a different policy
that also uses the buffer occupancy characteristic but
processes a packet from a currently shortest queue. We
call this policy Shortest-Queue-First (SQF).

Theorem 2: SQF is at least k-competitive.
Proof: First burst: 1× k and B × 1 ; then every

step one more 1 arrives, and every k steps one more
k arrives. Thus, SQF will always be processing queue
k with one packet since it is always the shortest while
OPT is free to process queue 1 on every time slot.

Theorems 1 and 2 demonstrate that there is little
difference in the worst case between policies based
on the buffer occupancy characteristic and a policy
that processes any available packet first (note that any
reasonable policy has a trivial upper bound of k since
as long as packets are available, it is able to process at
least one packet per k time slots). Next, we consider the
second characteristic and introduce another policy that,
in contrast to the previous ones, does not care about the
current buffer occupancy and processes a packet from
a non-empty queue with minimal required processing.
We call it Minimal-Queue-First (MQF). For the lower
bound, note that MQF may spend substantial effort
processing a queue which will never be congested.

Theorem 3: MQF is at least
(
1 + k−1

2k

)
-competitive.

Proof: During the first time slot, there arrive B ×
k − 1 and B × k . Over the next B(k − 1) steps,

MQF processes all packets from queue k − 1 while
OPT processes k−1

k B packets from queue k. Then the
second burst arrives with B × k , filling queue k for
both algorithms; then they both are allotted time enough
to flush out. As a result, MQF has processed 2B packets
while OPT has processed 2B+ k−1

k B packets, and this
sequence can be repeated to get the bound.

Theorem 3 demonstrates that processing requirement
potentially has a greater impact on the throughput than
buffer occupancy. In the next section, we prove an upper
bound, namely we demonstrate that MQF is at most
2-competitive. Thus, we will show that even moderate
speedup in the (1,2] range can guarantee almost optimal
throughput for a multi-queued architecture with the
MQF policy for heterogeneous packet processing.

In Section II-C, we consider a special case with
only two queues. This special case is interesting by
itself: one queue (with one kind of required processing)
may correspond to “commodity” packets processed to
completion while the second queue may hold packets
with “advanced” features that require k cycles. We prove
a tight bound on MQF competitiveness in this case.

The opposite of MQF, a policy MaxQF that processes
maximal valued queue first, is obviously the worst policy
among those we consider in this work.

Theorem 4: MaxQF is at least k-competitive.
Proof: Fill queues 1 and k and keep them full.

MaxQF will always process k s while OPT can con-
centrate on 1 s.

B. Upper Bound on the Competitiveness of MQF

Theorem 5: MQF is at most 2-competitive.
To prove the main result we introduce the notion of

an iteration. An iteration is a time interval between two

Fig. 2. Mapping of OPT fractions to MQF fractions. The sub-figure (a) demonstrates a mapping of a common packet to itself. The sub-figure
(b) demonstrates a mapping of an additive OPT packet to pprev that is mapped to MQF fractions. We are to show that a size of each such
pprev fraction is at most the size of a mapped MQF fraction and at the end of an iteration all pprev packets are transmitted.

closest time slots s and e such that at the beginning
of time slot s and at the end of time slot e, MQF
buffer is empty. We consider the version of OPT that
at the beginning of time slot e+ 1 transmits all packets
still residing in OPT buffer, with extra gain to OPT’s
throughput. Denote by TA the set of packets transmitted
by an algorithm A during an iteration. A packet p that
is accepted by algorithm A1 but is not accepted by
algorithm A2 is called additive for A1. A packet that
is accepted by both algorithms OPT and MQF is called
common. The following lemma introduces a constraint
on OPT that does not violate optimality.

Lemma 1: There exists an optimal offline algorithm
that accepts TMQF during an iteration.

Proof: During an iteration for each additive MQF
packet there exists at least one additive OPT packet.
Since MQF is choosing for processing a non-empty
queue with minimal required processing first, for each
additive MQF packet p there is an additive OPT packet
q. If r(p) ≤ r(q) then such packets can be simply
exchanged in OPT’s schedule. Otherwise, there are
no better arrivals while processing a “heavy” additive
MQF packet p which lets MQF complete processing
the heavier packet. So in both cases the algorithm that
implements the OPT schedule during an iteration after
the exchange of such p and q additive packets in MQF
and OPT schedules, respectively, remains optimal.

From this point on we consider the constrained version
of OPT that obeys Lemma 1. To account for the number
of accepted OPT packets, we introduce a mapping m
from the set of packets admitted by OPT, POPT, to
the set of packets admitted by MQF, PMQF. Thus, a
common packet p admitted by both OPT and MQF
belongs to POPT ∩ PMQF. An additive OPT packet q

belongs to POPT \ PMQF; by Lemma 1, there are no
additive MQF packets during an iteration.

We map every common packet to itself: m(p) = p
for p ∈ POPT ∩ PMQF (see Fig. 2(a)). Now let us
consider additive OPT packets. Let b denote the buffer
that would hold a packet p if admitted. For the purposes
of this analysis we treat each buffer bi as an unbounded
linear array bi[1..∞] with a sliding window of size
B (buffer capacity). For example, consider buffer b2
initially holding packets q, q′ and q′′. Then the window
currently spans from position 1 to position B in the array,
with the following assignments: b2[1] = q, b2[2] = q′,
b2[3] = q′′, b2[4] = ∅, . . ., b2[B] = ∅. Now if a packet
q is processed and transmitted, the current window over
b2 covers 2, . . . B + 1 with B + 1 initialized as empty.

Recall that MQF has a greedy admission policy, so the
only way in which an additive OPT packet p is created
is when p arrives and b is full under the MQF policy,
while b has available space under the OPT scheduling
policy. We denote by bMQF

t and bOPT
t the corresponding

state of b under each of the two policies respectively at
time t. If the value of t is clear we omit the subscript.

Since MQF’s buffer is full while OPT is not, there
is only one possible reason for this discrepancy: OPT
processed packets in b ahead of MQF in the schedule.

Let i denote the cell in bOPT into which the additive
packet p is admitted to. Now we focus on the packet
pprev in position bOPT[i−B]. Informally, we can think
of pprev as the packet that had to be processed and
transmitted out by OPT in order to make space for the
additive packet p freshly admitted into bOPT.1

For this case we extend the mapping m to a fractional

1Note, however, that by the time p arrives bOPT might well have
more than one available cell.

mapping in which a given packet in POPT can be
partitioned into segments, with each part being mapped
to a fractional part of a packet in PMQF. We then will
show that the sum of the fractional pre-images of a
packet q ∈ PMQF is at most 1 and that, furthermore,
over the entire iteration the number of common packets
transmitted by MQF is equal to or larger than the
number of additive packets created by OPT during
iteration. This plus the packet from the identity mapping
of common packets gives a competitive ratio of two.

The fractional mapping works as follows.
Let r := r(pprev). For every time slot when pprev

was being processed by OPT we map a 1/r fraction
of pprev to a 1/r(q) fraction of the packet q that was
being processed by MQF at exactly that time (Fig. 2(b)).
We have to prove that q always exists. By Lemma 1, at
most B − 1 packets have been admitted to bOPT since
OPT processed pprev. Hence, at the time pprev was pro-
cessed by OPT, bMQF must have contained at least one
packet as otherwise bMQF could not presently be full.
Moreover, at least one of these packets, termed qprev ,
is still presently in bMQF. This means that for every
time interval when pprev was being processed MQF had
qprev in its buffer. Furthermore, by its greedy nature, at
that time MQF was processing packets q1, q2, . . . qr (not
necessarily distinct) with required work r(qi) no larger
than r as otherwise MQF would have processed qprev;
equivalently, 1/r ≤ 1/r(qi) for all 1 ≤ i ≤ r.

To finish the proof it remains to count how many
additive packets in bOPT were mapped to how many
common packets in bMQF. The first number is obtained
by adding the fractional components of additive packets
in bOPT while the second corresponds to the sum of
their fractional images in bMQF. Let N be a number
of additive OPT packets that are created during an
iteration, |POPT − PMQF|. Then N =

∑W
i=1 1/ri ≤∑W

i=1 1/r(qi) ≤ |PMQF|, where W is the total work
by OPT on additive packets.

Since all pprev packets are transmitted at the end of
an iteration and assigned MQF fractions are bigger or
have the same size as the mapped OPT mates, the 2-
competitiveness of MQF follows. This result holds for
any value of speedup S ≥ 1 since the mapping routine
does not depend on S.

C. Tight Bounds for Two-Queued MQF

In this section, we study the special case when there
are only two types of packets, a and b , corresponding
to only two queues in the system. For this special case,
we show exactly matching lower and upper bounds.

In what follows, we assume that a < b and call smaller
packets a-packets and larger packets b-packets. We call

an iteration a period of time between two time slots
during which the MQF buffer is empty.

We begin with the lower bound that gives an enlight-
ening example for the upper bound’s proof.

Theorem 6: The competitiveness of MQF with two
queues is at least(

1 +
1 +

⌊
aB−1
b

⌋
B +

⌈
1
a

(
b
⌊
aB−1
b

⌋
+ 1
)⌉) .

Proof: We denote A =
⌈
1
a

(
b
⌊
aB−1
b

⌋
+ 1
)⌉

. First
burst: B × b and A × a . In time Aa, MQF has
processed all a-packets while OPT has processed at least⌊
aB−1
b

⌋
b-packets and spent one extra unit of work on

the next b-packet. We now wait for b − 1 more time
steps so OPT processes one more b-packet while MQF
gets its first b-packet down to 1 . Then we send enough
packets to fill both buffers in both algorithms and wait
for them to flush out, obtaining the bound.

Now we show that this bound is tight.
Theorem 7: The competitiveness of MQF with two

queues is at most(
1 +

1 +
⌊
aB−1
b

⌋
B +

⌈
1
a

(
b
⌊
aB−1
b

⌋
+ 1
)⌉) .

Lemma 2: At any time moment, MQF has processed
at least as many a-packets as OPT.

Proof: Straightforward: MQF gives top priority to
a-packets, so if OPT has not dropped an a-packet, MQF
has not dropped it either.

Lemma 3: At any time moment during an iteration
(i.e., when MQF buffer is not empty), MQF has pro-
cessed at least as many packets as OPT in this iteration.

Proof: During an iteration, MQF is never idle;
therefore, Lemma 2 implies that it processes at least as
many packets as OPT: the total work of MQF is at least
the same as OPT’s, and MQF has processed at least as
many smaller packets.

Note that Lemma 3 does not imply that MQF is
optimal: after an iteration OPT buffer may be nonempty,
so OPT wins the remaining packets over MQF.

Lemma 4: The total number of a-packets processed
by OPT and left in OPT’s buffer at the end of an
iteration equals the total number of a-packets processed
by MQF during this iteration.

Proof: Obviously, OPT does not drop a-packets if
it can avoid it, otherwise we could substitute processing a
b-packet with the dropped a-packet and thus get a policy
with the same number of packets but less work.

Proof of Theorem 7: First of all, if queue b is never
congested during an iteration, MQF works optimally,

and we are done. Hence, we consider an iteration during
which at least B packets have entered queue b.

We denote by A the number of a-packets MQF has
processed over an iteration; by Lemma 2, OPT has also
processed no more than A a-packets (in total during the
iteration and left over after the iteration). We denote by
D the total number of b-packets processed by MQF. If
the total number of b-packets processed by OPT and
left over in OPT’s buffer is less than the number of
b-packets processed by MQF then OPT is worse than
MQF which is impossible; thus, this OPT’s number is
at least D, and we denote by E the number of extra
b-packets that OPT has.

The work spent by OPT on extra b-packets cannot
exceed the work spent by MQF on a-packets, i.e.,
aA, plus possibly some extra work that has not led to
processing any more packets; this extra work does not
exceed b− 1 (in Theorem 6, we have shown where this
extra work can actually come from): aA+ b− 1 ≥ bE.

Note that if A > B then OPT has had to spend time
on at least (A − B) a-packets during the iteration (see
Lemma 4), so OPTs extra work in this case does not
exceed aB, and

E ≤
⌊
aB + b− 1

b

⌋
= 1 +

⌊
aB − 1

b

⌋
.

After the iteration is over and OPT has flushed its
buffer (we assume that OPT processes all leftover pack-
ets before the next iteration), MQF has processed A+D
packets while OPT has processed at most A + D + E
packets, for a ratio of 1 + E

A+D . Since D ≥ B,

E

A+D
≤ E

A+B
≤ E

B +
⌈
1
a (bE − b+ 1)

⌉ ,
and this fraction is monotonically increasing as E in-
creases so we can substitute the upper bound for E.

Observation 1: For systems with only two kinds of
packets 1 and k (this is a special case that often
occurs in practice), our bound simplifies to

1 +
1 +

⌊
B−1
k

⌋
B + 1 +

⌈⌊
B−1
k

⌋
k
⌉ ,

which exactly equals 1 + 1
B+1 for k ≥ B and approxi-

mately equals 1 + 1
2k for B � k.

Note that this reasoning explains why MQF is so good
in simulations (Section IV): it is highly unlikely that an
iteration actually ends with a nonempty OPT buffer thus
allowing OPT to realize its advantage in a simulation,
while during an iteration MQF is as good as OPT.

D. Fairness Implementation

In this part we evaluate the impact of implementation
of fairness on performance of throughput. We consider
fairness for both packet and processing cycle levels.
Since LQF is at least m

2 -competitive, where m =
min{k,B}, we do not expect to get better throughput
performance for policies that implement the fairness
property on any level. First, we try to implement fairness
on the level of a single packet. The Packet-Round-
Robin policy (PRR) implements a round-robin scheme
between currently active queues on the packet level by
switching to the next active queue after processing the
HOL packet in the current queue.

Theorem 8: PRR is at least 3k(k+2)
4k+16 -competitive.

Proof: For PRR, we fill up queues 1,k2 ,
k
2 +1, . . . ,k.

In 3
2
k
2

(
k
2 + 1

)
+1 steps, PRR will have processed k

2 +2

packets while OPT processes 1 on every step, and the
process repeats, getting the bound.

Although the result is predictable, it is interesting that
PRR can outperform SQF. Next, consider the Cycle-
Round-Robin policy (CRR) with a round-robin scheme
between active queues that switches to the next active
queue after each processing cycle.

Theorem 9: CRR is at least k
H(k) -competitive for

H(k) =
∑k
i=1

1
i ≈ ln k + γ.

Proof: For round-robin policies, the worst case
is when all relevant queues are always full (complete
congestion). In this case, over k!k steps CRR spends
exactly k! processing steps on each queue and thus
processes

∑k
i=1

k!
i packets, while OPT can concentrate

on queue 1, processing k!k packets in total.
The interesting result here is that “fair” CRR can

actually outperform LQF that proactively tries to reduce
potential future congestion.

III. WORST-CASE INCOMPARABILITIES

In this section we compare the proposed policies in the
worst case. An algorithm A1 outperforms an algorithm
A2 if for any input σ, A1 transmits at least the number
of packets that A2 transmits. Otherwise, A1 and A2

are incomparable in the worst case. It turns out that
virtually all meaningful policies are incomparable with
each other in the worst case. We show that (somewhat
counterintuitively) MQF, while it does have a very good
upper bound, can in fact in certain situations behave
worse than any other policy in this paper.

Theorem 10: MQF is incomparable with SQF, LQF,
CRR, and PRR.

Proof: In one direction, incomparability results fol-
low from Theorem 5 since lower competitiveness bounds
for other policies are worse than the MQF upper bound

of 2. Next, we show counterexamples for which MQF
performs worse than simpler policies.

SQF > MQF. First burst: B × k − 1 and (B −
1) × k . Thus, SQF processes packets from queue k
while MQF processes packets from queue k − 1. In
min{k(B−1), B(k−1)} timeslots, one of these queues
will be empty, the second burst follows with B× k , and
then both algorithms are allotted time to flush out their
buffers. As a result, MQF has processed 2B packets
while SQF has processed 2B + min

{
B − 1,B k−1

k

}
,

which is
(
1 + 1

2 min
{
k−1
k , B−1B

})
times better.

LQF > MQF, CRR > MQF, PRR > MQF. All
three bounds result from the same set of packets. First
burst: B× k − 1 and B× k . After (k− 1)B packets,
send a second burst of B× k and then let the algorithms
flush; thus, MQF will have processed 2B packets, and
the advantage of other policies is exactly the number of
k packets that have been processed. In this case, both

LQF and PRR get one k per 2k − 1 time slots, thus
they fare

(
1 + k−1

2(2k−1)

)
times better than MQF; CRR

gets one k per 2k time slots so it is
(
1 + k−1

4k

)
times

better than MQF.
Next we show the remaining incomparabilities.
Theorem 11: (1) PRR is incomparable with SQF,

LQF, and CRR; (2) CRR is incomparable with SQF
and LQF; (3) SQF and LQF are incomparable.

Proof: (1) The same example as in Theorem 8
immediately shows that PRR can do worse than SQF
and CRR (they perform better on PRR’s lower bound).
To show that PRR < LQF, send (B − 1) × k and
B× 1 , then keep sending one 1 per time slot, and let
both algorithms empty out their buffers when PRR is out
of k s. For PRR > SQF, send (B−1)× k and B× 1 ,
keep filling up 1 s and let both algorithms empty buffers
when SQF is out of k s. For PRR > CRR, first
send B × 1 and B × 2 . In 2B ticks, CRR will
be out of 1 s, having processed B

2 × 2 , and PRR

will have processed 2B
3 × 2 . Now fill up 2 s and let

both algorithms empty their buffers, getting a constant
improvement for PRR over CRR. For PRR > LQF,
send B × k and (B − 1) × 1 and keep adding k s
on every time slot. As a result, LQF keeps processing
k while PRR switches between k and 1 , getting an

advantage. (2) Incompatibility results for CRR follow
from exactly the same constructions as PRR. (3) For
SQF > LQF, send (B − 1) × 1 and B × k , adding
more k s as needed. For LQF > SQF, send B × 1

and (B − 1)× k , adding more 1 s as needed.

IV. SIMULATION STUDY

In this section, we report on a simulation study that
we have conducted in order to compare multi-queued
policies in a practical situation. In our simulations, we
take the greedy push-out PQ algorithm with a single
buffer of size kB as optimal; it is optimal even in its own
class [1] and thus obviously performs no worse than the
optimal offline algorithm for multi-queued architecture
with k queues of size B.

We do not consider real traffic traces for two reasons:
first, incoming traffic impacts only a number of arrivals
per time slot that are further redistributed dependent on
the internal router configuration. Second, it is unclear
what time slot size should be chosen; its value will
define traffic burstiness even for fixed arrivals and a
router configuration. Because of this uncertainty, we
evaluate the performance of the proposed architecture on
traffic generated synthetically, with an ON-OFF Markov
modulated Poisson process (MMPP). The choice of
parameters is governed by the average arrival load, which
is determined by the product of the average packet arrival
rate and the average number of processing cycles re-
quired by the packets. For a Poisson arrival process with
intensity λ, and the packets’ required processing chosen
uniformly at random from 1..k, we obtain an average
arrival load (in terms of required passes) of λk+1

2 . Thus,
in our experiments incoming traffic intensity is governed
by: λOFF, intensity of the Poisson arrival process in
the “OFF” state; λON, intensity in the “ON” state; k,
the maximal number of passes per packet; switching
probabilities from “OFF” to “ON” and vice versa (in
all experiments, we have set p(OFF→ ON) = 0.1 and
p(ON → OFF) = 0.25). We have experimented with
λOFF ∈ [0.2,2], λON ∈ [2.5,4], and k ∈ [1,40], thus
ranging from severe underload (average arrival load of
0.2) to extreme overload (average arrival load of 1600 in
the “ON” state), testing our algorithms in various traffic
scenarios. We have also experimented with different
values of speedup S (which, if a whole number, is
equivalent to the number of cores in the system).

Fig. 3 shows simulation results. The y-axis in all
figures represents the ratio between an algorithm’s per-
formance and the performance of single-queue PQ pol-
icy with buffer size kB (taken as optimal). We have
conducted four sets of simulations, varying: (1) maximal
number of processing cycles k; (2) buffer size for each
queue B; (3) extra speedup, performing S process-
ing steps per time slot; (4) incoming traffic intensity
(λOFF, λON).

The results are mostly expected: as k grows, most
algorithms fall behind the optimal since they lose more

and more time for large packets, except for MQF that
is able to stay on small packets, thus showing price of
fairness (see Section II-D). As the buffer size B grows,
there is little difference in competitiveness estimates,
all policies improve at the same rate. As S grows, all
algorithms become closer to optimal, which is again
expected. On the figures with respect to S, we have also
added the graphs OPT2/3 and OPT1/2 that indicate the
speedup necessary to become optimal: a point of the
OPTα graph with x-coordinate S shows the optimality
of OPT with the same parameters but speedup αS.
Finally, as the incoming traffic intensity λ grows (the x-
axis show λOFF, and λON also increases at a similar rate)
we see that round-robin policies (and MaxQF) perform
worse and worse while MQF, SQF, and LQF, on the
other hand, improve a little; this also illustrates the price
of fairness.

V. CONCLUSION

Increasingly heterogeneous needs of NP traffic pro-
cessing pose novel design challenges for router ar-
chitects. In this paper, we have considered a multi-
queued architecture that presents a simplified alternative
to single queue architectures with advanced process-
ing orders and push-out mechanisms. We have studied
the price of simplicity and concentrate on throughput
performance maximization. Next, we have shown how
implementing fairness affects the throughput. Finally,
we have validated our results through a comprehensive
simulation study. As future work, it will be interesting to
consider alternative architectures and study how various
characteristics in different settings impact on system
performance.

ACKNOWLEDGEMENTS

We thank Srinivasan Keshav for many fruitful discus-
sions that have improved the paper significantly. We also
thank Isaac Keslassy for his valuable comments.

Work of S.I. Nikolenko and A.V. Sirotkin has been
supported by the Russian Presidential Grant Programme
for Young Ph.D.’s, grant no. MK-6628.2012.1, Russian
Presidential Grant Programme for Leading Scientific
Schools grant no. NSh-3229.2012.1, and Russian Fund
for Basic Research grants 12-01-00450-a, 11-01-12135-
ofi-m-2011, and 11-01-00760-a.

REFERENCES

[1] I. Keslassy, K. Kogan, G. Scalosub, and M. Segal, “Providing
performance guarantees in multipass network processors,” in
INFOCOM, 2011, pp. 3191–3199.

[2] J. Mudigonda, H. M. Vin, and R. Yavatkar, “A case for data
caching in network processors,” unpublished manuscript.

[3] Cavium, “OCTEON II CN68XX multi-core MIPS64 processors,
product brief,” 2010, [Online] http://www.caviumnetworks.com/
OCTEON-II CN68XX.html.

[4] Cisco, “The Cisco QuantumFlow processor, product brief,”
2010, [Online] http://www.cisco.com/en/US/prod/collateral/
routers/ps9343/solution overview c22-448936.html.

[5] Juniper, “Junos Trio, white paper,” 2009, [Online] http://www.
juniper.net/us/en/local/pdf/whitepapers/2000331-en.pdf.

[6] T. Wolf, P. Pappu, and M. A. Franklin, “Predictive scheduling
of network processors,” Computer Networks, vol. 41, no. 5, pp.
601–621, 2003.

[7] N. McKeown, G. Parulkar, S. Shenker, T. Anderson, L. Peter-
son, J. Turner, H. Balakrishnan, and J. Rexford, “OpenFlow
switch specification,” 2011, [Online] http://www.openflow.org/
documents/openflow-spec-v1.1.0.pdf.

[8] K. Kogan, A. López-Ortiz, S. I. Nikolenko, A. V. Sirotkin, and
D. Tugaryov, “FIFO queueing policies for packets with heteroge-
neous processing,” 2012, [Online] http://arxiv.org/abs/1204.5443.

[9] M. Goldwasser, “A survey of buffer management policies for
packet switches,” SIGACT News, vol. 41, no. 1, pp. 100–128,
2010.

[10] Y. Mansour, B. Patt-Shamir, and O. Lapid, “Optimal smoothing
schedules for real-time streams,” Distributed Computing, vol. 17,
no. 1, pp. 77–89, 2004.

[11] A. Kesselman, Z. Lotker, Y. Mansour, B. Patt-Shamir,
B. Schieber, and M. Sviridenko, “Buffer overflow management
in QoS switches,” SIAM Journal on Computing, vol. 33, no. 3,
pp. 563–583, 2004.

[12] W. Aiello, Y. Mansour, S. Rajagopolan, and A. Rosén, “Com-
petitive queue policies for differentiated services,” J. Algorithms,
vol. 55, no. 2, pp. 113–141, 2005.

[13] M. Englert and M. Westermann, “Lower and upper bounds
on FIFO buffer management in QoS switches,” Algorithmica,
vol. 53, no. 4, pp. 523–548, 2009.

[14] A. Kesselman, B. Patt-Shamir, and G. Scalosub, “Competitive
buffer management with packet dependencies,” in Proceedings of
the 23rd IEEE International Parallel and Distributed Processing
Symposium (IPDPS), 2009.

[15] Y. Mansour, B. Patt-Shamir, and D. Rawitz, “Overflow manage-
ment with multipart packets,” in INFOCOM, 2011, pp. 2606–
2614.

[16] S. Albers and M. Schmidt, “On the performance of greedy
algorithms in packet buffering,” SIAM Journal on Computing,
vol. 35, no. 2, pp. 278–304, 2005.

[17] Y. Azar and Y. Richter, “An improved algorithm for CIOQ
switches,” ACM Transactions on algorithms, vol. 2, no. 2, pp.
282–295, 2006.

[18] Y. Azar and A. Litichevskey, “Maximizing throughput in multi-
queue switches,” Algorithmica, vol. 45, no. 1, pp. 69–90, 2006.

[19] A. Kesselman, K. Kogan, and M. Segal, “Improved competitive
performance bounds for cioq switches,” Algorithmica, vol. 63,
no. 1-2, pp. 411–424, 2012.

[20] ——, “Packet mode and QoS algorithms for buffered crossbar
switches with FIFO queuing,” Distributed Computing, vol. 23,
no. 3, pp. 163–175, 2010.

[21] K. Pruhs, “Competitive online scheduling for server systems,”
SIGMETRICS Performance Evaluation Review, vol. 34, no. 4,
pp. 52–58, 2007.

[22] K. Kogan, A. López-Ortiz, G. Scalosub, and M. Segal, “Large
profits or fast gains: A dilemma in maximizing throughput with
applications to network processors,” 2012, [Online] http://arxiv.
org/abs/1202.5755.

[23] D. D. Sleator and R. E. Tarjan, “Amortized efficiency of list
update and paging rules,” Communications of the ACM, vol. 28,
no. 2, pp. 202–208, 1985.

[24] A. Borodin and R. El-Yaniv, Online Computation and Competi-
tive Analysis. Cambridge University Press, 1998.

OPT MQF SQF LQF CRR PRR MaxQF OPT2/3 OPT1/2

0 10 20 30 40
0.2

0.4

0.6

0.8

1.0

k, B = 5, S = 1

0 10 20 30 40
0.2

0.4

0.6

0.8

1.0

k, B = 15, S = 1

0 5 10 15 20 25 30

0.2

0.4

0.6

0.8

1.0

B, k = 5, S = 1

0 5 10 15 20 25 30

0.2

0.4

0.6

0.8

1.0

B, k = 15, S = 1

2 4 6 8 10
0.2

0.4

0.6

0.8

1.0

S, k = 5, B = 5

2 4 6 8 10
0.2

0.4

0.6

0.8

1.0

S, k = 25, B = 10

0.5 1 1.5 2
0.2

0.4

0.6

0.8

1.0

λOFF, k = 5, B = 5

0.5 1 1.5 2
0.2

0.4

0.6

0.8

1.0

λOFF, k = 15, B = 10

Fig. 3. Simulation study; y-axis, competitiveness; x-axis, top to bottom: max required processing k, buffer size B, speedup S, intensity λOFF.

