Q1

O 00 N O bW

10

JID: COMPNW

[m3Gdc;September 15, 2015;9:13]

Computer Networks xxx (2015) XXX-XXX

journal homepage: www.elsevier.com/locate/comnet

Contents lists available at ScienceDirect

ter
mrks
(s

Computer Networks

Tight analysis of priority queuing for egress traffic”

Jun Kawahara®*, Koji M. Kobayashi®, Tomotaka Maeda“

2 Graduate School of Information Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 6300192, Japan

b National Institute of Informatics, Japan

¢ Academic Center for Computing and Media Studies, Kyoto University, Japan

ARTICLE INFO

ABSTRACT

Article history:

Received 12 January 2015
Revised 2 September 2015
Accepted 3 September 2015
Available online xxx

Keywords:

Online problem
Competitive analysis
Quality of service
Priority queuing

Recently, the problems of evaluating performances of switches and routers have been formu-
lated as online problems, and a great amount of results have been presented. In this paper, we
focus on managing outgoing packets (called egress traffic) on switches that support Quality of
Service (QoS), and analyze the performance of one of the most fundamental scheduling poli-
cies Priority Queuing (PQ) using competitive analysis. We formulate the problem of managing
egress queues as follows: An output interface is equipped with m queues, each of which has
a buffer of size B. The size of a packet is unit, and each buffer can store up to B packets simul-
taneously. Each packet is associated with one of m priority values o; (1 < j < m), where o} <
oy < -+ <O, @ = 1, and oy = « and the task of an online algorithm is to select one of m
queues at each scheduling step. The purpose of this problem is to maximize the sum of the

Egress traffic control
Multi-queue switch

: [
mlnxe[1.m—1]{ fo}r]a
j=19%j

values of the scheduled packets.
For any B and any m, we show that the competitive ratio of PQ is exactly 2 —
}. That is, we conduct a complete analysis of the performance of PQ us-

ing worst case analysis. Moreover, we show that no deterministic online algorithm can have a

competitive ratio smaller than 1 +

o’ +a’+a
af+ded 302 +4a+1"

© 2015 Published by Elsevier B.V.

1. Introduction

In recent years, the Internet has provided a rich variety
of applications, such as teleconferencing, video streaming, IP
telephone, mainly thanks to the rapid growth of the broad-
band technology. To enjoy such services, the demand for
the Quality of Service (QoS) guarantee is crucial. For exam-
ple, usually there is little requirement for downloading pro-
grams or picture images, whereas real-time services, such as
distance meeting, require constant-rate packet transmission.
One possible way of supporting QoS is differentiated services

* A preliminary version of this paper was presented at the 8th annual
international conference on combinatorial optimization and applications,
COCOA 2014.

* Corresponding author. Tel.: +81 -743 -72 -5362; fax: +81743725369.

E-mail address: jkawahara@is.naist.jp (J. Kawahara).

http://dx.doi.org/10.1016/j.comnet.2015.09.001
1389-1286/© 2015 Published by Elsevier B.V.

(Diffserv) [15]. In DiffServ, a value is assigned to each packet
according to the importance of the packet. Then, switches
that support QoS (QoS switches) decide the order of pack-
ets to be processed, based on the value of packets. In such a
mechanism, one of the main issues in designing algorithms
is how to treat packets depending on the priority in buffering
or scheduling. This kind of problems was recently modeled
as an online problem, and the competitive analysis [16,40] of
algorithms has been done.

Aiello et al. [1] was the first to attempt this study, in
which they considered a model with only one First In First
Out (FIFO) queue. This model mainly focuses on the buffer
management issue of the input port of QoS switches: There
is one FIFO queue of size B, meaning that it can store up to B
packets. An input is a sequence of events. An event is either
an arrival event, at which a packet with a specified priority
value arrives, or a scheduling event, at which the packet at the
head of the queue will be transmitted. The task of an online

http://dx.doi.org/10.1016/j.comnet.2015.09.001

Please cite this article as:]J. Kawahara et al., Tight analysis of priority queuing for egress traffic, Computer Networks (2015),

http://dx.doi.org/10.1016/j.comnet.2015.09.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
mailto:jkawahara@is.naist.jp
http://dx.doi.org/10.1016/j.comnet.2015.09.001
http://dx.doi.org/10.1016/j.comnet.2015.09.001

29
30
31
32
33
34
35
36
37
38
39
40
4
42
43
a4
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

JID: COMPNW

[m3Gdc;September 15, 2015;9:13]

2 J. Kawahara et al. | Computer Networks xxx (2015) xXxx—xxx

(buffer management) algorithm is to decide, when a packet
arrives at an arrival event, whether to accept or to reject it
(in order to keep a room for future packets with higher pri-
ority). The purpose of the problem is to maximize the sum of
the values of the transmitted packets. Aiello et al. analyzed
the competitiveness of the Greedy Policy, the Round Robin
Policy, the Fixed Partition Policy, etc.

After the publication of this seminal paper, more and
more complicated models have been introduced and stud-
ied, some of which are as follows: Azar et al. [9] considered
the multi-queue switch model, which formulates the buffering
problem of one input port of the switch. In this problem, an
input port has N input buffers connected to a common output
buffer. The task of an online algorithm is now not only buffer
management but also scheduling. At each scheduling event,
an algorithm selects one of N input buffers, and the packet at
the head of the selected buffer is transmitted to the inside of
the switch through the output buffer. There are some formu-
lations that model not only one port but the entire switch. For
example, Kesselman et al. [29] introduced the Combined Input
and Output Queue (CIOQ) switch model. In this model, a switch
consists of N input ports and N output ports, where each port
has a buffer. At an arrival phase, a packet (with the specified
destination output port) arrives at an input port. The task
of an online algorithm is buffer management as mentioned
before. At a transmission phase, all the packets at the top of
the nonempty buffers of output ports are transmitted. Hence,
there is no task of an online algorithm. At a scheduling phase,
packets at the top of the buffers of input ports are transmitted
to the buffers of the output ports. Here, an online algorithm
computes a matching between input ports and output ports.
According to this matching, the packets in the input ports will
be transmitted to the corresponding output ports. Kesselman
et al. [32] considered the crossbhar switch model, which mod-
els the scheduling phase of the CIOQ switch model more in
detail. In this model, there is also a buffer for each pair of
an input port and an output port. Thus, there arises another
buffer management problem at scheduling phases.

In some real implementation (e.g., [17]), additional
buffers are equipped with each output port of a QoS switch
to control the outgoing packets (called egress traffic). Assume
that there are m priority values of packets aq,as,...,o;m
such that @y < @y < --- < op. Then, m FIFO queues
QM @@, .., ™M are introduced for each output port, and
a packet with the value «; arriving at this output port is
stored in the queue QU). Usually, this buffering policy is
greedy, namely, when a packet arrives, it is rejected if the cor-
responding queue is full, and accepted otherwise. The task of
an algorithm is to decide which queue to transmit a packet at
each scheduling event.

Several practical algorithms, such as Priority Queuing
(PQ), Weighted Round-Robin (WRR) [25], and Weighted Fair
Queuing (WFQ) [20], are currently implemented in network
switches. PQ is the most fundamental algorithm, which se-
lects the highest priority non-empty queue. This policy is im-
plemented in many switches by default. (e.g., Cisco’s Catalyst
2955 series [18]) In the WRR algorithm, queues are selected
according to the round robin policy based on the weight of
packets corresponding to queues, i.e., the rate of selecting Q)
in one round is proportional to «; for each i. This algorithm
is implemented in Cisco’s Catalyst 2955 series [18] and so on.

In the WFQ algorithm, length of packets, as well as the prior-
ity values, are taken into consideration so that shorter pack-
ets are more likely to be scheduled. This algorithm is imple-
mented in Cisco’s Catalyst 6500 series [19] and so on.

In spite of intensive studies on online buffer management
and scheduling algorithms, to the best of our knowledge,
there have been no research on the egress traffic control,
which we focus on in this paper. Our purpose is to evaluate
the performances of actual scheduling algorithms for egress
queues.

Our Results. We formulate this problem as an online
problem, and provide a tight analysis of the performance
of PQ using competitive analysis. Specifically, for any B,
we show that the competitive ratio of PQ is exactly 2 —
minxs[l_m,l]{;:iiﬁ%}. PQ is trivial to implement, and has a

j=1
lower computajtional load than the other policies, such as
WRR and WFQ. Hence, it is meaningful to analyze the exact
performance of PQ. Moreover, we present a lower bound of
1+ % on the competitive ratio of any deter-
ministic algorithm.

Related Work. Independently of our work, Al-Bawani
and Souza [2]| have very recently considered much the
same model. PQ is called the greedy algorithm in their pa-
per. Unlike our setting, they discussed only the case where
any two of the values differ, that is, 0 < @7 < oy <

- < am. Also, they assumed that for any j(€ [1, m]),
the jth queue can store at most Bj(€ [1, B]) packets at
a time. In the case of Bj =B, that is, in the same set-
ting as ours, they showed that the competitive ratio of
PQ is at most 2 — minje[]ym_l]{aj;;;af} for any m and B.
When comparing our result and their upper bound, we have

2 - miﬂxgu,m_l]{;ﬁi?%} <2- minje[Lm_l]{ajJ};aj} by el-
gl

ementary calculation (see Appendix A in Appendix). Note
that 2 — minjele,l]{aj;j;af} is equal to 2 when there ex-
ists some z such that o, 1 = oz. In general practical switches,
the sizes of any two egress queues attached to the same out-
put port are equivalent by default. Since we focus on evaluat-
ing the performance of algorithms in a more practical setting
(which might be less generalized), we assume that the size
of each queue is B. Moreover, our analysis in this paper does
not depend on the maximum numbers of packets stored in
buffers, and instead it depends on whether buffers are full
of packets. Thus, the exact competitive ratio of PQ would be
derived for the setting where for any j, the size of the jth
queue is B; in the same way as this paper. (If we apply our
method in their setting, Lemma 3.7 in Section 3.3 has to be
fixed slightly. However the competitive ratio obtained in this
setting seems to be a more complicated value including some
min s or maxes.)

As mentioned earlier, there are a lot of studies concen-
trating on evaluating performances of functions of switches
and routers, such as queue management and packet schedul-
ing. The most basic one is the model consisting of single
FIFO queue by Aiello et al. [1] mentioned above. In their
model, each packet can take one of two values 1 or o(> 1).
Andelman et al. [7] generalized the values of packets to any
value between 1 and «. Another generalization is to allow
preemption, namely, one may drop a packet that is already
stored in a queue. Results of the competitiveness on this

http://dx.doi.org/10.1016/j.comnet.2015.09.001

Please cite this article as: J. Kawahara et al., Tight analysis of priority queuing for egress traffic, Computer Networks (2015),

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

105
106
107
108
109
110
1m
112
113
114
115
116
117
118
119

120
121

122
123

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

http://dx.doi.org/10.1016/j.comnet.2015.09.001

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178

179

180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

JID: COMPNW

[m3Gdc;September 15, 2015;9:13]

J. Kawahara et al. / Computer Networks xxx (2015) xxx—xxx 3

model are given in [1,5-7,21,26,28,41]. Recently Kogan et al.
[38] analyzed the performance of some packet scheduling
policies for single FIFO queue built on processing cycles and
conducted some simulation research for the policies.

The multi-queue switch model [9,11,36] consists of m FIFO
queues. In this model, the task of an algorithm is to manage
its buffers and to schedule packets. The problem of design-
ing only a scheduling algorithm in multi-queue switches is
considered in [4,8,13,14,35]. Moreover, Albers and Jacobs [3]
performed an experimental study for the first time on several
online scheduling algorithms for this model. Also, the over-
all performance of several switches, such as shared-memory
switches [24,27,34], CI0Q switches [10,29,30,33], and cross-
bar switches [31,32], are extensively studied.

Fleischer and Koga [22] and Bar-Noy et al. [12] studied the
online problem of minimizing the length of the longest queue
in a switch, in which the size of each queue is unbounded.
In [22] and [12], they showed that the competitive ratio of
any online algorithm is 2(logm), where m is the number of
queues in a switch. Fleischer and Koga [22] presented a lower
bound of €2(m) for the round robin policy. In addition, in [22]
and [12], the competitive ratio of a greedy algorithm called
Longest Queue First is O(logm). Recently, Kogan et al. [37]
studied a multi-queue switch where packets with different
required processing times arrive. (In the other settings men-
tioned above, the required processing times of all packets are
equivalent.)

Furthermore, some comprehensive surveys showed much
research on buffer management and scheduling policies (see
e.g.[23,39]).

2. Model description

In this section, we formally define the problem studied
in this paper. Our model consists of m queues, each with a
buffer of size B. The size of a packet is unit, which means that
each buffer can store up to B packets simultaneously. Each
packet is associated with one of m values «; (1 < i < m),
which represents the priority of this packet where a packet
with larger value is of higher priority. Without loss of gener-
ality, we assume that oy =1, ozm =a,and o] <y < -+ <
om. The ith queue is denoted QW and is also associated with
its priority value «;. An arriving packet with the value «; is
stored in Q(¥).

An input for this model is a sequence of events. Each event
is an arrival event or a scheduling event. At an arrival event,
a packet arrives at one of m queues, and the packet is ac-
cepted to the buffer when the corresponding queue has free
space. Otherwise, it is rejected. If a packet is accepted, it is
stored at the tail of the corresponding queue. At a scheduling
event, an online algorithm selects one non-empty queue and
transmits the packet at the head of the selected queue. We
assume that any input contains enough scheduling events to
transmit all the arriving packets in it. That is, any algorithm
can certainly transmit a packet stored in its queue. Note that
this assumption is common in the buffer management prob-
lem. (See e.g. [23].) The gain of an algorithm is the sum of
the values of transmitted packets. Our goal is to maximize it.
The gain of an algorithm ALG for an input o is denoted by
Varg(o). If V(o) = Vopr(o)/c for an arbitrary input o, we

say that ALG is c-competitive, where OPT is an optimal offline
algorithm for o.

3. Analysis of priority queuing
3.1. Priority queuing

PQ s a greedy algorithm. At a scheduling event, PQ selects
the non-empty queue with the largest index. For analysis, we
assume that OPT does not reject an arriving packet. This as-
sumption does not affect the analysis of the competitive ra-
tio. (See Lemma B.1 in Appendix B.)

3.2. Overview of the analysis

We define an extra packet as a packet which is accepted by
OPT but rejected by PQ. In the following analysis, we evaluate
the sum of the values of extra packets to obtain the competi-
tive ratio of PQ. We introduce some notation for our analysis.
For any input o, k;(0') denotes the number of extra packets
arriving at QU) when treating o. We call a queue at which at
least one extra packet arrives a good queue when treating o.
n(o) denotes the number of good queues for o. Moreover,
for any input o and any i(€ [1, n(o')]), g;(o) denotes the good
queue with the ith minimum index. Thatis, 1 < q;(0) < g3(o’)
<+ < (p(g)(0) < m. Also, we define gp (), 1(0) = m. In ad-
dition, for any input o, sj(o’) denotes the number of pack-
ets which PQ transmits from QU). We drop the input o from
the notation when it is clear. Then, Vpg (o) = Z;-":] ajs;, and
Vorr (0) = Vpo (o) + X1 ag;kg,. (The equality follows from
the assumption that OPT does not reject any packet, which is
proven in Lemma B.1.)

First, we show that kp =0, that is, g, +1<m, in
Lemma 3.2. We will gradually construct some input set S*
(defined below) from Lemma 3.4 -Lemma 3.9 using some ad-
versarial strategies against PQ. Moreover, in Lemma 3.10, we
prove that the set S* includes an input o such that the ra-

tio ‘(5;277((0")) is maximized. That is, we show that there exists

an input o* in the set S* to get the competitive ratio of PQ
in the lemma. More formally, we define the set S* of the in-
puts o’ satisfying the following five conditions: (i) for any
i(e[1,n(0") = 1]), qi(0”) + 1 = g1 (o), (ii) for any i(€ [T,
n(0")]), kg o) (o) = B, (iii) for any j(€ [q1(0”), dy(ory(0”) +
1)), sj(c") =B, (iv) for any j(€ [1,q1(0") = 1]), sj(0") =0
if g1(0’)—1=1, and (v) for any j(€ [qyr) (o) +2, m]),
sj(0’) = 0 if gpery(0') +2 < m. Then, we show that there

Vopr(a”) } = Vorr (@)

exists an input o* € §* such that max { Vra(0”) Vra(0®)

in Lemma 3.10.
By the above lemmas, we can obtain the competitive ratio
of PQ as follows: For ease of presentation, we write s;(0*),

n(o*), gi(o*) and ki(o*) as sf, n*, g and kf, respectively.
* G
Vpo (0*)+X10 ;o K BY ™ «;
’ V, o* - V; o* - gt +1 —
po(0%) po (0*) BZJ'Z?? o
T
n « . .
] 19 _ n*41 -
1+ o= 2 — S g The last inequality fol
PR j=1 %
lows from Zi1® T j—(Z o YV o -
Zy+1 « Zy+1 Jj=x—17"1] £=j=x 7]

j=x-1%]J

http://dx.doi.org/10.1016/j.comnet.2015.09.001

Please cite this article as: J. Kawahara et al., Tight analysis of priority queuing for egress traffic, Computer Networks (2015),

207
208

209

210

21
212
213
214
215

216

217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

240
241
242
243
244
245
246
247

248

249
250
251
252

253

254

http://dx.doi.org/10.1016/j.comnet.2015.09.001

256

257
258
259
260

261
262

263
264

265

266
267
268
269
270
271
272
273
274
275
276
277

278

279
280

281
282
283

284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307

JID: COMPNW

[m3Gdc;September 15, 2015;9:13]

4 J. Kawahara et al. | Computer Networks xxx (2015) xXxx—xxx

S D /(D g D o) = (@c10yi1)/
(Zﬁ)}q o; Zz’i; o) > 0. This gives an upper bound on the
competitive ratio of PQ.

On the other hand, we show that there exists some

i 5 Vopr (6) _ ; Oy ;
input 6 such that N _2—mmX€[1,m,1]{Z§§aj} in

Lemma 3.11, which presents a lower bound for PQ. Therefore,
we have the following theorem:

Theorem 3.1. The competitive ratio of PQ is exactly 2 —

. [o]
MiNye(1,m-1 { ﬁ }
[! Yo

3.3. Competitive analysis of PQ

We give some definitions. For ease of presentation, an
event time denotes a time when an event happens, and any
other moment is called a non-event time. We assign index
numbers 1 through B to each position of a queue from the
head to the tail in increasing order. The jth position of Q@) is
called the jth cell. For any non-event time t, suppose that the
jth cell in Q) of PQ holds a packet at t but the jth cell ¢ in Q)
of OPT does not at t. Then, we call ¢ a free cell at t. Note that
any extra packet is accepted at a free cell. For any non-event
time t, let h/E\JL)G (t) denote the number of packets which an al-
gorithm ALG stores in QU at t. We first prove the following
lemma. (The lemma is similar to Lemma 2.3 in [2].)

Lemma 3.2. k;, = 0.

Proof. By the definition of PQ, PQ selects the non-empty
queue with the highest priority. Thus, h;fg) (t) < hg;',% (t) holds
at any non-event time t. Therefore, there is no free cell in Q(™
of OPT at any time. Since any extra packet is accepted to a free
cell, kpy=0. O

Next, in order to evaluate the total number of extra pack-
ets accepted at each Q@) (i e [1,n]), we construct some
matching between extra packets and PQ’s packets according
to the matching routine defined later. (Note that evaluating
the number of extra packets is related to the property (ii) of
S*.) Suppose that extra packet p is matched with PQ’s packet
p’ such that p and p’ are transmitted from Q@) and Q) re-
spectively. Then, the routine constructs this matching where
i < i. Let us explain how to construct the matching. We
match extra packet one by one with time. However, it is dif-
ficult to match an extra packet with PQ’s packet in a direct
way. Thus, the matching is formed in two stages. That is, at
first, for any free cell ¢, we match ¢ with some PQ’s packet p
when ¢ becomes free at an event time. At a later time, we re-
match the extra packet p’ accepted into ¢ with p at an event
time when OPT accepts p’.

In order to realize such matching, we first verify a change
in the number of free cells at each event before introduc-
ing our matching routine. We give some definitions for that
reason. For any event time ¢, t— denotes the non-event time
before t and after the previous event time. Also, t+ denotes
the non-event time after t and before the next event time.
The reason why we introduce such notation is that we avoid
unclear proofs and that we rigorously specify the location

of each packet in a buffer shortly before or after a mo-
ment when an algorithm processes (i.e., accepts or rejects) or
transmits a packet. Let fU)(t) denote the number of frege cells
in QU) at a non-event time t, that is, f0)(t) = max{hl(,g(t) .
hggT (t), 0}. Note that OPT does not reject any packet by our
assumption (Lemma B.1 in Appendix B).'Thus, for any non-
event time ¢, 37 hggT (t) > 0if 37, hl(,g(t) > 0.

Arrival event: Let p be the packet arriving at Q%) at an
event time t.

Case Al: Both PQ and OPT accept p, and
hig (¢ =)—h{py (t =) > 0: Since 09 (c+)=hi)(c—) +1
and h§)(t+) = h§p(t =) + 1. h§(E+) — h§p(t+) > 0.
Thus, the (h,(,’g (t—=)+1)st cell of Q¥ becomes free
in place of the (h(()’gT (t—)+1)st cell of QW. Hence
fO@E+) = O -).

Case A2: Both PQ and OPT accept p, and
hig (£ =)=hp, (£ =) < 0: Since h{)(t+)=hi)(t—)+1
and hQ (¢ +) = hS (6 =) + 1. bt +) —h(t+) <.
Since the states of all the free cells do not change before and
aftert, f®(t+) = f®(t—).

Case A3: PQ rejects p, but OPT accepts p: p is an ex-
tra packet since only OPT accepts p. p is accepted into the
(hg‘gT (t —) + 1)st cell, which is free at t—, of Q). hl(,’g (t+)=
hl(,’g (t—) =B, and hg‘P)T (t+) = hg;,)T (t =) + 1, which means
that fO(t+) = f®O@E-)-1.

Scheduling event:

If PQ (OPT, respectively) has at least one non-empty
queue, suppose that PQ (OPT, respectively) transmits a packet
from QW) (Q@, respectively) at t. .

CaseS: Z}';lh,(,’&(t —-)>0and E?;lhggr t-)>0:

CaseSl:y =z
Case S1.1: h,(,’g(t -)—h((,’gr t-)>0:

Since h{p(t+) =hip(t—)~1 and A3t +) = hp,
(t=)-1. hY(t+)-h$(t+)>0 holds. Thus, the
h(()yzzr (t —)th cell of Q¥ becomes free in place of the
hy (t —)th cell of Q). Hence f0)(t +) = fO) (¢ —).

- p®) .
Case $1.2: hi)) (t =)~h$p (¢ =) < 0:

Since hl(,’g(t +) = hlg’g(t —-)-1 and th)T(t +) = th)T
(t =) —1 hold, hl%) t+)- hg;,)T(t +) < 0. Hence the states
of all the free cells do not change before and after t.

CaseS2:y > z:
Case S2.1: h,(f()l(t -)—hggr (t-)<0:

Since h{p) (t+) =h(t—) and hi.(t+) =hi.(t)
-1, h(z&(t +) < hggT (t +). Thus, the states of all the free cells
of Q9 do not change before and after t.

Case $2.1.1: h}y (¢t =)~h3) (t -) > 0:

Since) (t+) =hi(t—)—1 and h(t+)=h3;

=), fOU+)=fO(t-)—1holds.
Case S2.1.2: h,(,‘g (t -)—h((,’gr t-)=<o0:
;))))

Since hI(,VQ(t +)= h[%(t —)—1 and hg;,T(t +)= hg;,T
(t—), hl%) (t+) < h(()ygr (t +). Hence, the states of all the free

cells of Q) do not change before and after t.

http://dx.doi.org/10.1016/j.comnet.2015.09.001

Please cite this article as: J. Kawahara et al., Tight analysis of priority queuing for egress traffic, Computer Networks (2015),

308
309
310
31
312
313
314
315
316
317
318

319

321

322
323
324

326
327
328
329
330
331

332
333
334
335
336

337
338

339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359

http://dx.doi.org/10.1016/j.comnet.2015.09.001

360
361

362
363
364

365

366
367

368

369
370
371
372

373
374

375

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394

JID: COMPNW

[m3Gdc;September 15, 2015;9:13]

J. Kawahara et al. / Computer Networks xxx (2015) xxx—xxx 5

Case S2.2: h,(,’()2 (t -)—hggr t-)=>0:
ho(t+)=hp(t—) and h§(t+) =hGy(t—) 1.
Thus, the hggT (t —)th cell of Q@ becomes free, which means
that f@(t +) = f@(t —) + 1 holds.
Case S2.2.1: hl(,’g(t —)-h (&t -) > 0:
Since h{p(t+) =hip(t—)~1 and A3t +) =hip,
(t=). fOU+)=fO@-)-1.
Case $2.2.2: h}) (t =)~h{p,(t -) =< 0:

Since h()(t+) =hi(t—) 1 and h(t+)=h3;

(t-), h,(,’('z) (t+) < hg;,)T (t +), which means that the states of

all the free cells of QW) do not change before and after t.
CaseS3:y <z:
; (2) (2) itd
Since hPZQ(t +) = hPZQ(t —) = 0 by the definition of PQ, no
new free cell arises in Q?).
Case S3.1: h,(,’g (t -)—hggr (t-)>0:
Since h{p(t+) =hi(t—)~1 and A3t +) = hip,
=), fOU+)=fP(-)-1holds.
Case S3.2: h},’g(t -)—hg’gT(t -)<0:
Since hl(,”Q)(t +)= hg('z)(t —)—1 and hg;,)T(t +)= hg;,)T

(t—). hSy(t+) < hiy(t +) holds. Hence, the states of all

the free cells of QW) do not change before and after t.

Case S: 3T, hl(jg (t-)=0and Y7 hd) (e —) > o

Since the buffers of PQ are empty, there does not exist any
free cell in them.

Based on a change in the state of free cells, we match each
extra packet with a packet transmitted by PQ according to the
matching routine in Table 1. (All the names of the cases in the
routine correspond to the names of cases in the above sketch
about free cells.) We outline the matching routine. Roughly
speaking, the routine either adds a new edge to a tentative
matching if a new free cell arises (Cases A1, S1.1,52.2), or fixes
some edge if OPT accepts an extra packet (Case A3), while
keeping edges constructed before. In the other cases (Cases
A2, $1.2, S2.1, S3, S), the routine does nothing. Specifically,
both OPT and PQ accept arriving packets at the same queue in

Table 1
Matching routine.

Case A1, and they transmit packets from the same queue in
Case S1.1. Since the total numbers of free cells do not change
in these cases but the states of free cells do, the routine up-
dates an edge in a tentative matching, namely removes an
edge between PQ’s packet p and a cell that became non-free
and adds a new edge between p and a new free cell. When
the routine executes Case S2.2, the queue where OPT trans-
mits a packet is different from that of PQ. By the conditions
of the numbers of packets in their queues and so on (see the
condition of Case S2.2), a cell of OPT's queue becomes free.
The routine matches the cell with the packet transmitted by
PQ at this event. In Case A3, an extra packet is accepted into a
free cell c. Since c has been already matched with some PQ’s
packet p/, which can be proven inductively in Lemma 3.3,
the routine replaces the partner of p’ from c to p. Once an
extra packet is matched, the partner of the packet never
changes.

We give some definitions. For any packet p, g(p) denotes
the index of the queue at which p arrives. Also, for any cell
¢, g(c) denotes the index of the queue including c. We now
show the feasibility of the routine.

Lemma 3.3. For any non-event time t’, and any extra packet
p which arrives before t', there exists some packet p’ such that
PQ transmits p’ before t’, g(p) < g(p’) and p is matched with p’
at t'. Moreover, for any free cell c at t', there exists some packet
p’’ such that PQ transmits p’’ before t', g(c) < g(p”’), and c is
matched with p”" at t'.

Proof. The proof is by induction on the event time. The base
case is clear. Let t be any event time. We assume that the
statement is true at t—, and prove that it is true at t+.

First, we discuss the case where the routine executes Case
Al or S1.1 at t. Let ¢ be the cell which becomes free at t. Also,
let ¢’ be the cell which is free at t— and not free at t+. By
the induction hypothesis, a packet p which is transmitted by
PQ before t— is matched with ¢’ at t—. Then, the routine un-
matches p, and matches p with c by the definitions of Cases
A1 and S1.1. g(c) = g(c’) clearly holds. Also, since g(c’) < g(p)
by the induction hypothesis, the statement is true at t+.

Matching routine: Let t be an event time.

Arrival event: Suppose that the packet p arrives at Q%) at t. Execute one of the following three cases at t.

Case A1: Both PQ and OPT accept p, and h;,’g (t-)-hP (=) >0

Let cbe OPT's (hy), (t —) + 1)st cell of Q), which is free at t— but not at £+ Let ¢’ be OPT's (hy (¢) + 1)st cell which is not free at t— but is free at t+.
There exists the packet g matched with c at t—. (The existence of such q is guaranteed by Lemma 3.3.) Change the matching partner of g from c to ¢’.

Case A2: Both PQ and OPT accept p, and h;,’g (t-)—hg‘,ZT (t-)=<o0:
Do nothing.
Case A3: PQ rejects p, but OPT accepts p:

Let c be OPT's (hg‘,}T (t —) + 1)st cell of QW, that is, the cell to which the extra packet p is now stored. Note that c is free at t— but is not at t+. There exists the
packet ¢ matched with c at t—. (See Lemma 3.3.) Change the partner of q from c to p.
Scheduling event:If PQ (OPT, respectively) has at least one non-empty queue at t—, suppose that PQ (OPT, respectively) transmits a packet from Q%) (Q®@,

respectively) at t. Execute one of the following three cases at t.

Case S1.1: Z}Lh%(t -)>0, Z;."ﬂhgg,(t -)>0.y=zand h,(,‘g(t -)—hg;ZT(t -)>0:
Let c be OPT's h,%) (t —)th cell of Q¥), which is free at t— but is not free at t+. Let ¢’ be OPT's th)T (t —)th cell of QW), which is not free at t— but is free at t+.
There exists the packet ¢ matched with c at t—. (See Lemma 3.3.) Change the matching partner of q from c to c'.

Case S2.2: Z;';]h,‘;’&(t -)>0, Z}';,hggr (t-)>0,y>zand h;,’&(t —)-h,

(t-)=0:

Let c be OPT's hg,lr (t —)th cell of Q¥, which becomes free at t+. Since the packet p transmitted from Q%) by PQ is not matched with anything (see

Lemma 3.3), match p with c.
Otherwise (Cases $1.2, S2.1, S3, S):Do nothing.

http://dx.doi.org/10.1016/j.comnet.2015.09.001

Please cite this article as: J. Kawahara et al., Tight analysis of priority queuing for egress traffic, Computer Networks (2015),

395
396
397
398
399
400
401

402
403
404
405
406
407
408
409
410
41

412
413
414
415

416
417
418
419
420
421

422
423
424
425
426
427
428
429
430
431
432

http://dx.doi.org/10.1016/j.comnet.2015.09.001

433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452

453
454

455
456

457

458
459
460
461
462
463
464
465
466
467
468
469

470

471
472

473

474

475
476
477
478
479
480

481

482
483
484
485
486
487
488

JID: COMPNW

[m3Gdc;September 15, 2015;9:13]

6 J. Kawahara et al. | Computer Networks xxx (2015) xXxx—xxx

Next, we consider the case where the routine executes
Case A3 at t. Let p’ be the extra packet accepted by OPT at
t. Also, let ¢ be the free cell into which OPT accepts p’ at t.
By the induction hypothesis, a packet p which is transmitted
by PQ before t— is matched with c at t—. Then, by the defini-
tion of Case A3, the routine unmatches p, and matches p with
p’. g(c) = g(p’) holds by definition. In addition, g(c) < g(p)
by the induction hypothesis. Thus, g(p’) < g(p), which means
that the statement holds at t+.

Third, we investigate the case where the routine executes
Case S2.2 at t. Suppose that PQ transmits a packet p at t, and
the new free cell c arises at t. By the induction hypothesis,
any PQ’s packet which is matched with a free cell or an extra
packet at t— is transmitted before t. Hence, p is not matched
with anything at t—. Thus, the routine can match p with c at
t. Moreover, g(c) < g(p) by the condition of Case S2.2. By the
induction hypothesis, the statement is true at t+.

In the other cases, a new matching does not arise. There-
fore, the statement is clear by the induction hypothesis,
which completes the proof. O

In the next lemma, we obtain part of the properties of the
set S*.

Lemma 3.4. Let o be an input such that for some u(€ [1, m]),
su(o) > B. Then, there exists an input & such that

for each j(e [1,m]),5;(8) < B, and) <

Vopr (6)
Vpo(6) *

Proof. Let zbe the minimum index such that s;(o) > B. Then,
there exist the three event times tq, t;(> t1) and t3(> ty)
satisfying the following three conditions: (i) t; is the arrival
event time when the (B + 1)st packet which PQ accepts at
Q@ arrives, (ii) OPT does not transmit any packet from Q®@
during time (t;, t;), where t; is the event time when OPT
transmits a packet from Q@, (Since OPT accepts any arriv-
ing packet by our assumption, OPT certainly transmits at least
one packet from Q@ before t,.) and (iii) PQ does not transmit
any packet from Q@ during time (5, t3), where t5 is the event
time when PQ transmits a packet from Q. We construct o’/
by removing the events at t; and ¢, from o. Suppose that

Vopr (@) _ Vopr(@) ¢ ;
. we remove some events correspondin
Vpg(0) = Vpg(0)) ponding

to QU) in ascending order of index j in {x|sx(¢) > B}, then
we can construct an input & such that for each j(e [1, m]),

sj(6) < B, and VV‘;"QT(((;T)) “/fl’)’g (((f:)), which completes the proof.
Vopr (@) _ Vopr(a”)
Hence, we next show that Vha(@) < Voo "

First, we discuss the gain of OPT for o’. Let ALG be the
offline algorithm for o’ such that for each scheduling event
e in o/, ALG selects the queue which OPT selects at e in o.
We consider the number of packets in ALG’s buffer during
time (t1, t3) for o’. For any non-event time t(e (t;, t3)),

)

and any y(# z), hy(t) = hg;,)T (t). For any non-event time

t(€ (t1, t2)), h,E‘ZL)G(f) = hggT(t) + 1. Also, for any non-event

time t(€ (ty, t3)), hf(sz)c(t) = h(()zgr (t). By the above argument,
Vopr(0”) = Vaig(o’) = Vopr (o) — az.

Next, we evaluate the gain of PQ for ¢’. For notational
simplicity, we describe PQ for o’ as PQ’. First, we consider the
case where there does not exist any packet which PQ accepts
but PQ’ rejects during time (t;, t3). To evaluate the gain of

PQ’ in this case, we discuss the numbers of packets which

PQ and PQ’ store in their buffers after ¢;. For any non-event
time t(< (ty, &), X7, hf,g, (t) = X7y RS (£) + 1. For any

non-event time £, we define w(f) = arg max{j | hl(,g, (@) > 0}.

Specifically, hiei” (6) = hig® (6) +1. (We call this fact
the property (a).) Moreover, for any non-event time f(€
(62, t3)), Xy B3, (6) = Yo7y bl (6). However, if wit) >z,
then hf,gff” (t) = hia (1) + 1. Also, h[(f&/ (t) =i (6) — 1. 1f
w(t) = z, then for any j(€ [1, m]), hl(,g, t) = h;g(t). For any
non-event time t(> t3) and any j(e [1, m]), hf,g, (t) = hip (©).
By the above argument, Vp (0”') = Vpg (07) — a; holds.
Secondly, we consider the case where there exists at least
one packet which PQ accepts but PQ’ rejects. Let t' be the
first event time when the packet p which PQ accepts but PQ’
rejects arrives. Then, suppose that t' e (t;, t;). By the defi-
nition of z, p arrives at Q@) such that z > z. By the prop-
erty (a), for j(e [1, m]), hl(,g, t'+)= hl(,g(t’ +). Thus, pack-
ets accepted by PQ during time (t/, t;) can be accepted by
PQ'. Only PQ accepts the packet arriving at Q@ at t, by the

definition of o’. Hence, hI(,ZQ), (th+) = hl(,ZQ)(tz +)—1, and for

any j(e [1, m]) such that j # z, h;g, (ty+) = h) (6 +). (We
call this fact the property (b).) If all the packets which PQ
accepts after t, are the same as those accepted by PQ’ after
ts, Vpo(0') = Vpg(0) — oz — @t Then, we consider the case
where there exists at least one packet p’ which PQ rejects but
PQ’ accepts after t,. By the greediness of PQ and the prop-
erty (b), for any non-event time t(> t;) and any y'(> z+ 1),

h%? (t) = h)(t). Hence, p' arrives at Q") for some 2(<
z). Let t’ be the event time when p’ arrives. For any j(€ [1,
m]), h;,g, t"+)= hl(,g (t” +), which means that all the pack-
ets accepted by PQ are equal to those accepted by PQ’ after
t". Thus, Vpg (07) = Vp(0) — 0tz — a4+ 0ty < Vpg(0) — 0tz
Finally, we consider the case where t' € (t;, t3). By the
same argument as the case of t' e (t;, t;), we can prove
this case. Specifically, the number of packets which PQ re-
jects but PQ" accepts after t’ is exactly one. This packet ar-
rives at Q#"), where some 2"/ < z. Therefore, Vpo (') =
VpQ(O’) — 0z —Qy + 0y < VPQ(U) — 0.
Vorr (@) o Vac(0') _ Vopr(o)—az

By the above argument, Vra(@) = Vag(@") = Vag(o)—as

Vopr (o)
V(o) *

We give the notation. S; denotes the set of inputs o such
that for any j(€ [1, m]), sj(0) < B. In what follows, we ana-
lyze only inputs in S; by Lemma 3.4. Next, we evaluate the
number of extra packets arriving at each good queue using
Lemma 3.3.

Lemma 3.5. For any x(€ [1,n]), XL kg, < g 1155

Proof. By Lemma 3.3, each extra packet p is matched with a
packet p’ transmitted by PQ at the end of the input. In addi-
tion, g(p) < g(p’) if an extra packet p is matched with a packet
p’ of PQ Thus, kg, = 3jq,118) Koy i = (kg 4150 —
Kgn -++,and kg, < (7L 115)) — i, kg, Therefore, for any
x(ell,n]) Yilikg < Xilg1Sje O

Now we gradually gain all the properties of S* in the fol-
lowing lemmas while proving S* contains inputs ¢ such that

http://dx.doi.org/10.1016/j.comnet.2015.09.001

Please cite this article as: J. Kawahara et al., Tight analysis of priority queuing for egress traffic, Computer Networks (2015),

489
490

491

492
493
494

495
496

497
498
499
500
501
502
503
504
505
506
507

508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525

526

527

528
529
530
531
532

533

534
535
536
537
538
539

540
541

http://dx.doi.org/10.1016/j.comnet.2015.09.001

542

543
544
545
546
547
548
549
550
551
552

553

554
555

556

557

558
559
560
561
562
563
564

565
566

567
568
569
570
571
572
573
574

575
576

JID: COMPNW

[m3Gdc;September 15, 2015;9:13]

J. Kawahara et al. / Computer Networks xxx (2015) xxx—xxx 7

Vopr(0) A - .)
Vro (@) is maximized. Specifically, for i=1,...,4, we con

struct some subset S;,; from the set S; in each of the fol-
lowing lemmas, and eventually we can gain S* from Ss. (We
have already obtained S; in Lemma 3.4.) It is difficult to show
all the properties of S* in one lemma, and thus we progres-
sively give the definitions of the S;, that has more restrictive
properties than S;.

Next in Lemma 3.6, we discuss the condition of events
where the number of extra packets accepted into a good
queue Q@) (i [1, n]) is maximized, and show that it is true
when kg, = 27:;1 .1 5j- Throughout the proofs of all the fol-
lowing lemmas, we drop o from sj(o), n(o), g;(0') and k(o).

Lemma 3.6. For any input o € Sy, there exists an input
6 (e 8y) such that (i) for any i(€[1,n(6)]), kqi(é)(ﬁ) =
S U | 5i(6). (i) forany j(€ [1.q1(6) ~ 11). 5;(6) = 0if

Jj=q;(6)+1) ©)
5) iii) Vopr (0 Vopr (6
q1(6) —1 > 1, and (iii) Vra(0) < V@) "

Proof. For any input o € Sy, we construct o’ from o accord-
ing to the following steps. First, for each j(€ [q;, m]), s; events
at which s; packets arrive at QY occur during time (0, 1).
Since s; < B by the definition of Sy, PQ accepts all the pack-
ets which arrive at these events. i ; kg, packets arrive af-
ter time 1, and PQ cannot accept them. Specifically, for any

i(€ [1, n]), we define q; = Zg:fnjuﬂ s;j and ag = 0. Then,

for each x(€ [0,n — 1]), a scheduling event occurs at each
integer time t = (X}_oa;) +1,..., Z’jf:g) a;, and an arrival
event where a packet arrives at Q- occurs at each time
t+ % After time (Z?:O a;) + 1, sufficient scheduling events
to transmit all the arriving packets occur.

For these scheduling events, PQ transmits a packet from
QU at t, where j is an integer between qn_x + 1 and qp_x,1.
Also, let ALG be an offline algorithm. ALG transmits a packet
from Q- at t. Since for any i(€ [1, n]), at least one extra
packet arrives at Q@) s, = B holds. Hence, since for any i(e

[1,n]), h,(,‘g) (1 —) =B, PQ cannot accept the packet which ar-
rivesateacht + % However, ALG can accept all these packets,

which means that ALG is an optimal offline algorithm. Then,
n(o’) = n, and for any i(€ [1, n]), g;(c”’) = q;.

By the above argument, Vpo (o) = Vpg (o) — Z?;l
Furthermore, for each i(e [1, n]), kq;(0”) = Zj':qliﬂ sj. By
these equalities, Vyc(0') =Vpo(0') + X1 g kg (o) =

i -1
Voo (0) + Xl g (X154 1 5) = X7y ety = Vg (0) +
ag (Z?ﬂ}lﬁl $j) + L=z (g = g, 1)(Z?lt,lﬂ $j) =
Z?‘; ajs;. Since YIL kg < YT, 1s; by Lemma 3.5 and
Qi1 =M, Varg(0") = Vo (0) + aq (XL kgp) + D y—p (g, —
-1
g,) (Xilxkg) = X517 aysj = Vo (0) + XLy g kg, —

q1-1 q1—1
b1 sj=Vopr (o) = 351, ajs;.

Olij.

qi-1
Therefore, Yorr(@) _ Vag(@) - V"”T(‘T)fzjll1 “i%i - Vopr(o)
Vpo (o) Vpo(o') = VPQ(U)*Z;E; ajs; = Vpo (o)
Moreover, by the definition of o/, o’ satisfies the condition
(ii) in the statement, which means that S; includes o/. O

In light of the above lemma, we introduce the next set of
inputs. S, denotes the set of inputs o (€ S7) satisfying the
following conditions: (i) for any i(€ [1, n]), kg, = Z?’:{;_H S},
(ii) for any j(€ [qq, m]), s; < B, and (iii) for any j(€ [1,q; —
1]),5] :Olfql -1 > 1.

Lemma 3.7. Let 0 (€ Sy) be an input such that for some z(<
n(o) —1), qz(0) +1 < qz41(0). Then, there exists an input
6 (€ Sy) such that (i) foreachi(€ [1,n(6) —1]), qi(6) +1 =

Gi41(6) and ky (5 (6) = B, and (ii) % < ‘@J"QT(‘(;’;.

Proof. For any j(€ [1, m]) such that j # q,,1 — 1, we define
53. = ;. Also, we define sfh+14 = B.(See Fig. 1.)

We construct o’ from o in the following way. This ap-
proach is similar to those in the proof of Lemma 3.6. First,
for each j(€ [qq, m]), 53 events at which sg. packets ar-
rive at QU) occur during time (0, 1). Since s < B by def-
inition, PQ accepts all these packets. In addition, for any
i(€ [1, z]), we define q; = q;. We define ¢, =q;;1 — 1.

For any i(e [z+1,n+1]), we define qfﬂ = q;. Moreover,
!

for any i(e[1,n+1]), we define q; = 27’”3*" s’ and
J=Gy 1)

Empty cell

o i et
OPT 's buffer: D D D
LI
I
L
|
.
matching L[| |
T Gz41
PQ's buffer

Illil
-
n
- '

Fig. 1. Example states of queues (g, through g,. 1) of OPT and PQ for o and o”. Left (Right) queues show the states for o (o).

Stored packet

-

S5 i
il
1-a001 |
L | f

i
L

matching

........... PR |

http://dx.doi.org/10.1016/j.comnet.2015.09.001

Please cite this article as: J. Kawahara et al., Tight analysis of priority queuing for egress traffic, Computer Networks (2015),

577
578
579
580
581
582

583

584
585
586

587

588

589
590

591
592
593

594
595

596
597
598

599

600
601
602
603
604

605

606
607
608

609

http://dx.doi.org/10.1016/j.comnet.2015.09.001

610
611

612
613
614
615
616
617
618
619
620
621
622
623
624

625

626
627

628

629

630

631

632
633
634
635

636
637
638
639
640
641

642
643

644
645
646

647
648
649
650

651
652
653

654
655
656

657
658

JID: COMPNW

[m3Gdc;September 15, 2015;9:13]

8 J. Kawahara et al. | Computer Networks xxx (2015) xXxx—xxx

ap=0. For any x(€ [0, n]), a scheduling event occurs
at each integer time t = (}-}_ga;) +1,..., Z’ing) a;. Also, an
arrival event where a packet arrives at Q(qn—m) occurs at
eachtimet + J. After time (Z’}:& a;) + 1, sufficient schedul-
ing events to transmit all the arriving packets occur.

Then, PQ transmits a packet from QU) at t, where j is an
integer betweenq;_, , +1andgq;_, ,.Let //\LG be an offline
algorithm which transmits a packet from Q1) att. By the
”R1_)_3Tmm
PQ cannot accept any packet arriving at t+ 1 7 but ALG can
accept all the arriving packets. That is to say, ALG is optimal.

By the above argument, Vpg (o) = Vpo (o) + Og, 11 (B—
Sq,.,~1)- Furthermore, for any j(# 4z, qz41—1), kj(0’) =
kj. Also, kq,(0") = kg, — Sq,,,-1 and quﬂ,](a’) = B. Also,
for any i(e[1,n+1]), gi(c) = qj. Moreover, Vopr(c”) =

!
Varg(0') = Vg (0) + X1 g o1y kg0 ()

By the above equalities, Z?z(({) .01 kg0 (0) =
(X1 agikq) — tg.Sq,, -1 +ag, 1B = (L agkg) +

(o)
i g0 kg 01 (@) -

definition of g/, for any i(€ [1.n+1]), h

Hence,

O[QZH_] (B - SQZH_])'

Vpo (@) =
(X0 agikg)+og _1(B=sg 1) ag:k

) Oy 10 gy va L. Therefore,

PQ Gz41-1 qz+} -1 PQ

/ n(o’)

Vopr(e) PO qonbaon @)y B agky _
Vpo(o’) — Vpg (o) - Vpo(o)
Vorr (9)
Vpg (o) *

By the definition of ¢/, S, includes o’. By the above ar-
gument, for any z' such that g, + 1 < q,.,4, we recursively
construct an input in the above way, and then we can obtain
an input satisfying the lemma. O

We define the set S3 of inputs. S3 denotes the set of inputs
0 (€ S,) such that (i) for each i(e [1,n—1]), ¢; + 1 = g1,
(ii) for eachi(€ [1,n — 1]), kg, = B, (iii) for each j(€ [q1, gn]),
sj =B, (iv) for any j(e[1,q1 —1]),s;=0ifq; —1>1, and
(v) for each j(€ [gn +1.m]), s; <B.(By Lemma 3.2, gn + 1 <
m.)

Lemma 3.8. For any input o(eS3), there exists

an input o’(e83;) such that (i) Sqn(a)(ﬁ)+u+1(g/):
Z?Lq (@)+1%(@)

(ZT=qn<U)(0)+1 sj(0)) —uB, where u=|—"2p— |

and for any j(€ [qno)(0), dn)(0) +ul), sj(c’) =B, and

Vorr (@) _ Vopr(a')
() oo = Vog@ -

Proof. For any j(€ [1, gn]). we define s7=s;. Further-
more, for each j(€ [qn + 1. qn + u]), we define s” = B, and

J
qn+u+1 (Zj ant1 Sj) — uB. Also, for each j(e[gn+u+
2.m)), wedeﬁnesj’ Oifgn +u+2<m.

We construct ¢’ from o in the following way. This
approach is similar to those in the proof of Lemmas 3.6

and 3.7. First, for each j(€ [qq, m]), ’f events at which
s] packets arrive at QY occur during tlme (0, 1). Since

s}’ < B by definition, PQ accepts all these packets. Then,

for any i(€ [1, n]), we define g; = Y I
]—qn+1—l+1

ap =0. For any x(e[0,n—1]), a scheduling event oc-

curs at each integer time t= (X} a;) +1,.. Z’f’(]) a;.

sj, and

Also, at each time t + % an arrival event where a packet
arrives at Q(n—) occurs. After time (Y], a)) +1, suffi-
cient scheduling events to transmit all the arriving packets

1

occur. Vp(0') =Vpo(0) = X1y 1 s+ Z?";”I] J
+1

and Vopr(0”) =Vopr (0) — XLq, 41 @jsj + Xty @S]

H m X qn+u+l 7
Since —Zj a1 %S+ Z} ani1 %S <0 by definition,
qn+u+1
Vopr(a”) _ Vorr(@)— Yilgan JJ+Zjnqn+1 st > Yorr©@) More-
Vpo(a”) dn-+u-+1 = Vpg(o) * ore
Q o (0)— Z] qn+1 a}SJ+Z) qn+1 ajsj Q

over, by the definition of ¢/, 0’ € S3 holds, and o' satisfies
the condition (i) in the statement. [J

We next introduce the set S, of inputs. Let S, denote
the set of inputs o (€ S3) satisfying the following five con-
ditions: (i) for eachi(€ [1,n — 1]), q; + 1 = qj,1, (ii) for each
i(e[1,n—1]), kg, = B, (iii) for each j(€ [qq, qn]), s; = B, (iv)
for any j(e[1,q; —1]), s;=01if gy —1>1, and (v) there
exists some u such that 0 <u <m - gy, — 1. Also, for any
jCelgn.qn+ul), sj =B, B=sg,1us1 = 1, and for any j(e
[qn+u+2.m]),s;=0if g +u+2 <m.

Lemma3.9. Leto (€ S4) be aninput such that g, (o) +2 <
m, sqn(a)(g)ﬂ(a) =B, and Z;‘n=qn(g)(a)+2 sj(0) > 0.

Then, there exists an input & (€ Sy) such that (i) n(6) =
n(o) + 1, (ii) for each i(€ [1,n(6) — 1)), q;(6) = q;(0), and

Un(6)(6) = Un(o) (0) + 1. and (iii) (2L < orrie).

Proof. We construct ¢’ from o as follows: First, for each

jC € [q1, m]), s; events at which s; packets at QU) arrive oc-

cur during time (0, 1). Since s; < B by the definition of S,
PQ accepts all these arriving packets. For any i(€ [1, n]),
we define q; = q;, 4, = qn + 1 and q;,,, = m. Moreover, for
_ ql"l+3 i) _
= qu;ﬂ 1 sjand ag = 0.
[0, n]), a scheduling event occurs at each

integer time t = (}j_oa;) +1,..., Z’J‘“ a;. In addition, for
any x(€ [0, n]), an arrival event where a packet arrives at
Qn+1-x) occurs at each time ¢ + 1. After time (Z”“ a;) +1,
sufficient scheduling events to transmlt all the arrlvmg pack-
ets occur.
Then, the packets which PQ transmits at each scheduling
event for o are equivalent to those for o. Consider an offline

algorithm ALG which transmits a packet from Q(qﬁﬂ x’ att. By

the definition of g}, since forany i([1,n + 1]), h(q)(1 -) =
B, PQ cannot accept any packet which arrives at eac time t +
%, but ALG can accept all the packets, which means that ALG
is optimal. Hence, n(6’) =n+1, and for any i(€ [1,n + 1]),
qi(0’) = 4.

Since for any j(e [1, m]), sj(0') =sj, Vpg(o)) =
Vpo(o). Moreover, for any i(e[1,n—1]), kg (0') = kg,
kg, (') = Sg,11, and kg, 1 (0") = XL, 15 sj. Therefore, 0’ €
S4 holds, and o’ satisfies the conditions (i) and (ii) in the
statements. Also, Vopr (0”) = Vaig(0”) = Vopr () + (@gu+1 —
gy) YiLgu42 5 = Vorr (). O

Ss denotes the set of inputs o (€ S4) satisfying the fol-
lowing six conditions: (i) for each i(e [1,n—1]), g;+1=
qit1. (ii) for each i(e [1,n—1]), kg, = B, (iii) for each j(€
(41, qn]). s; =B, (iv) for any j(€ [1,q; — 1]), s; = 0 holds if
g1 —1=1, (V) kg, =Sg,+1 (By Lemma 3.2, gn +1 < m.) and

Ao
any i(€ [1,n+ 1]), we define g;

Then, for any x(

http://dx.doi.org/10.1016/j.comnet.2015.09.001

Please cite this article as: J. Kawahara et al., Tight analysis of priority queuing for egress traffic, Computer Networks (2015),

659
660
661
662

663
664

665

666
667

668
669
670
671
672
673
674
675

676
677

678
679

680

681
682
683
684
685

686

687
688
689
690
691
692
693
694

695

696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711

http://dx.doi.org/10.1016/j.comnet.2015.09.001

712
713

714
715

716
717
718

719

720

721
722
723
724
725
726

727

728
729

730
731

732
733

734
735
736
737
738
739
740
741
742
743

744

745

746

747
748

JID: COMPNW

[m3Gdc;September 15, 2015;9:13]

J. Kawahara et al. / Computer Networks xxx (2015) xXx—XxX 9

Empty space

Stored packets

OPT (Case 1) :

OPT (Case 2):

Fig. 2. States of queues at time 2.

OPT (Case1.1) :

OPT (Case1.2) :

Fig. 3. States of queues at time 4 via Case 1.

1 < 54,41 < B, and (vi) for any j(€ [qn + 2, m]), s; = 0 holds
ifgn +2 <m.

Lemma 3.10. For any input o (€ S5), there exists an input
N . Ay .oy Vopr (o)
6 (€ 8s) such that (i) sqn@(&)ﬂ(cr) =B, and (ii) % <

Vopr (6)
Vpo(6) *
That is, there exists an
Vopr(0”)y _ Vopr(o*)
maxo: (Vo | = Vhgion

input o* e S8* such that

Vopr(o) _ Vpo(0)+X 1L, ag;

Vpg(o) Vpg(0)
-1

B(Z?qu o) +0gnSqy+1

q
BOX Ly, @) +0gn+15gn 41

) kg:
Proof. Since o € S5 holds, <14

B(2?2;11)+l Sqn 11
S S -

define as x(sg, +1)-
Let 07,09 €8s be any inputs such that (i) n=
n(oy) =n(oqy) +1, (ii) for any i(e[l,n—-1]), gq;=
gi(o1) = qi(02), (iii) gn = qn(02), and (iv) s;, ,41(01) =B
and sg,;1(02) =B. Then, since x(sg,+1) is mono-
tone (increasing or decreasing) as sg,,1 increases,

Vorr (0) Vorr(o1) Vopr(02) A
Vra(0) < max{ Ve (01 * Ve (01) }. Therefore, let & be the

input such that & € arg max{ ‘(};”QT ((;1)) , ‘(}l’)’g ((522))

that the statement is true. [

, which we

}, which means

Lemma 3.11. The competitive ratio of PQ is at least 2 —
. 2
mmxdl,m—l]{%}-
Proof. Consider the following input o. Define m'e
argminxe[l'm_]]{gﬁiﬂa}. Initially, (m’ + 1)B arrival events
j=1%j

happen such that B packets arrive at Q(1) to Q"'+ Then,
for k=1,2,...,m’, the kth round consists of B scheduling
events followed by B arrival events in which all the B packets
arrive at Q(m'—k+1),

For o, PQ transmits B packets from Q™ —k+2) at the kth
round. As a result, PQ cannot accept arriving packets in

the same round. Hence, Vpg (o) = BZ}";“ a; holds. On the

other hand, OPT transmits B packets from Q™ —k+1) at the
kth round, and hence can accept all the arriving packets.

/ v,
Thus, Vopr(0) =2BY 1L & + Bdtyy . Therefore, %((g)) =

/
m
221-:1(11--%—0(”1/“ _ 9 _ Y/ 41
m'+1 . - m+1
Yl @ Yl @
Ss.) O

. (It is easy to see that o ¢

4. Lower bound for deterministic algorithms

In this section, we show a lower bound for any determin-
istic algorithm. We make an assumption that is well-known

to have no effect on the analysis of the competitive ratio.
We consider only online algorithms that transmit a packet
at a scheduling event whenever their buffers are not empty.
(Such algorithms are called work-conserving. See e.g. [9].)

Theorem 4.1. No deterministic online algorithm can achieve a

e . 3,2
o tac+o
competitive ratio smaller than 1 + a3 302 +datl”

Proof. Fix an online algorithm ON. Our adversary constructs
the following input o. Let o(t) denote the prefix of the in-
put o up to time t. OPT can accept and transmit all arriv-
ing packets in this input. 2B arrival events occur during time
(0, 1), and B packets arrive at Q(1) and Q(™), respectively. In
addition, B scheduling events occur during time (1, 2). For
o (2), suppose that ON transmits B(1 — x) packets and Bx ones
from Q) and Q™), respectively. (See Fig. 2.) After time 2, our
adversary selects one queue from Q(¥) and QU™, and makes
some packets arrive at the queue.

Case 1: If «x > 1 — x:B arrival events occur during time (2,
3), and B packets arrive at Q(*). Then, the total value of packets
which ON accepts by time 3 is (o + 1+ 1 — x)B. Moreover, B
scheduling events occur during time (3, 4). For o(4), suppose
that ON transmits B(1 — y) packets and By packets from Q(!)
and Q(™), respectively. (See Fig. 3.) After time 4, in the same
way as time 2, our adversary selects one queue from Q') and
Q‘™), and makes some packets arrive at the queue.

Case 1.1: If a(x+y) > 1 —y:B arrival events occur dur-
ing time (4, 5), and B packets arrive at Q). Furthermore, 2B
scheduling events occur during time (5, 6).

For this input, Von(0) = (@ +1+1—-x+1-y)B, and
VOPT(U) = (a +14+1+])B

Case 1.2: If a(x+y) <1 —y:B arrival events occur dur-
ing time (4, 5), and B packets arrive at Q™). Moreover, 2B
scheduling events occur during time (5, 6).

For this input, Voy(0) = (¢ +1+1 —x+ a(x+y))B, and
VOFT(J) = (a +14+1 +ot)B

Case 2: If ax < 1 — x:B arrival events occur during time
(2, 3), and B packets arrive at Q™). Then, the total value of
packets which ON accepts by time 3 is (« + 1 + ax)B. More-
over, B scheduling events occur during time (3, 4). For o(4),
ON transmits B(1 — z) packets and Bz ones from Q(!) and Q(™),
respectively during time (3, 4). (See Fig. 4.) After time 4, in the
same way as the above case, our adversary selects one queue
from Q) and Q™), and causes some packets to arrive at the
queue.

Case 2.1: If oz > 1 — x+ 1 — z:B arrival events occur dur-
ing time (4, 5), and B packets arrive at Q). Also, 2B schedul-
ing events occur during time (5, 6).

http://dx.doi.org/10.1016/j.comnet.2015.09.001

Please cite this article as: J. Kawahara et al., Tight analysis of priority queuing for egress traffic, Computer Networks (2015),

749
750
751
752

753
754

755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794

http://dx.doi.org/10.1016/j.comnet.2015.09.001

795
796
797
798
799
800
801
802
803

804

805
806

807
808

809
810
811

812
813

814

815
816
817
818
819
820
821

822
823
824
825
826
827
828
829
830
831
832
833

835
836
837
838
839
840
841

JID: COMPNW

[m3Gdc;September 15, 2015;9:13]

10 J. Kawahara et al. | Computer Networks xxx (2015) xXxx—xxx

OPT (Case 2.1) -

OPT (Case 2.2)

Fig. 4. States of queues at time 4 via Case 2.

For this input, Voy(o) = (¢ +1+ax+1—-x+1-2)B,
and Vopr(0) = (¢ +1+a + 1)B.

Case 2.2: If xz <1 — x+ 1 — z:B arrival events occur dur-
ing time (4, 5), and B packets arrive at Q™). In addition, 2B
scheduling events occur during time (5, 6).

For this input, Vpy(0) = (¢ +1+ax+az)B, and
Vorr(0) = (¢ + 1+« + o)B.
By the above argument, we define c¢;(x)=
H a+1+141 a+l+l+a —
miny max{ T sty and X)) =
i at+1+a+1 atlta+a VOPT(O')
minz max{ a+1+ax+1-x+1-z° a+T+ax+az }. Then, Von(@) =
miny max{c; (x), c;(x)}.
3 inimi o+14+1+1 oa+1+1+a
c1(x) is minimized when X1 = et xta(y)”
_ a(@+3)+(—e?—da+1)x)
Then,y = Iisa2 . Thus, C]1 (*) T
; S at+l+o+ _ _a+liota
Co(x) is zmlmmlzezd when =2 = arTraxiaz’
_ a?+6a+1+(a?—4a—1)x S _20?+5a+1
Ther%’ z= 20245041 - Hence, ?2 *) = o?4Aat1+alx’
Finally, minymax{c;(x), cy(x)} is minimized when
2 2
_ 7 ac+50+2 20°+50+1 _
1) =2 (%), that4 153 az-;4a+2—x T a2 4+da+14a2x’ There
: _ o H4aP e+ : >
fore, since x = A aed rant g Miny max{c; (x), (%)} >
et 503 +0? +5041 _ q o3+l ta 0
a4+403+302+4a+1 ad+403 4302 +4a+1"

5. Concluding remarks

A lot of packets used by multimedia applications arrive
in a QoS switch at a burst, and managing queues to store
outgoing packets (egress traffic) can become a bottleneck. In
this paper, we have formulated the problem of controlling
egress traffic, and analyzed Priority Queuing policies (PQ) us-
ing competitive analysis. We have shown that the compet-

itive ratio of PQ is exactly 2 — minxdlvm_”{ ZX“ -}. More-
: a3+a?ta _
over, we have shown that there is no 1+ PSPV o

competitive deterministic algorithm.

We present some open questions as follows: (i) What
is the competitive ratio of other practical policies, such as
WRR? (ii) We consider the case where the size of each packet
is one, namely fixed. In the setting where packets with vari-
able sizes arrive, what is the competitive ratio of PQ or other
policies? (iii) We are interested in comparing our results with
experimental results using measured data in QoS switches.
(iv) The goal was to maximize the sum of the values of the
transmitted packets in this paper, which is generally used for
the online buffer management problems. However, this may
not be able to evaluate the actual performance of practical
scheduling algorithms correctly. (We showed that the worst
scenario for PQ is extreme in this paper.) What if another
objective function (e.g., fairness) is used for evaluating the
performance of a scheduling algorithm? (v) An obvious
open question is to close the gap between the competitive
ratio of PQ and our lower bound for any deterministic
algorithm.

Acknowledgments

This work was supported by J]SPS KAKENHI Grant number
26730008.

Appendix A. Comparing both upper counds
Our upper bound is

ST
min X+1 = 1 + i+} !
it O it o

and the upper bound by Al-Bawani and Souza [2] is

. (0%
2 x+1

xe[1,m—-1] xe[1,m-1]

Ojq— O o
TN =14 max 1
Ajiq jeltm=1] | ®j11q

Now we show that
X
- o o
219 < max I
jeltm=1] | @j4q
L} and be

2 — min
jell.m—1]

l? 1 x+1
xellm-1] | 375

Define ae arg max]s[l m— 1]{

®j+1

arg MaXye (1, m— 1]{ } Then, we have that

Zxﬂ

b
Zj 10‘1‘
Z] 1“1

b
21

b
o1+ D5

b
®a 21O

- b
a1 370 Ay

Appendix B. Restriction of input

Lemma B.1. Let o be an input such that OPT rejects at least one
packet at an arrival event. Then, there exists an input o’ such

that ‘(}”’T(((f)) < “/};‘Z (((‘77,/)) and OPT accepts all arriving packets.

Proof. Let e be the first arrival event where OPT rejects a
packet, let p be the arriving packet at e, and let t be the event
time when e happens. We construct a new input o’’ by re-
moving e from a given input o. Then, PQ for o’/ might accept
a packet g which is not accepted for o after t. Suppose that
PQ handles priorities to packets in its buffers, and transmits
the packet with the highest priority at each scheduling event.
Let Q) be a queue at which p arrives at e. Then, at a schedul-
ing event after t, a priority which PQ handles to a packet in
QUY) (j <1i)for o’ is higher than that for o. However, a pri-
ority which PQ handles to a packet in QU) (j > i) for o’ is
equal to that for o. Thus, a time when a packet is transmit-
ted from QU0 (j > i) in o’ is the same as that in o. Also,
the number of packets which PQ stores in Q) (j > i)ino”’ is
equivalent to thatin o. Let k be the integer such that ¢y, is the
value of q. Then, i > k holds. Hence, Vpg(c”") < Vpg(o). On the
other hand, Vopr (6”") = Vppr (o). According to the inequality

and the equality, % < VOPT((",,)) As a result, we construct

Please cite this article as: J. Kawahara et al., Tight analysis of priority queuing for egress traffic, Computer Networks (2015),

http://dx.doi.org/10.1016/j.comnet.2015.09.001

842

843
844

845

846

847

848

849

850

851

852
853

854

855
856
857

859
860
861
862
863
864
865
866
867
868
869
870
871

872

http://dx.doi.org/10.13039/501100001691
http://dx.doi.org/10.1016/j.comnet.2015.09.001

873
874

875

876

878
879
880
881
882
883
884
885
886

888
889
890
891

893
894
895
896
897
898
899

JID: COMPNW

[m3Gdc;September 15, 2015;9:13]

J. Kawahara et al. / Computer Networks xxx (2015) xxx—xxx 1

a new input o’ by removing all arrival events at which OPT

; Vopr (@) _ Vopr(o”)
rejects a packet from o . Then, Vo (o) < V(@) "

References

[1] W. Aiello, Y. Mansour, S. Rajagopolan, A. Rosén, Competitive queue poli-
cies for differentiated services, J. Algorithms 55 (2) (2005) 113-141.

[2] K. Al-Bawani, A. Souza, Buffer overflow management with class segre-
gation, Inf. Process. Lett. 113 (4) (2013) 145-150.

[3] S. Albers, T. Jacobs, An experimental study of new and known online
packet buffering algorithms, Algorithmica 57 (4) (2010) 725-746.

[4] S. Albers, M. Schmidt, On the performance of greedy algorithms in
packet buffering, SIAM J. Comput. 35 (2) (2005) 278-304.

[5] N. Andelman, Randomized queue management for DiffServ, in: Pro-

ceedings of the 17th ACM Symposium on Parallel Algorithms and Ar-

chitectures, 2005, pp. 1-10.

N. Andelman, Y. Mansour, Competitive management of non-

preemptive queues with multiple values, Distrib. Comput. (2003)

166-180.

N. Andelman, Y. Mansour, A. Zhu, Competitive queueing policies for

QoS switches, in: Proceedings of the 14th ACM-SIAM Symposium on

Discrete Algorithms, 2003, pp. 761-770.

Y. Azar, A. Litichevskey, Maximizing throughput in multi-queue

switches, Algorithmica 45 (1) (2006) 69-90.

[9] Y. Azar, Y. Richter, Management of multi-queue switches in QoS net-
works, Algorithmica 43 (1-2) (2005) 81-96.

[10] Y. Azar, Y. Richter, An improved algorithm for CIOQ switches, ACM
Trans. Algorithms 2 (2) (2006) 282-295.

[11] Y. Azar, Y. Richter, The zero-one principle for switching networks, in:
Proceedings of the 36th ACM Symposium on Theory of Computing,
2004, pp. 64-71.

[12] A. Bar-Noy, A. Freund, S. Landa,]. Naor, Competitive on-line switching
policies, Algorithmica 36 (3) (2003) 225-247.

[13] M. Bienkowski, A. Madry, Geometric aspects of online packet buffering:
an optimal randomized algorithm for two buffers, in: Proceedings of
the 8th Latin American Theoretical Informatics, 2008, pp. 252-263.

[14] M. Bienkowski, An optimal lower bound for buffer management in
multi-queue switches, Algorithmica 68 (2) (2014) 426-447.

[15] S. Blanke, D. Black, M. Carlson, E. Davies, Z. Wang, W. Weiss, An archi-
tecture for differentiated services, in: Proceedings of the RFC2475, IETF,
December 1998.

[16] A. Borodin, R. El-Yaniv, Online Computation and Competitive Analysis,
Cambridge University Press, 1998.

[17] Cisco Systems, Inc, “Campus QoS Design”, http://www.cisco.com/en/
US/docs/solutions/Enterprise/ WAN_and_MAN/QoS_SRND/QoSDesign.
html, 2014.

[18] Cisco Systems, Inc, “Cisco Catalyst 2955 series switches data
sheets”, http://[www.cisco.com/en/US/products/hw/switches/ps628/
products_data_sheets_list.html, 2014.

[19] Cisco Systems, Inc, “Cisco Catalyst 6500 series switches data
sheets”, http://www.cisco.com/en/US/products/hw/switches/ps708/
products_data_sheets_list.html, 2014.

[20] A. Demers, S. Keshav, S. Shenker, Analysis and simulation of a fair
queueing algorithm, J.. Internetw. Res. Exp. 1 (1) (1990) 3-26.

[21] M. Englert, M. Westermann, Lower and upper bounds on FIFO buffer
management in QoS switches, Algorithmica 53 (4) (2009) 523-548.

[22] R. Fleischer, H. Koga, Balanced scheduling toward loss-free packet
queuing and delay fairness, Algorithmica 38 (2) (2004) 363-376.

[23] M. Goldwasser, A survey of buffer management policies for packet
switches, ACM SIGACT News 41 (1) (2010) 100-128.

[24] E. Hahne, A. Kesselman, Y. Mansour, Competitive buffer management
for shared-memory switches, in: Proceedings of the 13th ACM Sympo-
sium on Parallel Algorithms and Architectures, 2001, pp. 53-58.

[25] M. Katevenis, S. Sidiropopulos, C. Courcoubetis, Weighted round-robin
cell multiplexing in a general-purpose ATM switch chip, IEEE J. Select.
Area Commun. 9 (8) (October 1991) 1265-1279.

[26] A. Kesselman, Z. Lotker, Y. Mansour, B. Patt-Shamir, B. Schieber,
M. Sviridenko, Buffer overflow management in QoS switches, SIAM J.
Comput. 33 (3) (2004) 563-583.

[27] A. Kesselman, Y. Mansour, Harmonic buffer management policy for
shared memory switches, Theor. Comput. Sci. 324 (2-3) (2004) 161-
182.

[28] A. Kesselman, Y. Mansour, R. van Stee, Improved competitive guaran-
tees for QoS buffering, Algorithmica 43 (1-2) (2005) 63-80.

6

17

8

[29] A. Kesselman, A. Rosén, Scheduling policies for CIOQ switches, J. Algo-
rithms 60 (1) (2006) 60-83.

[30] A.Kesselman, A. Rosén, Controlling CIOQ switches with priority queu-
ing and in multistage interconnection networks, J. Interconnect. Netw.
9(1/2)(2008) 53-72.

[31] A.Kesselman, K. Kogan, M. Segal, Packet mode and QoS algorithms for
buffered crossbar switches with FIFO queuing, Distrib. Comput. 23 (3)
(2010) 163-175.

[32] A.Kesselman, K. Kogan, M. Segal, Best effort and priority queuing poli-
cies for buffered crossbar switches, Chicago J. Theor. Sci. (2012) 1-14.

[33] A. Kesselman, K. Kogan, M. Segal, Improved competitive performance
bounds for CIOQ switches, Algorithmica 63 (1-2) (2012b) 411-424.

[34] K.Kobayashi, S. Miyazaki, Y. Okabe, A tight bound on online buffer man-
agement for two-port shared-memory switches, in: Proceedings of the
19th ACM Symposium on Parallel Algorithms and Architectures, 2007,
pp. 358-364.

[35] K. Kobayashi, S. Miyazaki, Y. Okabe, A tight upper bound on online
buffer management for multi-queue switches with bicodal buffers, IE-
ICE TRANSACTIONS on Fundam. Electron., Commun. Comput. Sci. E91-
D (12)(2008) 2757-2769.

[36] K. Kobayashi, S. Miyazaki, Y. Okabe, Competitive buffer management
for multi-queue switches in QoS networks using packet buffering algo-
rithms, in: Proceedings of the 21st ACM Symposium on Parallel Algo-
rithms and Architectures, 2009, pp. 328-336.

[37] K. Kogan, A. Lopez-Ortiz, S. Nikolenko, A. Sirotkin, Multi-queued net-
work processors for packets with heterogeneous processing require-
ments, in: Proceedings of the 5th International Conference on Commu-
nication Systems and Networks, 2013, pp. 1-10.

[38] K. Kogan, A. Lopez-Ortiz, S.I. Nikolenko, A.V. Sirotkin, Online Schedul-
ing FIFO policies with admission and Push-Out, Theory Comput. Syst.
(2015).

[39] S.I Nikolenko, K. Kogan, Single and multiple buffer processing, in: En-
cyclopedia of Algorithms, Springer, 2015, pp. 1-9.

[40] D. Sleator, R. Tarjan, Amortized efficiency of list update and paging
rules, Commun. ACM 28 (2) (1985) 202-208.

[41] M. Sviridenko, “A lower bound for on-line algorithms in the FIFO
model,” unpublished manuscript, 2001.

Jun Kawahara was born in Osaka, Japan, in 1981.
He received the B.S. degree in science and the
M.E. and Ph.D. degrees in informatics from Ky-
oto University, Japan, in 2004, 2006, and 2009,
respectively. In 2009-2010, he worked at Kyoto
University as a Researcher. He joined the JST ER-
ATO Minato Discrete Structure Manipulation Sys-
tem Project as a Researcher in 2010-2012. Cur-
rently, he is an Assistant Professor at Nara Insti-
tute of Science and Technology, Nara, Japan. His
research interests include theoretical computer
science and discrete algorithms.

Koji M. Kobayashi has received his B.E., M.I. and
Ph.D. from Kyoto University. He is a research as-
sociate at National Institute of Informatics, Japan.
His research interests include algorithms and
complexity theory.

Tomotaka Maeda is a research associate in Aca-
demic Center for Computing and Media Studies,
Kyoto University. He received his B.E. and M. de-
grees from Kyoto University in 2006 and 2008, re-
spectively. His research interest is Internet archi-
tecture.

Please cite this article as: J. Kawahara et al., Tight analysis of priority queuing for egress traffic, Computer Networks (2015),

http://dx.doi.org/10.1016/j.comnet.2015.09.001

999
1000
1001
1002
1003
1004

http://www.cisco.com/en/US/docs/solutions/Enterprise/WAN_and_MAN/QoS_SRND/QoSDesign.html
http://www.cisco.com/en/US/products/hw/switches/ps628/products_data_sheets_list.html
http://www.cisco.com/en/US/products/hw/switches/ps708/products_data_sheets_list.html
http://dx.doi.org/10.1016/j.comnet.2015.09.001

	Tight analysis of priority queuing for egress traffic
	1 Introduction
	2 Model description
	3 Analysis of priority queuing
	3.1 Priority queuing
	3.2 Overview of the analysis
	3.3 Competitive analysis of PQ

	4 Lower bound for deterministic algorithms
	5 Concluding remarks
	 Acknowledgments
	Appendix A Comparing both upper counds
	Appendix B Restriction of input
	 References

