
ARTICLE IN PRESS
JID: COMPNW [m3Gdc;September 15, 2015;9:13]

Computer Networks xxx (2015) xxx–xxx

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Tight analysis of priority queuing for egress traffic✩

Jun Kawahara a,∗, Koji M. Kobayashi b, Tomotaka Maeda cQ1

a Graduate School of Information Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 6300192, Japan
b National Institute of Informatics, Japan
c Academic Center for Computing and Media Studies, Kyoto University, Japan

a r t i c l e i n f o

Article history:

Received 12 January 2015

Revised 2 September 2015

Accepted 3 September 2015

Available online xxx

Keywords:

Online problem

Competitive analysis

Quality of service

Priority queuing

Egress traffic control

Multi-queue switch

a b s t r a c t

Recently, the problems of evaluating performances of switches and routers have been formu-

lated as online problems, and a great amount of results have been presented. In this paper, we

focus on managing outgoing packets (called egress traffic) on switches that support Quality of

Service (QoS), and analyze the performance of one of the most fundamental scheduling poli-

cies Priority Queuing (PQ) using competitive analysis. We formulate the problem of managing

egress queues as follows: An output interface is equipped with m queues, each of which has

a buffer of size B. The size of a packet is unit, and each buffer can store up to B packets simul-

taneously. Each packet is associated with one of m priority values αj (1 ≤ j ≤ m), where α1 ≤
α2 ≤ ��� ≤ αm , α1 = 1, and αm = α and the task of an online algorithm is to select one of m

queues at each scheduling step. The purpose of this problem is to maximize the sum of the

values of the scheduled packets.

For any B and any m, we show that the competitive ratio of PQ is exactly 2 −
minx∈[1,m−1]{ αx+1∑x+1

j=1 α j

}. That is, we conduct a complete analysis of the performance of PQ us-

ing worst case analysis. Moreover, we show that no deterministic online algorithm can have a

competitive ratio smaller than 1 + α3+α2+α
α4+4α3+3α2+4α+1

.

© 2015 Published by Elsevier B.V.

1. Introduction1

In recent years, the Internet has provided a rich varietyQ2
2

of applications, such as teleconferencing, video streaming, IP3

telephone, mainly thanks to the rapid growth of the broad-4

band technology. To enjoy such services, the demand for5

the Quality of Service (QoS) guarantee is crucial. For exam-6

ple, usually there is little requirement for downloading pro-7

grams or picture images, whereas real-time services, such as8

distance meeting, require constant-rate packet transmission.9

One possible way of supporting QoS is differentiated services10

✩ A preliminary version of this paper was presented at the 8th annual

international conference on combinatorial optimization and applications,

COCOA 2014.
∗ Corresponding author. Tel.: +81 -743 -72 -5362; fax: +81743725369.

E-mail address: jkawahara@is.naist.jp (J. Kawahara).

(Diffserv) [15]. In DiffServ, a value is assigned to each packet 11

according to the importance of the packet. Then, switches 12

that support QoS (QoS switches) decide the order of pack- 13

ets to be processed, based on the value of packets. In such a 14

mechanism, one of the main issues in designing algorithms 15

is how to treat packets depending on the priority in buffering 16

or scheduling. This kind of problems was recently modeled 17

as an online problem, and the competitive analysis [16,40] of 18

algorithms has been done. 19

Aiello et al. [1] was the first to attempt this study, in 20

which they considered a model with only one First In First 21

Out (FIFO) queue. This model mainly focuses on the buffer 22

management issue of the input port of QoS switches: There 23

is one FIFO queue of size B, meaning that it can store up to B 24

packets. An input is a sequence of events. An event is either 25

an arrival event, at which a packet with a specified priority 26

value arrives, or a scheduling event, at which the packet at the 27

head of the queue will be transmitted. The task of an online 28

http://dx.doi.org/10.1016/j.comnet.2015.09.001

1389-1286/© 2015 Published by Elsevier B.V.

Please cite this article as: J. Kawahara et al., Tight analysis of priority queuing for egress traffic, Computer Networks (2015),

http://dx.doi.org/10.1016/j.comnet.2015.09.001

http://dx.doi.org/10.1016/j.comnet.2015.09.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
mailto:jkawahara@is.naist.jp
http://dx.doi.org/10.1016/j.comnet.2015.09.001
http://dx.doi.org/10.1016/j.comnet.2015.09.001


2 J. Kawahara et al. / Computer Networks xxx (2015) xxx–xxx

ARTICLE IN PRESS
JID: COMPNW [m3Gdc;September 15, 2015;9:13]

(buffer management) algorithm is to decide, when a packet29

arrives at an arrival event, whether to accept or to reject it30

(in order to keep a room for future packets with higher pri-31

ority). The purpose of the problem is to maximize the sum of32

the values of the transmitted packets. Aiello et al. analyzed33

the competitiveness of the Greedy Policy, the Round Robin34

Policy, the Fixed Partition Policy, etc.35

After the publication of this seminal paper, more and36

more complicated models have been introduced and stud-37

ied, some of which are as follows: Azar et al. [9] considered38

the multi-queue switch model, which formulates the buffering39

problem of one input port of the switch. In this problem, an40

input port has N input buffers connected to a common output41

buffer. The task of an online algorithm is now not only buffer42

management but also scheduling. At each scheduling event,43

an algorithm selects one of N input buffers, and the packet at44

the head of the selected buffer is transmitted to the inside of45

the switch through the output buffer. There are some formu-46

lations that model not only one port but the entire switch. For47

example, Kesselman et al. [29] introduced the Combined Input48

and Output Queue (CIOQ) switch model. In this model, a switch49

consists of N input ports and N output ports, where each port50

has a buffer. At an arrival phase, a packet (with the specified51

destination output port) arrives at an input port. The task52

of an online algorithm is buffer management as mentioned53

before. At a transmission phase, all the packets at the top of54

the nonempty buffers of output ports are transmitted. Hence,55

there is no task of an online algorithm. At a scheduling phase,56

packets at the top of the buffers of input ports are transmitted57

to the buffers of the output ports. Here, an online algorithm58

computes a matching between input ports and output ports.59

According to this matching, the packets in the input ports will60

be transmitted to the corresponding output ports. Kesselman61

et al. [32] considered the crossbar switch model, which mod-62

els the scheduling phase of the CIOQ switch model more in63

detail. In this model, there is also a buffer for each pair of64

an input port and an output port. Thus, there arises another65

buffer management problem at scheduling phases.66

In some real implementation (e.g., [17]), additional67

68

e69

70

s71

72

s73

s74

-75

f76

t77

78

79

80

81

82

83

84

85

86

87

88

89

In the WFQ algorithm, length of packets, as well as the prior- 90

ity values, are taken into consideration so that shorter pack- 91

ets are more likely to be scheduled. This algorithm is imple- 92

mented in Cisco’s Catalyst 6500 series [19] and so on. 93

In spite of intensive studies on online buffer management 94

and scheduling algorithms, to the best of our knowledge, 95

there have been no research on the egress traffic control, 96

which we focus on in this paper. Our purpose is to evaluate 97

the performances of actual scheduling algorithms for egress 98

queues. 99

Our Results. We formulate this problem as an online 100

problem, and provide a tight analysis of the performance 101

of PQ using competitive analysis. Specifically, for any B, 102

we show that the competitive ratio of PQ is exactly 2 − 103

minx∈[1,m−1]{ αx+1∑x+1
j=1

α j

}. PQ is trivial to implement, and has a 104

lower computational load than the other policies, such as 105

WRR and WFQ. Hence, it is meaningful to analyze the exact 106

performance of PQ. Moreover, we present a lower bound of 107

1 + α3+α2+α
α4+4α3+3α2+4α+1

on the competitive ratio of any deter- 108

ministic algorithm. 109

Related Work. Independently of our work, Al-Bawani 110

and Souza [2] have very recently considered much the 111

same model. PQ is called the greedy algorithm in their pa- 112

per. Unlike our setting, they discussed only the case where 113

any two of the values differ, that is, 0 < α1 < α2 < 114

��� < αm. Also, they assumed that for any j( ∈ [1, m]), 115

the jth queue can store at most Bj( ∈ [1, B]) packets at 116

a time. In the case of B j = B, that is, in the same set- 117

ting as ours, they showed that the competitive ratio of 118

PQ is at most 2 − min j∈[1,m−1]{α j+1−α j

α j+1
} for any m and B. 119

When comparing our result and their upper bound, we have 120

2 − minx∈[1,m−1]{ αx+1∑x+1
j=1

α j

} < 2 − min j∈[1,m−1]{α j+1−α j

α j+1
} by el- 121

ementary calculation (see Appendix A in Appendix). Note 122

that 2 − min j∈[1,m−1]{α j+1−α j

α j+1
} is equal to 2 when there ex- 123

ists some z such that αz+1 = αz. In general practical switches, 124

the sizes of any two egress queues attached to the same out- 125

put port are equivalent by default. Since we focus on evaluat- 126

g 127

e 128

s 129

130

l 131

e 132

133

r 134

e 135

s 136

e 137
buffers are equipped with each output port of a QoS switch

to control the outgoing packets (called egress traffic). Assum

that there are m priority values of packets α1, α2, . . . , αm

such that α1 ≤ α2 ≤ ��� ≤ αm. Then, m FIFO queue

Q(1), Q(2), . . . , Q(m) are introduced for each output port, and

a packet with the value αi arriving at this output port i

stored in the queue Q(i). Usually, this buffering policy i

greedy, namely, when a packet arrives, it is rejected if the cor

responding queue is full, and accepted otherwise. The task o

an algorithm is to decide which queue to transmit a packet a

each scheduling event.
Several practical algorithms, such as Priority Queuing

(PQ), Weighted Round-Robin (WRR) [25], and Weighted Fair

Queuing (WFQ) [20], are currently implemented in network

switches. PQ is the most fundamental algorithm, which se-

lects the highest priority non-empty queue. This policy is im-

plemented in many switches by default. (e.g., Cisco’s Catalyst

2955 series [18]) In the WRR algorithm, queues are selected

according to the round robin policy based on the weight of

packets corresponding to queues, i.e., the rate of selecting Q(i)

in one round is proportional to αi for each i. This algorithm

is implemented in Cisco’s Catalyst 2955 series [18] and so on.

138

- 139

s 140

- 141

e 142

r 143

. 144

Please cite this article as: J. Kawahara et al., Tight analysis of pri

http://dx.doi.org/10.1016/j.comnet.2015.09.001
ing the performance of algorithms in a more practical settin

(which might be less generalized), we assume that the siz

of each queue is B. Moreover, our analysis in this paper doe

not depend on the maximum numbers of packets stored in

buffers, and instead it depends on whether buffers are ful

of packets. Thus, the exact competitive ratio of PQ would b

derived for the setting where for any j, the size of the jth

queue is Bj in the same way as this paper. (If we apply ou

method in their setting, Lemma 3.7 in Section 3.3 has to b

fixed slightly. However the competitive ratio obtained in thi

setting seems to be a more complicated value including som

min s or max es.)

As mentioned earlier, there are a lot of studies concen

trating on evaluating performances of functions of switche

and routers, such as queue management and packet schedul

ing. The most basic one is the model consisting of singl

FIFO queue by Aiello et al. [1] mentioned above. In thei

model, each packet can take one of two values 1 or α( > 1)
Andelman et al. [7] generalized the values of packets to any 145

value between 1 and α. Another generalization is to allow 146

preemption, namely, one may drop a packet that is already 147

stored in a queue. Results of the competitiveness on this 148

ority queuing for egress traffic, Computer Networks (2015),

http://dx.doi.org/10.1016/j.comnet.2015.09.001


J. Kawahara et al. / Computer Networks xxx (2015) xxx–xxx 3

ARTICLE IN PRESS
JID: COMPNW [m3Gdc;September 15, 2015;9:13]

m149

[3150

p151

co152

153

q154

it155

in156

co157

p158

o159

a160

sw161

b162

163

o164

in165

In166

a167

q168

b169

a170

L171

st172

re173

ti174

e175

176

re177

e178

2179

180

in181

b182

e183

p184

w185

w186

a187

α188

it189

st190

191

is192

a193

ce194

sp195

st196

e197

tr198

a199

tr200

ca201

th202

le203

th204

T205

V206

sa 207

a 208

3 209

3 210

211

th 212

a 213

su 214

ti 215

3 216

217

O 218

th 219

ti 220

F 221

a 222

le 223

n 224

fo 225

q 226

< 227

d 228

e 229

th 230

V 231

th 232

p 233

234

L 235

(d 236

v 237

p 238

ti 239

a 240

in 241

p 242

i( 243

n 244

1 245

if 246

s 247

e 248

in 249

250

o 251

n 252

T 253

1 254

lo 255

P

h

odel are given in [1,5–7,21,26,28,41]. Recently Kogan et al.

8] analyzed the performance of some packet scheduling

olicies for single FIFO queue built on processing cycles and

nducted some simulation research for the policies.

The multi-queue switch model [9,11,36] consists of m FIFO

ueues. In this model, the task of an algorithm is to manage

s buffers and to schedule packets. The problem of design-

g only a scheduling algorithm in multi-queue switches is

nsidered in [4,8,13,14,35]. Moreover, Albers and Jacobs [3]

erformed an experimental study for the first time on several

nline scheduling algorithms for this model. Also, the over-

ll performance of several switches, such as shared-memory

itches [24,27,34], CIOQ switches [10,29,30,33], and cross-

ar switches [31,32], are extensively studied.

Fleischer and Koga [22] and Bar-Noy et al. [12] studied the

nline problem of minimizing the length of the longest queue

a switch, in which the size of each queue is unbounded.

[22] and [12], they showed that the competitive ratio of

ny online algorithm is �(log m), where m is the number of

ueues in a switch. Fleischer and Koga [22] presented a lower

ound of �(m) for the round robin policy. In addition, in [22]

nd [12], the competitive ratio of a greedy algorithm called

ongest Queue First is O(log m). Recently, Kogan et al. [37]

udied a multi-queue switch where packets with different

quired processing times arrive. (In the other settings men-

oned above, the required processing times of all packets are

quivalent.)

Furthermore, some comprehensive surveys showed much

search on buffer management and scheduling policies (see

.g. [23,39]).

. Model description

In this section, we formally define the problem studied

this paper. Our model consists of m queues, each with a

uffer of size B. The size of a packet is unit, which means that

ach buffer can store up to B packets simultaneously. Each

acket is associated with one of m values αi (1 ≤ i ≤ m),

hich represents the priority of this packet where a packet

ith larger value is of higher priority. Without loss of gener-

lity, we assume that α1 = 1, αm = α, and α1 ≤ α2 ≤ ��� ≤
m. The ith queue is denoted Q(i) and is also associated with

s priority value αi. An arriving packet with the value αi is

ored in Q(i).

An input for this model is a sequence of events. Each event

an arrival event or a scheduling event. At an arrival event,

packet arrives at one of m queues, and the packet is ac-

pted to the buffer when the corresponding queue has free

ace. Otherwise, it is rejected. If a packet is accepted, it is

ored at the tail of the corresponding queue. At a scheduling

vent, an online algorithm selects one non-empty queue and

ansmits the packet at the head of the selected queue. We

ssume that any input contains enough scheduling events to

ansmit all the arriving packets in it. That is, any algorithm

n certainly transmit a packet stored in its queue. Note that

is assumption is common in the buffer management prob-

m. (See e.g. [23].) The gain of an algorithm is the sum of

e values of transmitted packets. Our goal is to maximize it.

he gain of an algorithm ALG for an input σ is denoted by

(σ ). If V (σ ) ≥ V (σ )/c for an arbitrary input σ , we
ALG ALG OPT

lease cite this article as: J. Kawahara et al., Tight analysis of prior

ttp://dx.doi.org/10.1016/j.comnet.2015.09.001
y that ALG is c-competitive, where OPT is an optimal offline

lgorithm for σ .

. Analysis of priority queuing

.1. Priority queuing

PQ is a greedy algorithm. At a scheduling event, PQ selects

e non-empty queue with the largest index. For analysis, we

ssume that OPT does not reject an arriving packet. This as-

mption does not affect the analysis of the competitive ra-

o. (See Lemma B.1 in Appendix B.)

.2. Overview of the analysis

We define an extra packet as a packet which is accepted by

PT but rejected by PQ. In the following analysis, we evaluate

e sum of the values of extra packets to obtain the competi-

ve ratio of PQ. We introduce some notation for our analysis.

or any input σ , kj(σ ) denotes the number of extra packets

rriving at Q(j) when treating σ . We call a queue at which at

ast one extra packet arrives a good queue when treating σ .

(σ ) denotes the number of good queues for σ . Moreover,

r any input σ and any i( ∈ [1, n(σ )]), qi(σ ) denotes the good

ueue with the ith minimum index. That is, 1 ≤ q1(σ ) < q2(σ )

��� < qn(σ )(σ ) ≤ m. Also, we define qn(σ )+1(σ ) = m. In ad-

ition, for any input σ , sj(σ ) denotes the number of pack-

ts which PQ transmits from Q(j). We drop the input σ from

e notation when it is clear. Then, VPQ(σ ) = ∑m
j=1 α js j, and

OPT (σ ) = VPQ(σ ) + ∑n
i=1 αqi

kqi
. (The equality follows from

e assumption that OPT does not reject any packet, which is

roven in Lemma B.1.)

First, we show that km = 0, that is, qn + 1 ≤ m, in

emma 3.2. We will gradually construct some input set S∗

efined below) from Lemma 3.4 –Lemma 3.9 using some ad-

ersarial strategies against PQ. Moreover, in Lemma 3.10, we

rove that the set S∗ includes an input σ such that the ra-

o
VOPT (σ )
VPQ (σ )

is maximized. That is, we show that there exists

n input σ ∗ in the set S∗ to get the competitive ratio of PQ

the lemma. More formally, we define the set S∗ of the in-

uts σ ′ satisfying the following five conditions: (i) for any

∈ [1, n(σ ′) − 1]), qi(σ
′) + 1 = qi+1(σ

′), (ii) for any i( ∈ [1,

(σ ′)]), kqi(σ
′)(σ ′) = B, (iii) for any j( ∈ [q1(σ

′), qn(σ ′)(σ ′) +
]), s j(σ

′) = B, (iv) for any j( ∈ [1, q1(σ
′) − 1]), s j(σ

′) = 0

q1(σ
′) − 1 ≥ 1, and (v) for any j( ∈ [qn(σ ′)(σ ′) + 2, m]),

j(σ
′) = 0 if qn(σ ′)(σ ′) + 2 ≤ m. Then, we show that there

xists an input σ ∗ ∈ S∗ such that maxσ ′′ {VOPT (σ ′′)
VPQ (σ ′′) } = VOPT (σ ∗)

VPQ (σ ∗)
Lemma 3.10.

By the above lemmas, we can obtain the competitive ratio

f PQ as follows: For ease of presentation, we write si(σ
∗),

(σ ∗), qi(σ
∗) and ki(σ

∗) as s∗
i
, n∗, q∗

i
and k∗

i
, respectively.

hus,
VOPT (σ ∗)
VPQ (σ ∗) =

VPQ (σ ∗)+∑n∗
i=1 αq∗

i
k∗

q∗
i

VPQ (σ ∗) = 1 +
B

∑q∗
n∗

j=q∗
1

α j

B
∑q∗

n∗ +1

j=q∗
1

α j

≤

+
∑q∗

n∗
j=1

α j∑q∗
n∗ +1

j=1
α j

= 2 − αqn∗+1∑qn∗ +1

j=1
α j

. The last inequality fol-

ws from

∑y
j=x−1

α j∑y+1
j=x−1

α j

−
∑y

j=x
α j∑y+1

j=x
α j

= (
∑y

j=x−1
α j

∑y+1
j=x

α j −
ity queuing for egress traffic, Computer Networks (2015),

http://dx.doi.org/10.1016/j.comnet.2015.09.001


4 J. Kawahara et al. / Computer Networks xxx (2015) xxx–xxx

ARTICLE IN PRESS
JID: COMPNW [m3Gdc;September 15, 2015;9:13]

256

e257

258

e259

260

,261

262

263

264

265

266

y267

x268

e269

s270

e271
i)272

t273

t274

-275

g276

277

278

y279

s280

)281

e282

283

-284

e285

g286

g287

f288

t289

-290

e291

e292

-293

t294

t295

p296

-297

t298

299

e300

-301

t302

e303

s304

.305

306

307

- 308

r 309

s 310

311

r 312

- 313

314

315

316

317

1 318

. 319

e 320

e 321

322

323

1 324

. 325

326

327

- 328

e 329

330

s 331

332

333

y 334

t 335

336

337

338

339

T
340

e 341

e 342

343

344

T
345

s 346

347

348

349

) 350

s 351

352

353

T
354

355

356

T
357

e 358

359
∑y
j=x

α j

∑y+1
j=x−1

α j)/(
∑y+1

j=x−1
α j

∑y+1
j=x

α j) = (αx−1αy+1)/

(
∑y+1

j=x−1
α j

∑y+1
j=x

α j) > 0. This gives an upper bound on th

competitive ratio of PQ.

On the other hand, we show that there exists som

input σ̂ such that
VOPT (σ̂ )
VPQ (σ̂ )

= 2 − minx∈[1,m−1]{ αx+1∑x+1
j=1

α j

} in

Lemma 3.11, which presents a lower bound for PQ. Therefore

we have the following theorem:

Theorem 3.1. The competitive ratio of PQ is exactly 2 −
minx∈[1,m−1]{ αx+1∑x+1

j=1
α j

}.

3.3. Competitive analysis of PQ

We give some definitions. For ease of presentation, an

event time denotes a time when an event happens, and an

other moment is called a non-event time. We assign inde

numbers 1 through B to each position of a queue from th

head to the tail in increasing order. The jth position of Q(i) i

called the jth cell. For any non-event time t, suppose that th

jth cell in Q(i) of PQ holds a packet at t but the jth cell c in Q(

of OPT does not at t. Then, we call c a free cell at t. Note tha

any extra packet is accepted at a free cell. For any non-even

time t, let h
( j)
ALG

(t) denote the number of packets which an al

gorithm ALG stores in Q(j) at t. We first prove the followin

lemma. (The lemma is similar to Lemma 2.3 in [2].)

Lemma 3.2. km = 0.

Proof. By the definition of PQ, PQ selects the non-empt

queue with the highest priority. Thus, h
(m)
PQ

(t) ≤ h
(m)
OPT

(t) hold

at any non-event time t. Therefore, there is no free cell in Q(m

of OPT at any time. Since any extra packet is accepted to a fre

cell, km = 0. �

Next, in order to evaluate the total number of extra pack

ets accepted at each Q(qi) (i ∈ [1, n]), we construct som

matching between extra packets and PQ’s packets accordin

to the matching routine defined later. (Note that evaluatin

the number of extra packets is related to the property (ii) o

S∗.) Suppose that extra packet p is matched with PQ’s packe

p′ such that p and p′ are transmitted from Q(i) and Q(i′), re

spectively. Then, the routine constructs this matching wher

i < i′. Let us explain how to construct the matching. W

match extra packet one by one with time. However, it is dif

ficult to match an extra packet with PQ’s packet in a direc

way. Thus, the matching is formed in two stages. That is, a

first, for any free cell c, we match c with some PQ’s packet

when c becomes free at an event time. At a later time, we re

match the extra packet p′ accepted into c with p at an even

time when OPT accepts p′.
In order to realize such matching, we first verify a chang

in the number of free cells at each event before introduc

ing our matching routine. We give some definitions for tha

reason. For any event time t, t− denotes the non-event tim

before t and after the previous event time. Also, t+ denote

the non-event time after t and before the next event time

The reason why we introduce such notation is that we avoid

unclear proofs and that we rigorously specify the location
Please cite this article as: J. Kawahara et al., Tight analysis of pri

http://dx.doi.org/10.1016/j.comnet.2015.09.001
of each packet in a buffer shortly before or after a mo

ment when an algorithm processes (i.e., accepts or rejects) o

transmits a packet. Let f(j)(t) denote the number of free cell

in Q(j) at a non-event time t, that is, f ( j)(t) = max{h
( j)
PQ

(t) −
h
( j)
OPT

(t), 0}. Note that OPT does not reject any packet by ou

assumption (Lemma B.1 in Appendix B). Thus, for any non

event time t,
∑m

j=1 h
( j)
OPT

(t) > 0 if
∑m

j=1 h
( j)
PQ

(t) > 0.

Arrival event: Let p be the packet arriving at Q(x) at an

event time t.

Case A1: Both PQ and OPT accept p, and

h(x)
PQ

(t − )−h(x)
OPT

(t − ) > 0: Since h
(x)
PQ

(t + ) = h
(x)
PQ

(t − ) +
and h

(x)
OPT

(t + ) = h
(x)
OPT

(t − ) + 1, h
(x)
PQ

(t + ) − h
(x)
OPT

(t + ) > 0

Thus, the (h
(x)
PQ

(t − ) + 1)st cell of Q(x) becomes fre

in place of the (h
(x)
OPT

(t − ) + 1)st cell of Q(x). Henc

f (x)(t + ) = f (x)(t − ).

Case A2: Both PQ and OPT accept p, and

h(x)
PQ

(t − )−h(x)
OPT

(t − ) ≤ 0: Since h
(x)
PQ

(t + ) = h
(x)
PQ

(t − ) +
and h

(x)
OPT

(t + ) = h
(x)
OPT

(t − ) + 1, h
(x)
PQ

(t + ) − h
(x)
OPT

(t + ) ≤ 0

Since the states of all the free cells do not change before and

after t, f (x)(t + ) = f (x)(t − ).

Case A3: PQ rejects p, but OPT accepts p: p is an ex

tra packet since only OPT accepts p. p is accepted into th

(h
(x)
OPT

(t − ) + 1)st cell, which is free at t−, of Q(x). h
(x)
PQ

(t + ) =
h
(x)
PQ

(t − ) = B, and h
(x)
OPT

(t + ) = h
(x)
OPT

(t − ) + 1, which mean

that f (x)(t + ) = f (x)(t − ) − 1.

Scheduling event:

If PQ (OPT, respectively) has at least one non-empt

queue, suppose that PQ (OPT, respectively) transmits a packe

from Q(y) (Q(z), respectively) at t.

Case S:
∑m

j=1h
( j)
PQ

(t − ) > 0 and
∑m

j=1h
( j)
OPT

(t − ) > 0:

Case S1: y = z:

Case S1.1: h
(y)
PQ

(t − )−h
(y)
OPT

(t − ) > 0:

Since h
(y)
PQ

(t + ) = h
(y)
PQ

(t − ) − 1 and h
(y)
OPT

(t + ) = h
(y)
OP

(t − ) − 1, h
(y)
PQ

(t + ) − h
(y)
OPT

(t + ) > 0 holds. Thus, th

h
(y)
OPT

(t − )th cell of Q(y) becomes free in place of th

h
(y)
PQ

(t − )th cell of Q(y). Hence f (y)(t + ) = f (y)(t − ).

Case S1.2: h
(y)
PQ

(t − )−h
(y)
OPT

(t − ) ≤ 0:

Since h
(y)
PQ

(t + ) = h
(y)
PQ

(t − ) − 1 and h
(y)
OPT

(t + ) = h
(y)
OP

(t − ) − 1 hold, h
(y)
PQ

(t + ) − h
(y)
OPT

(t + ) ≤ 0. Hence the state

of all the free cells do not change before and after t.

Case S2: y > z:

Case S2.1: h(z)
PQ

(t − )−h(z)
OPT

(t − ) < 0:

Since h
(z)
PQ

(t + ) = h
(z)
PQ

(t − ) and h
(z)
OPT

(t + ) = h
(z)
OPT

(t −
−1, h

(z)
PQ

(t + ) ≤ h
(z)
OPT

(t + ). Thus, the states of all the free cell

of Q(z) do not change before and after t.

Case S2.1.1: h
(y)
PQ

(t − )−h
(y)
OPT

(t − ) > 0:

Since h
(y)
PQ

(t + ) = h
(y)
PQ

(t − ) − 1 and h
(y)
OPT

(t + ) = h
(y)
OP

(t − ), f (y)(t + ) = f (y)(t − ) − 1 holds.

Case S2.1.2: h
(y)
PQ

(t − )−h
(y)
OPT

(t − ) ≤ 0:

Since h
(y)
PQ

(t + ) = h
(y)
PQ

(t − ) − 1 and h
(y)
OPT

(t + ) = h
(y)
OP

(t − ), h
(y)
PQ

(t + ) < h
(y)
OPT

(t + ). Hence, the states of all the fre

cells of Q(y) do not change before and after t.
ority queuing for egress traffic, Computer Networks (2015),

http://dx.doi.org/10.1016/j.comnet.2015.09.001


J. Kawahara et al. / Computer Networks xxx (2015) xxx–xxx 5

ARTICLE IN PRESS
JID: COMPNW [m3Gdc;September 15, 2015;9:13]

360

361

T362

th363

364

365

(t366

367

368

(t369

a370

371

372

n373

374

375

(t376

377

378

(t379

th380

381

382

fr383

384

e385

m386

ro387

a388

sp389

m390

so391

k392

A393

b394

C 395

C 396

in 397

d 398

e 399

a 400

th 401

m 402

o 403

c 404

T 405

P 406

fr 407

p 408

th 409

e 410

ch 411

412

th 413

c, 414

sh 415

L 416

p 417

P 418

a 419

p 420

m 421

P 422

c 423

st 424

425

A 426

le 427

th 428

P 429

m 430

A 431

b 432

Ta

M

he follow

Let c′ b

guaran

a packet

rom c to

e at t−,

y)
PT (t − )

. Let c′ b

the mat
z)
PT (t − )

acket p t

P

h

Case S2.2: h(z)
PQ

(t − )−h(z)
OPT

(t − ) ≥ 0:

h
(z)
PQ

(t + ) = h
(z)
PQ

(t − ) and h
(z)
OPT

(t + ) = h
(z)
OPT

(t − ) − 1.

hus, the h
(z)
OPT

(t − )th cell of Q(z) becomes free, which means

at f (z)(t + ) = f (z)(t − ) + 1 holds.

Case S2.2.1: h
(y)
PQ

(t − )−h
(y)
OPT

(t − ) > 0:

Since h
(y)
PQ

(t + ) = h
(y)
PQ

(t − ) − 1 and h
(y)
OPT

(t + ) = h
(y)
OPT

− ), f (y)(t + ) = f (y)(t − ) − 1.

Case S2.2.2: h
(y)
PQ

(t − )−h
(y)
OPT

(t − ) ≤ 0:

Since h
(y)
PQ

(t + ) = h
(y)
PQ

(t − ) − 1 and h
(y)
OPT

(t + ) = h
(y)
OPT

− ), h
(y)
PQ

(t + ) < h
(y)
OPT

(t + ), which means that the states of

ll the free cells of Q(y) do not change before and after t.

Case S3: y < z:

Since h
(z)
PQ

(t + ) = h
(z)
PQ

(t − ) = 0 by the definition of PQ, no

ew free cell arises in Q(z).

Case S3.1: h
(y)
PQ

(t − )−h
(y)
OPT

(t − ) > 0:

Since h
(y)
PQ

(t + ) = h
(y)
PQ

(t − ) − 1 and h
(y)
OPT

(t + ) = h
(y)
OPT

− ), f (y)(t + ) = f (y)(t − ) − 1 holds.

Case S3.2: h
(y)
PQ

(t − )−h
(y)
OPT

(t − ) ≤ 0:

Since h
(y)
PQ

(t + ) = h
(y)
PQ

(t − ) − 1 and h
(y)
OPT

(t + ) = h
(y)
OPT

− ), h
(y)
PQ

(t + ) < h
(y)
OPT

(t + ) holds. Hence, the states of all

e free cells of Q(y) do not change before and after t.

Case S̄:
∑m

j=1 h
( j)
PQ

(t − ) = 0 and
∑m

j=1 h
( j)
OPT

(t − ) > 0:

Since the buffers of PQ are empty, there does not exist any

ee cell in them.

Based on a change in the state of free cells, we match each

xtra packet with a packet transmitted by PQ according to the

atching routine in Table 1. (All the names of the cases in the

utine correspond to the names of cases in the above sketch

bout free cells.) We outline the matching routine. Roughly

eaking, the routine either adds a new edge to a tentative

atching if a new free cell arises (Cases A1, S1.1, S2.2), or fixes

me edge if OPT accepts an extra packet (Case A3), while

eeping edges constructed before. In the other cases (Cases

2, S1.2, S2.1, S3, S̄), the routine does nothing. Specifically,

oth OPT and PQ accept arriving packets at the same queue in

ble 1

atching routine.

Matching routine: Let t be an event time.

Arrival event: Suppose that the packet p arrives at Q(x) at t. Execute one of t

Case A1: Both PQ and OPT accept p, and h
(x)
PQ (t − )−h

(x)
OPT (t − ) > 0:

Let c be OPT’s (h(x)
OPT

(t − ) + 1)st cell of Q(x) , which is free at t− but not at t+.

There exists the packet q matched with c at t−. (The existence of such q is

Case A2: Both PQ and OPT accept p, and h
(x)
PQ (t − )−h

(x)
OPT (t − ) ≤ 0:

Do nothing.

Case A3: PQ rejects p, but OPT accepts p:

Let c be OPT’s (h(x)
OPT

(t − ) + 1)st cell of Q(x) , that is, the cell to which the extr

packet q matched with c at t−. (See Lemma 3.3.) Change the partner of q f

Scheduling event:If PQ (OPT, respectively) has at least one non-empty queu

respectively) at t. Execute one of the following three cases at t.

Case S1.1:
∑m

j=1h
( j)
PQ (t − ) > 0,

∑m
j=1h

( j)
OPT (t − ) > 0, y = z, and h

(y)
PQ (t − )−h

(
O

Let c be OPT’s h(y)
PQ

(t − )th cell of Q(y) , which is free at t− but is not free at t+
There exists the packet q matched with c at t−. (See Lemma 3.3.) Change

Case S2.2:
∑m

j=1h
( j)
PQ (t − ) > 0,

∑m
j=1h

( j)
OPT (t − ) > 0, y > z, and h

(z)
PQ (t − )−h

(
O

Let c be OPT’s h(z)
OPT

(t − )th cell of Q(z) , which becomes free at t+. Since the p

Lemma 3.3), match p with c.
Otherwise (Cases S1.2, S2.1, S3, S̄):Do nothing.

lease cite this article as: J. Kawahara et al., Tight analysis of prior

ttp://dx.doi.org/10.1016/j.comnet.2015.09.001
ase A1, and they transmit packets from the same queue in

ase S1.1. Since the total numbers of free cells do not change

these cases but the states of free cells do, the routine up-

ates an edge in a tentative matching, namely removes an

dge between PQ’s packet p and a cell that became non-free

nd adds a new edge between p and a new free cell. When

e routine executes Case S2.2, the queue where OPT trans-

its a packet is different from that of PQ. By the conditions

f the numbers of packets in their queues and so on (see the

ondition of Case S2.2), a cell of OPT’s queue becomes free.

he routine matches the cell with the packet transmitted by

Q at this event. In Case A3, an extra packet is accepted into a

ee cell c. Since c has been already matched with some PQ’s

acket p′, which can be proven inductively in Lemma 3.3,

e routine replaces the partner of p′ from c to p. Once an

xtra packet is matched, the partner of the packet never

anges.

We give some definitions. For any packet p, g(p) denotes

e index of the queue at which p arrives. Also, for any cell

g(c) denotes the index of the queue including c. We now

ow the feasibility of the routine.

emma 3.3. For any non-event time t′, and any extra packet

which arrives before t′, there exists some packet p′ such that

Q transmits p′ before t′, g(p) < g(p′) and p is matched with p′
t t′. Moreover, for any free cell c at t′, there exists some packet
′′ such that PQ transmits p′′ before t′, g(c) < g(p′′), and c is

atched with p′′ at t′.

roof. The proof is by induction on the event time. The base

ase is clear. Let t be any event time. We assume that the

atement is true at t−, and prove that it is true at t+.

First, we discuss the case where the routine executes Case

1 or S1.1 at t. Let c be the cell which becomes free at t. Also,

t c′ be the cell which is free at t− and not free at t+. By

e induction hypothesis, a packet p which is transmitted by

Q before t− is matched with c′ at t−. Then, the routine un-

atches p, and matches p with c by the definitions of Cases

1 and S1.1. g(c) = g(c′) clearly holds. Also, since g(c′) < g(p)

y the induction hypothesis, the statement is true at t+.

ing three cases at t.

e OPT’s (h(x)
PQ

(t − ) + 1)st cell which is not free at t− but is free at t+.

teed by Lemma 3.3.) Change the matching partner of q from c to c′ .

p is now stored. Note that c is free at t− but is not at t+. There exists the

p.

suppose that PQ (OPT, respectively) transmits a packet from Q(y) (Q(z) ,

> 0:

e OPT’s h(y)
OPT

(t − )th cell of Q(y) , which is not free at t− but is free at t+.

ching partner of q from c to c′ .
≥ 0:

ransmitted from Q(y) by PQ is not matched with anything (see
ity queuing for egress traffic, Computer Networks (2015),

http://dx.doi.org/10.1016/j.comnet.2015.09.001


6 J. Kawahara et al. / Computer Networks xxx (2015) xxx–xxx

ARTICLE IN PRESS
JID: COMPNW [m3Gdc;September 15, 2015;9:13]

s433

t434

.435

436

-437

438

)439

s440

441

s442

443

,444

a445

446

t447

e448

449

-450

,451

452

e453

454

,455

456

457

,458

)459

l460

t461
)462

T463

-464

t465

t466

t467
′468

t469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

t 489

y 490

. 491

t 492

493

, 494

f 495

y 496

. 497

498

t 499

e 500
′ 501

- 502

- 503

- 504

y 505

e 506

r 507

e 508

509

r 510

e 511

t 512

- 513

, 514

515

, 516

- 517

r 518

519

e 520

e 521

- 522

- 523
Next, we consider the case where the routine execute

Case A3 at t. Let p′ be the extra packet accepted by OPT a

t. Also, let c be the free cell into which OPT accepts p′ at t

By the induction hypothesis, a packet p which is transmitted

by PQ before t− is matched with c at t−. Then, by the defini

tion of Case A3, the routine unmatches p, and matches p with

p′. g(c) = g(p′) holds by definition. In addition, g(c) < g(p

by the induction hypothesis. Thus, g(p′) < g(p), which mean

that the statement holds at t+.

Third, we investigate the case where the routine execute

Case S2.2 at t. Suppose that PQ transmits a packet p at t, and

the new free cell c arises at t. By the induction hypothesis

any PQ’s packet which is matched with a free cell or an extr

packet at t− is transmitted before t. Hence, p is not matched

with anything at t−. Thus, the routine can match p with c a

t. Moreover, g(c) < g(p) by the condition of Case S2.2. By th

induction hypothesis, the statement is true at t+.

In the other cases, a new matching does not arise. There

fore, the statement is clear by the induction hypothesis

which completes the proof. �

In the next lemma, we obtain part of the properties of th

set S∗.

Lemma 3.4. Let σ be an input such that for some u( ∈ [1, m])

su(σ ) > B. Then, there exists an input σ̂ such that

for each j( ∈ [1, m]), s j(σ̂ ) ≤ B, and
VOPT (σ )
VPQ (σ )

<
VOPT (σ̂ )
VPQ (σ̂ )

.

Proof. Let z be the minimum index such that sz(σ ) > B. Then

there exist the three event times t1, t2( > t1) and t3( > t2

satisfying the following three conditions: (i) t2 is the arriva

event time when the (B + 1)st packet which PQ accepts a

Q(z) arrives, (ii) OPT does not transmit any packet from Q(z

during time (t1, t2), where t1 is the event time when OP

transmits a packet from Q(z), (Since OPT accepts any arriv

ing packet by our assumption, OPT certainly transmits at leas

one packet from Q(z) before t2.) and (iii) PQ does not transmi

any packet from Q(z) during time (t2, t3), where t3 is the even

time when PQ transmits a packet from Q(z). We construct σ
by removing the events at t1 and t2 from σ . Suppose tha

VOPT (σ )
VPQ (σ )

<
VOPT (σ ′)
VPQ (σ ′) . If we remove some events corresponding

to Q(j) in ascending order of index j in {x|sx(σ ) > B}, then

we can construct an input σ̂ such that for each j( ∈ [1, m]),

s j(σ̂ ) ≤ B, and
VOPT (σ )
VPQ (σ )

<
VOPT (σ̂ )
VPQ (σ̂ )

, which completes the proof.

Hence, we next show that
VOPT (σ )
VPQ (σ )

<
VOPT (σ ′)
VPQ (σ ′) .

First, we discuss the gain of OPT for σ ′. Let ALG be the

offline algorithm for σ ′ such that for each scheduling event

e in σ ′, ALG selects the queue which OPT selects at e in σ .

We consider the number of packets in ALG’s buffer during

time (t1, t3) for σ ′. For any non-event time t( ∈ (t1, t3)),

and any y( �= z), h
(y)
ALG

(t) = h
(y)
OPT

(t). For any non-event time

t( ∈ (t1, t2)), h
(z)
ALG

(t) = h
(z)
OPT

(t) + 1. Also, for any non-event

time t( ∈ (t2, t3)), h
(z)
ALG

(t) = h
(z)
OPT

(t). By the above argument,

VOPT (σ
′) ≥ VALG(σ ′) = VOPT (σ ) − αz.

Next, we evaluate the gain of PQ for σ ′. For notational

simplicity, we describe PQ for σ ′ as PQ′. First, we consider the

case where there does not exist any packet which PQ accepts

but PQ′ rejects during time (t1, t3). To evaluate the gain of

PQ′ in this case, we discuss the numbers of packets which

524

Please cite this article as: J. Kawahara et al., Tight analysis of pri

http://dx.doi.org/10.1016/j.comnet.2015.09.001
PQ and PQ′ store in their buffers after t1. For any non-even

time t( ∈ (t1, t2)),
∑m

j=1 h
( j)
PQ ′(t) = ∑m

j=1 h
( j)
PQ

(t) + 1. For an

non-event time t̂, we define w(t̂) = arg max{ j | h
( j)
PQ ′(t̂) > 0}

Specifically, h
(w(t))
PQ ′ (t) = h

(w(t))
PQ

(t) + 1. (We call this fac

the property (a).) Moreover, for any non-event time t( ∈
(t2, t3)),

∑m
j=1 h

( j)
PQ ′(t) = ∑m

j=1 h
( j)
PQ

(t). However, if w(t) > z

then h
(w(t))
PQ ′ (t) = h

(w(t))
PQ

(t) + 1. Also, h
(z)
PQ ′(t) = h

(z)
PQ

(t) − 1. I

w(t) = z, then for any j( ∈ [1, m]), h
( j)
PQ ′(t) = h

( j)
PQ

(t). For an

non-event time t( > t3) and any j( ∈ [1, m]), h
( j)
PQ ′(t) = h

( j)
PQ

(t)

By the above argument, VPQ(σ ′) = VPQ(σ ) − αz holds.

Secondly, we consider the case where there exists at leas

one packet which PQ accepts but PQ′ rejects. Let t′ be th

first event time when the packet p which PQ accepts but PQ

rejects arrives. Then, suppose that t′ ∈ (t1, t2). By the defi

nition of z, p arrives at Q(z′) such that z′ ≥ z. By the prop

erty (a), for j( ∈ [1, m]), h
( j)
PQ ′(t′ + ) = h

( j)
PQ

(t′ + ). Thus, pack

ets accepted by PQ during time (t′, t2) can be accepted b

PQ′. Only PQ accepts the packet arriving at Q(z) at t2 by th

definition of σ ′. Hence, h
(z)
PQ ′(t2 + ) = h

(z)
PQ

(t2 + ) − 1, and fo

any j( ∈ [1, m]) such that j �= z, h
( j)
PQ ′(t2 + ) = h

( j)
PQ

(t2 + ). (W

call this fact the property (b).) If all the packets which PQ

accepts after t2 are the same as those accepted by PQ′ afte

t2, VPQ(σ ′) = VPQ(σ ) − αz − αz′ . Then, we consider the cas

where there exists at least one packet p′ which PQ rejects bu

PQ′ accepts after t2. By the greediness of PQ and the prop

erty (b), for any non-event time t( > t2) and any y′( ≥ z + 1)

h
(y′)
PQ ′ (t) = h

(y′)
PQ

(t). Hence, p′ arrives at Q(z′′) for some z′′( ≤
z). Let t′′ be the event time when p′ arrives. For any j( ∈ [1

m]), h
( j)
PQ ′(t′′ + ) = h

( j)
PQ

(t′′ + ), which means that all the pack

ets accepted by PQ are equal to those accepted by PQ′ afte

t′′. Thus, VPQ(σ ′) = VPQ(σ ) − αz − αz′ + αz′′ ≤ VPQ(σ ) − αz.

Finally, we consider the case where t′ ∈ (t2, t3). By th

same argument as the case of t′ ∈ (t1, t2), we can prov

this case. Specifically, the number of packets which PQ re

jects but PQ′ accepts after t′ is exactly one. This packet ar

rives at Q(z′′′), where some z′′ ′ ≤ z. Therefore, V (σ ′) =
PQ

VPQ(σ ) − αz − αz′ + αz′′′ ≤ VPQ(σ ) − αz. 525

By the above argument,
VOPT (σ ′)
VPQ (σ ′) ≥ VALG(σ ′)

VPQ (σ ′) ≥ VOPT (σ )−αz

VPQ (σ )−αz
> 526

VOPT (σ )
VPQ (σ )

. � 527

We give the notation. S1 denotes the set of inputs σ such 528

that for any j( ∈ [1, m]), sj(σ ) ≤ B. In what follows, we ana- 529

lyze only inputs in S1 by Lemma 3.4. Next, we evaluate the 530

number of extra packets arriving at each good queue using 531

Lemma 3.3. 532

Lemma 3.5. For any x( ∈ [1, n]),
∑n

i=x kqi
≤ ∑m

j=qx+1 s j . 533

Proof. By Lemma 3.3, each extra packet p is matched with a 534

packet p′ transmitted by PQ at the end of the input. In addi- 535

tion, g(p) < g(p′) if an extra packet p is matched with a packet 536

p′ of PQ. Thus, kqn ≤ ∑m
j=qn+1 s j, kqn−1

≤ (
∑m

j=qn−1+1 s j) − 537

kqn , ���, and kq1
≤ (

∑m
j=q1+1 s j) − ∑n

i=2 kqi
. Therefore, for any 538

x( ∈ [1, n]),
∑n

i=x kqi
≤ ∑m

j=qx+1 s j . � 539

Now we gradually gain all the properties of S∗ in the fol- 540

lowing lemmas while proving S∗ contains inputs σ such that 541

ority queuing for egress traffic, Computer Networks (2015),

http://dx.doi.org/10.1016/j.comnet.2015.09.001


J. Kawahara et al. / Computer Networks xxx (2015) xxx–xxx 7

ARTICLE IN PRESS
JID: COMPNW [m3Gdc;September 15, 2015;9:13]

V

V
542

st543

lo544

h545

a546

si547

p548

549

w550

q551

w552

lo553

L554

σ̂555 ∑
556

q557

P558

in559

a560

S561

e562

te563

i(564

fo565

in566

e567

t568

to569

570

Q571

A572

fr573

p574

[1575

ri576

w 577

n 578

579

F 580

th 581

V 582

α 583∑
584

q 585

α 586∑
587

588

M 589

(i 590

591

in 592

fo 593

(i 594

1 595

L 596

n 597

σ̂ 598

q 599

P 600

s′ 601

602

p 603

fo 604

ri 605

in 606

i( 607

F 608

fo 609

d PQ for

P

h

OPT (σ )

PQ (σ )
is maximized. Specifically, for i = 1, . . . , 4, we con-

ruct some subset Si+1 from the set Si in each of the fol-

wing lemmas, and eventually we can gain S∗ from S5. (We

ave already obtained S1 in Lemma 3.4.) It is difficult to show

ll the properties of S∗ in one lemma, and thus we progres-

vely give the definitions of the Si+1 that has more restrictive

roperties than Si.

Next in Lemma 3.6, we discuss the condition of events

here the number of extra packets accepted into a good

ueue Q(qi) (i ∈ [1, n]) is maximized, and show that it is true

hen kqi
= ∑qi+1

j=qi+1
s j . Throughout the proofs of all the fol-

wing lemmas, we drop σ from sj(σ ), n(σ ), qi(σ ) and kj(σ ).

emma 3.6. For any input σ ∈ S1, there exists an input

( ∈ S1) such that (i) for any i( ∈ [1, n(σ̂ )]), kqi(σ̂ )(σ̂ ) =
qi+1(σ̂ )

j=qi(σ̂ )+1
s j(σ̂ ), (ii) for any j( ∈ [1, q1(σ̂ ) − 1]), s j(σ̂ ) = 0 if

1(σ̂ ) − 1 ≥ 1, and (iii)
VOPT (σ )
VPQ (σ )

≤ VOPT (σ̂ )
VPQ (σ̂ )

.

roof. For any input σ ∈ S1, we construct σ ′ from σ accord-

g to the following steps. First, for each j( ∈ [q1, m]), sj events

t which sj packets arrive at Q(j) occur during time (0, 1).

ince sj ≤ B by the definition of S1, PQ accepts all the pack-

ts which arrive at these events.
∑n

i=1 kqi
packets arrive af-

r time 1, and PQ cannot accept them. Specifically, for any

∈ [1, n]), we define ai = ∑qn+2−i

j=qn+1−i+1
s j and a0 = 0. Then,

r each x( ∈ [0, n − 1]), a scheduling event occurs at each

teger time t = (
∑x

j=0 a j) + 1, . . . ,
∑x+1

j=0 a j, and an arrival

vent where a packet arrives at Q(qn−x) occurs at each time

+ 1
2 . After time (

∑n
j=0 a j) + 1, sufficient scheduling events

transmit all the arriving packets occur.

For these scheduling events, PQ transmits a packet from
(j) at t, where j is an integer between qn−x + 1 and qn−x+1.

lso, let ALG be an offline algorithm. ALG transmits a packet

om Q(qn−x) at t. Since for any i( ∈ [1, n]), at least one extra

acket arrives at Q(qi), sqi
= B holds. Hence, since for any i( ∈

, n]), h
(qi)
PQ

(1 − ) = B, PQ cannot accept the packet which ar-

ves at each t + 1
2 . However, ALG can accept all these packets,

Fig. 1. Example states of queues (qz through qz+1) of OPT an
lease cite this article as: J. Kawahara et al., Tight analysis of prior

ttp://dx.doi.org/10.1016/j.comnet.2015.09.001
hich means that ALG is an optimal offline algorithm. Then,

(σ ′) = n, and for any i( ∈ [1, n]), qi(σ
′) = qi.

By the above argument, VPQ(σ ′) = VPQ(σ ) − ∑q1−1

j=1
α js j .

urthermore, for each i( ∈ [1, n]), kqi
(σ ′) = ∑qi+1

j=qi+1
s j . By

ese equalities, VALG(σ ′) = VPQ(σ ′) + ∑n
i=1 αqi

kqi
(σ ′) =

PQ(σ ) + ∑n
i=1 αqi

(
∑qi+1

j=qi+1
s j) − ∑q1−1

j=1
α js j = VPQ(σ ) +

q1
(
∑qn+1

j=q1+1
s j) + ∑n

x=2 (αqx − αqx−1
)(

∑qn+1

j=qx+1
s j) −

q1−1

j=1
α js j . Since

∑n
i=x kqi

≤ ∑m
j=qx+1 s j by Lemma 3.5 and

n+1 = m, VALG(σ ′) ≥ VPQ(σ ) + αq1
(
∑n

i=1 kqi
) + ∑n

x=2 (αqx −
qx−1

)(
∑n

i=x kqi
) − ∑q1−1

j=1
α js j = VPQ(σ ) + ∑n

i=1 αqi
kqi

−
q1−1

j=1
α js j = VOPT (σ ) − ∑q1−1

j=1
α js j .

Therefore,
VOPT (σ ′)
VPQ (σ ′) = VALG(σ ′)

VPQ (σ ′) ≥ VOPT (σ )−∑q1−1

j=1
α j s j

VPQ (σ )−∑q1−1

j=1
α j s j

≥ VOPT (σ )
VPQ (σ )

.

oreover, by the definition of σ ′, σ ′ satisfies the condition

i) in the statement, which means that S1 includes σ ′. �

In light of the above lemma, we introduce the next set of

puts. S2 denotes the set of inputs σ( ∈ S1) satisfying the

llowing conditions: (i) for any i( ∈ [1, n]), kqi
= ∑qi+1

j=qi+1
s j,

i) for any j( ∈ [q1, m]), sj ≤ B, and (iii) for any j( ∈ [1, q1 −
]), s j = 0 if q1 − 1 ≥ 1.

emma 3.7. Let σ( ∈ S2) be an input such that for some z( ≤
(σ ) − 1), qz(σ ) + 1 < qz+1(σ ). Then, there exists an input

( ∈ S2) such that (i) for each i( ∈ [1, n(σ̂ ) − 1]), qi(σ̂ ) + 1 =
i+1(σ̂ ) and kqi(σ̂ )(σ̂ ) = B, and (ii)

VOPT (σ )
VPQ (σ )

≤ VOPT (σ̂ )
VPQ (σ̂ )

.

roof. For any j( ∈ [1, m]) such that j �= qz+1 − 1, we define

j
= s j . Also, we define s′qz+1−1 = B. (See Fig. 1.)

We construct σ ′ from σ in the following way. This ap-

roach is similar to those in the proof of Lemma 3.6. First,

r each j( ∈ [q1, m]), s′
j

events at which s′
j

packets ar-

ve at Q(j) occur during time (0, 1). Since s′
j
≤ B by def-

ition, PQ accepts all these packets. In addition, for any

∈ [1, z]), we define q′
i
= qi. We define q′

z+1 = qz+1 − 1.

or any i( ∈ [z + 1, n + 1]), we define q′
i+1

= qi. Moreover,

r any i( ∈ [1, n + 1]), we define ai = ∑q′
n+3−i

j=q′
n+2−i

+1
s′

j
and

σ and σ ′ . Left (Right) queues show the states for σ (σ ′).
ity queuing for egress traffic, Computer Networks (2015),

http://dx.doi.org/10.1016/j.comnet.2015.09.001


8 J. Kawahara et al. / Computer Networks xxx (2015) xxx–xxx

ARTICLE IN PRESS
JID: COMPNW [m3Gdc;September 15, 2015;9:13]

s610

611

t612

-613

614

615

e616

e617

,618

619

620

621

622

,623

624

625

626

627

628

,629

630

631

-632

y633

634

635

s636

,637

,638

639

640

641

s642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

t 659

- 660

s 661
′′
j

662

′. 663

, 664

- 665

s 666

667

e 668

- 669

670

) 671

e 672

y 673

674

675

676

677

678

d 679

680

681

- 682

, 683

, 684

r 685

. 686

687

r 688

t 689

, 690

- 691
a0 = 0. For any x( ∈ [0, n]), a scheduling event occur

at each integer time t = (
∑x

j=0 a j) + 1, . . . ,
∑x+1

j=0 a j . Also, an

arrival event where a packet arrives at Q(q′
n−x+1

) occurs a

each time t + 1
2 . After time (

∑n+1
j=0 a j) + 1, sufficient schedul

ing events to transmit all the arriving packets occur.

Then, PQ transmits a packet from Q(j) at t, where j is an

integer between q′
n−x+1 + 1 and q′

n−x+2. Let ALG be an offlin

algorithm which transmits a packet from Q(q′
n−x+1

) at t. By th

definition of q′
i
, for any i( ∈ [1, n + 1]), h

(q′
i
)

PQ
(1 − ) = B. Thus

PQ cannot accept any packet arriving at t + 1
2 , but ALG can

accept all the arriving packets. That is to say, ALG is optimal.

By the above argument, VPQ(σ ′) = VPQ(σ ) + αqz+1−1(B −
sqz+1−1). Furthermore, for any j( �= qz, qz+1 − 1), k j(σ

′) =
k j . Also, kqz(σ

′) = kqz − sqz+1−1 and kqz+1−1(σ
′) = B. Also

for any i( ∈ [1, n + 1]), qi(σ
′) = q′

i
. Moreover, VOPT (σ

′) =
VALG(σ ′) = VPQ(σ ′) + ∑n(σ ′)

i=1
αqi(σ

′)kqi(σ
′)(σ ′).

By the above equalities,
∑n(σ ′)

i=1
αqi(σ

′)kqi(σ
′)(σ ′) =

(
∑n

i=1 αqi
kqi

) − αqz sqz+1−1 + αqz+1−1B ≥ (
∑n

i=1 αqi
kqi

) +

αqz+1−1(B − sqz+1−1). Hence,

∑n(σ ′)
i=1

α
qi(σ

′)k
qi(σ

′)(σ ′)
VPQ (σ ′) ≥

(
∑n

i=1 αqi
kqi

)+αqz+1−1(B−sqz+1−1)

VPQ (σ )+αqz+1−1(B−sqz+1−1)
≥

∑n
i=1 αqi

kqi
VPQ (σ )

. Therefore

VOPT (σ ′)
VPQ (σ ′) ≥

VPQ (σ ′)+∑n(σ ′)
i=1

α
qi(σ

′)k
qi(σ

′)(σ ′)
VPQ (σ ′) ≥ 1 +

∑n
i=1 αqi

kqi
VPQ (σ )

=
VOPT (σ )
VPQ (σ )

.

By the definition of σ ′, S2 includes σ ′. By the above ar

gument, for any z′ such that qz′ + 1 < qz′+1, we recursivel

construct an input in the above way, and then we can obtain

an input satisfying the lemma. �

We define the set S3 of inputs. S3 denotes the set of input

σ( ∈ S2) such that (i) for each i( ∈ [1, n − 1]), qi + 1 = qi+1

(ii) for each i( ∈ [1, n − 1]), kqi
= B, (iii) for each j( ∈ [q1, qn])

s j = B, (iv) for any j( ∈ [1, q1 − 1]), s j = 0 if q1 − 1 ≥ 1, and

(v) for each j( ∈ [qn + 1, m]), sj ≤ B. (By Lemma 3.2, qn + 1 ≤
m.)

Lemma 3.8. For any input σ( ∈ S3), there exist
an input σ ′( ∈ S3) such that (i) sqn(σ )(σ )+u+1(σ
′) =

(
∑m

j=qn(σ )(σ )+1 s j(σ )) − uB, where u = �
∑m

j=qn(σ )(σ )+1
s j(σ )

B 	,

and for any j( ∈ [qn(σ )(σ ), qn(σ )(σ ) + u]), s j(σ
′) = B, and

(ii)
VOPT (σ )
VPQ (σ )

≤ VOPT (σ ′)
VPQ (σ ′) .

Proof. For any j( ∈ [1, qn]), we define s′′
j

= s j . Further-

more, for each j( ∈ [qn + 1, qn + u]), we define s′′
j

= B, and

s′′
qn+u+1

= (
∑m

j=qn+1 s j) − uB. Also, for each j( ∈ [qn + u +
2, m]), we define s′′

j
= 0 if qn + u + 2 ≤ m.

We construct σ ′ from σ in the following way. This

approach is similar to those in the proof of Lemmas 3.6

and 3.7. First, for each j( ∈ [q1, m]), s′′
j

events at which

s′′
j

packets arrive at Q(j) occur during time (0, 1). Since

s′′
j

≤ B by definition, PQ accepts all these packets. Then,

for any i( ∈ [1, n]), we define ai = ∑qn+2−i

j=qn+1−i+1
s j, and

a0 = 0. For any x( ∈ [0, n − 1]), a scheduling event oc-

curs at each integer time t = (
∑x

j=0 a j) + 1, . . . ,
∑x+1

j=0 a j .

Please cite this article as: J. Kawahara et al., Tight analysis of pri

http://dx.doi.org/10.1016/j.comnet.2015.09.001
Also, at each time t + 1
2 , an arrival event where a packe

arrives at Q(qn−x) occurs. After time (
∑n

j=0 a j) + 1, suffi

cient scheduling events to transmit all the arriving packet

occur. VPQ(σ ′) = VPQ(σ ) − ∑m
j=qn+1 α js j + ∑qn+u+1

j=qn+1
α js

and VOPT (σ
′) = VOPT (σ ) − ∑m

j=qn+1 α js j + ∑qn+u+1
j=qn+1

α js
′
j

Since −∑m
j=qn+1 α js j + ∑qn+u+1

j=qn+1
α js

′′
j

≤ 0 by definition

VOPT (σ ′)
VPQ (σ ′) = VOPT (σ )−∑m

j=qn+1 α j s j+
∑qn+u+1

j=qn+1
α j s

′′
j

VPQ (σ )−∑m
j=qn+1 α j s j+

∑qn+u+1
j=qn+1

α j s
′′
j

≥ VOPT (σ )
VPQ (σ )

. More

over, by the definition of σ ′, σ ′ ∈ S3 holds, and σ ′ satisfie

the condition (i) in the statement. �

We next introduce the set S4 of inputs. Let S4 denot

the set of inputs σ( ∈ S3) satisfying the following five con

ditions: (i) for each i( ∈ [1, n − 1]), qi + 1 = qi+1, (ii) for each

i( ∈ [1, n − 1]), kqi
= B, (iii) for each j( ∈ [q1, qn]), s j = B, (iv

for any j( ∈ [1, q1 − 1]), s j = 0 if q1 − 1 ≥ 1, and (v) ther

exists some u such that 0 ≤ u ≤ m − qn − 1. Also, for an

j( ∈ [qn, qn + u]), s j = B, B ≥ sqn+u+1 ≥ 1, and for any j( ∈
[qn + u + 2, m]), s j = 0 if qn + u + 2 ≤ m.

Lemma 3.9. Let σ( ∈ S4) be an input such that qn(σ )(σ ) + 2 ≤
m, sqn(σ )(σ )+1(σ ) = B, and

∑m
j=qn(σ )(σ )+2 s j(σ ) > 0.

Then, there exists an input σ̂ ( ∈ S4) such that (i) n(σ̂ ) =
n(σ ) + 1, (ii) for each i( ∈ [1, n(σ̂ ) − 1]), qi(σ̂ ) = qi(σ ), an

qn(σ̂ )(σ̂ ) = qn(σ )(σ ) + 1, and (iii)
VOPT (σ )
VPQ (σ )

≤ VOPT (σ̂ )
VPQ (σ̂ )

.

Proof. We construct σ ′ from σ as follows: First, for each

j( ∈ [q1, m]), sj events at which sj packets at Q(j) arrive oc

cur during time (0, 1). Since sj ≤ B by the definition of S4

PQ accepts all these arriving packets. For any i( ∈ [1, n])

we define q′
i
= qi, q′

n+1
= qn + 1 and q′

n+2
= m. Moreover, fo

any i( ∈ [1, n + 1]), we define ai = ∑q′
n+3−i

j=q′
n+2−i

+1
s j and a0 = 0

Then, for any x( ∈ [0, n]), a scheduling event occurs at each

integer time t = (
∑x

j=0 a j) + 1, . . . ,
∑x+1

j=0 a j . In addition, fo

any x( ∈ [0, n]), an arrival event where a packet arrives a

Q(q′
n+1−x

) occurs at each time t + 1
2 . After time (

∑n+1
j=0 a j) + 1

sufficient scheduling events to transmit all the arriving pack
ets occur. 692

Then, the packets which PQ transmits at each scheduling 693

event for σ ′ are equivalent to those for σ . Consider an offline 694

algorithm ALG which transmits a packet from Q(q′
n+1−x

) at t. By 695

the definition of q′
i
, since for any i( ∈ [1, n + 1]), h

(q′
i
)

PQ
(1 − ) = 696

B, PQ cannot accept any packet which arrives at each time t + 697
1
2 , but ALG can accept all the packets, which means that ALG 698

is optimal. Hence, n(σ ′) = n + 1, and for any i( ∈ [1, n + 1]), 699

qi(σ
′) = q′

i
. 700

Since for any j( ∈ [1, m]), s j(σ
′) = s j, VPQ(σ ′) = 701

VPQ(σ ). Moreover, for any i( ∈ [1, n − 1]), kqi
(σ ′) = kqi

, 702

kqn(σ
′) = sqn+1, and kqn+1(σ

′) = ∑m
j=qn+2 s j . Therefore, σ ′ ∈ 703

S4 holds, and σ ′ satisfies the conditions (i) and (ii) in the 704

statements. Also, VOPT (σ
′) = VALG(σ ′) = VOPT (σ ) + (αqn+1 − 705

αqn)
∑m

j=qn+2 s j ≥ VOPT (σ ). � 706

S5 denotes the set of inputs σ( ∈ S4) satisfying the fol- 707

lowing six conditions: (i) for each i( ∈ [1, n − 1]), qi + 1 = 708

qi+1, (ii) for each i( ∈ [1, n − 1]), kqi
= B, (iii) for each j( ∈ 709

[q1, qn]), s j = B, (iv) for any j( ∈ [1, q1 − 1]), s j = 0 holds if 710

q1 − 1 ≥ 1, (v) kqn = sqn+1 (By Lemma 3.2, qn + 1 ≤ m.) and 711

ority queuing for egress traffic, Computer Networks (2015),

http://dx.doi.org/10.1016/j.comnet.2015.09.001


J. Kawahara et al. / Computer Networks xxx (2015) xxx–xxx 9

ARTICLE IN PRESS
JID: COMPNW [m3Gdc;September 15, 2015;9:13]

f queue

ues at t

1712

if713

L714

σ̂715

V

V
716

717

m718

P719

B
720

d721

722

n723

q724

a725

to726

V

V
727

in728

th729

L730

m731

P732

a733

h734

fo735

e736

a737

738

ro739

th740

o741

k742

T743

2
744

S745

4746

747

is748

to 749

W 750

a 751

(S 752

T 753

co 754

P 755

th 756

p 757

in 758

(0 759

a 760

σ 761

fr 762

a 763

so 764

765

3 766

w 767

sc 768

th 769

a 770

w 771

Q 772

773

in 774

sc 775

776

V 777

778

in 779

sc 780

781

V 782

783

(2 784

p 785

o 786

O 787

re 788

sa 789

fr 790

q 791

792

in 793

in 794

P

h

Fig. 2. States o

Fig. 3. States of que

≤ sqn+1 ≤ B, and (vi) for any j( ∈ [qn + 2, m]), s j = 0 holds

qn + 2 ≤ m.

emma 3.10. For any input σ( ∈ S5), there exists an input

( ∈ S5) such that (i) sqn(σ̂ )(σ̂ )+1(σ̂ ) = B, and (ii)
VOPT (σ )
VPQ (σ )

≤
OPT (σ̂ )

PQ (σ̂ )
.

That is, there exists an input σ ∗ ∈ S∗ such that

axσ ′ {VOPT (σ ′)
VPQ (σ ′) } = VOPT (σ ∗)

VPQ (σ ∗) .

roof. Since σ ∈ S5 holds,
VOPT (σ )
VPQ (σ )

= VPQ (σ )+∑n
i=1 αqi

kqi
VPQ (σ )

≤ 1 +
(
∑qn−1

j=q1
α j)+αqn sqn+1∑qn+1

j=q1
α j s j

≤ 1 +
B(

∑qn−1
j=q1

α j)+αqn sqn+1

B(
∑qn

j=q1
α j)+αqn+1sqn+1

, which we

efine as x(sqn+1).

Let σ1, σ2 ∈ S5 be any inputs such that (i) n =
(σ2) = n(σ1) + 1, (ii) for any i( ∈ [1, n − 1]), qi =
i(σ1) = qi(σ2), (iii) qn = qn(σ2), and (iv) sqn−1+1(σ1) = B

nd sqn+1(σ2) = B. Then, since x(sqn+1) is mono-

ne (increasing or decreasing) as sqn+1 increases,

OPT (σ )

PQ (σ )
≤ max{VOPT (σ1)

VPQ (σ1)
,

VOPT (σ2)
VPQ (σ2)

}. Therefore, let σ̂ be the

put such that σ̂ ∈ arg max{VOPT (σ1)
VPQ (σ1)

,
VOPT (σ2)
VPQ (σ2)

}, which means

at the statement is true. �

emma 3.11. The competitive ratio of PQ is at least 2 −
inx∈[1,m−1]{ αx+1∑x+1

j=1
α j

}.

roof. Consider the following input σ . Define m′ ∈
rg minx∈[1,m−1]{ αx+1∑x+1

j=1
α j

}. Initially, (m′ + 1)B arrival events

appen such that B packets arrive at Q(1) to Q(m′+1). Then,

r k = 1, 2, . . . , m′, the kth round consists of B scheduling

vents followed by B arrival events in which all the B packets

rrive at Q(m′−k+1).

For σ , PQ transmits B packets from Q(m′−k+2) at the kth

und. As a result, PQ cannot accept arriving packets in

e same round. Hence, VPQ(σ ) = B
∑m′+1

j=1 α j holds. On the

ther hand, OPT transmits B packets from Q(m′−k+1) at the

th round, and hence can accept all the arriving packets.

hus, VOPT (σ ) = 2B
∑m′

j=1 α j + Bαm′+1. Therefore,
VOPT (σ )
VPQ (σ )

=
∑m′

j=1 α j+α
m′+1∑m′+1

j=1
α j

= 2 − α
m′+1∑m′+1

j=1
α j

. (It is easy to see that σ ∈

5.) �

. Lower bound for deterministic algorithms

In this section, we show a lower bound for any determin-

tic algorithm. We make an assumption that is well-known
lease cite this article as: J. Kawahara et al., Tight analysis of prior

ttp://dx.doi.org/10.1016/j.comnet.2015.09.001
s at time 2.

ime 4 via Case 1.

have no effect on the analysis of the competitive ratio.

e consider only online algorithms that transmit a packet

t a scheduling event whenever their buffers are not empty.

uch algorithms are called work-conserving. See e.g. [9].)

heorem 4.1. No deterministic online algorithm can achieve a

mpetitive ratio smaller than 1 + α3+α2+α
α4+4α3+3α2+4α+1

.

roof. Fix an online algorithm ON. Our adversary constructs

e following input σ . Let σ (t) denote the prefix of the in-

ut σ up to time t. OPT can accept and transmit all arriv-

g packets in this input. 2B arrival events occur during time

, 1), and B packets arrive at Q(1) and Q(m), respectively. In

ddition, B scheduling events occur during time (1, 2). For

(2), suppose that ON transmits B(1 − x) packets and Bx ones

om Q(1) and Q(m), respectively. (See Fig. 2.) After time 2, our

dversary selects one queue from Q(1) and Q(m), and makes

me packets arrive at the queue.

Case 1: If αx ≥ 1 − x:B arrival events occur during time (2,

), and B packets arrive at Q(1). Then, the total value of packets

hich ON accepts by time 3 is (α + 1 + 1 − x)B. Moreover, B

heduling events occur during time (3, 4). For σ (4), suppose

at ON transmits B(1 − y) packets and By packets from Q(1)

nd Q(m), respectively. (See Fig. 3.) After time 4, in the same

ay as time 2, our adversary selects one queue from Q(1) and
(m), and makes some packets arrive at the queue.

Case 1.1: If α(x + y) ≥ 1 − y:B arrival events occur dur-

g time (4, 5), and B packets arrive at Q(1). Furthermore, 2B

heduling events occur during time (5, 6).

For this input, VON(σ ) = (α + 1 + 1 − x + 1 − y)B, and

OPT (σ ) = (α + 1 + 1 + 1)B.

Case 1.2: If α(x + y) < 1 − y:B arrival events occur dur-

g time (4, 5), and B packets arrive at Q(m). Moreover, 2B

heduling events occur during time (5, 6).

For this input, VON(σ ) = (α + 1 + 1 − x + α(x + y))B, and

OPT (σ ) = (α + 1 + 1 + α)B.

Case 2: If αx < 1 − x:B arrival events occur during time

, 3), and B packets arrive at Q(m). Then, the total value of

ackets which ON accepts by time 3 is (α + 1 + αx)B. More-

ver, B scheduling events occur during time (3, 4). For σ (4),

N transmits B(1 − z) packets and Bz ones from Q(1) and Q(m),

spectively during time (3, 4). (See Fig. 4.) After time 4, in the

me way as the above case, our adversary selects one queue

om Q(1) and Q(m), and causes some packets to arrive at the

ueue.

Case 2.1: If αz ≥ 1 − x + 1 − z:B arrival events occur dur-

g time (4, 5), and B packets arrive at Q(1). Also, 2B schedul-

g events occur during time (5, 6).
ity queuing for egress traffic, Computer Networks (2015),

http://dx.doi.org/10.1016/j.comnet.2015.09.001


10 J. Kawahara et al. / Computer Networks xxx (2015) xxx–xxx

ARTICLE IN PRESS
JID: COMPNW [m3Gdc;September 15, 2015;9:13]

Fig. 4. States of queues at time 4 via Case 2.

For this input, VON(σ ) = (α + 1 + αx + 1 − x + 1 − z)B,795

and VOPT (σ ) = (α + 1 + α + 1)B.796

Case 2.2: If αz < 1 − x + 1 − z:B arrival events occur dur-797

ing time (4, 5), and B packets arrive at Q(m). In addition, 2B798

799

800

801

802

803

804

805

.806

807

.808

809

810

-811

812

813

814

e815

e816

817

g818

-819

-820

-821

-822

823

t824

s825

t826

-827

r828

829

.830

e831

r832

y833

l834

t835

r836

e837

s838

e839

c840

841

Acknowledgments 842

This work was supported by JSPS KAKENHI Grant number 843

26730008. 844

845

846

847

848

849

850

851

e 852

h 853

854

a 855

t 856

- 857

t 858

t 859

s 860

. 861

- 862

863

- 864

s 865

- 866

, 867

s 868

e 869

e 870

y 871

t 872
scheduling events occur during time (5, 6).

For this input, VON(σ ) = (α + 1 + αx + αz)B, and

VOPT (σ ) = (α + 1 + α + α)B.

By the above argument, we define c1(x) =
miny max{ α+1+1+1

α+1+1−x+1−y , α+1+1+α
α+1+1−x+α(x+y)

} and c2(x) =
minz max{ α+1+α+1

α+1+αx+1−x+1−z , α+1+α+α
α+1+αx+αz }. Then,

VOPT (σ )
VON(σ )

≥
minx max{c1(x), c2(x)}.

c1(x) is minimized when α+1+1+1
α+1+1−x+1−y = α+1+1+α

α+1+1−x+α(x+y)

Then, y = α(α+3)+(−α2−4α+1)x

α2+5α+2
. Thus, c1(x) ≥ α2+5α+2

α2+4α+2−x
.

c2(x) is minimized when α+1+α+1
α+1+αx+1−x+1−z = α+1+α+α

α+1+αx+αz

Then, z = α2+6α+1+(α2−4α−1)x

2α2+5α+1
. Hence, c2(x) ≥ 2α2+5α+1

α2+4α+1+α2x
.

Finally, min xmax {c1(x), c2(x)} is minimized when

c1(x) = c2(x), that is α2+5α+2
α2+4α+2−x

= 2α2+5α+1
α2+4α+1+α2x

. There

fore, since x = α4+4α3+2α2+α
α4+5α3+4α2+5α+1

, minx max{c1(x), c2(x)} ≥
α4+5α3+4α2+5α+1
α4+4α3+3α2+4α+1

= 1 + α3+α2+α
α4+4α3+3α2+4α+1

. �

5. Concluding remarks

A lot of packets used by multimedia applications arriv

in a QoS switch at a burst, and managing queues to stor

outgoing packets (egress traffic) can become a bottleneck. In

this paper, we have formulated the problem of controllin

egress traffic, and analyzed Priority Queuing policies (PQ) us

ing competitive analysis. We have shown that the compet

itive ratio of PQ is exactly 2 − minx∈[1,m−1]{ αx+1∑x+1
j=1

α j

}. More

over, we have shown that there is no 1 + α3+α2+α
α4+4α3+3α2+4α+1

competitive deterministic algorithm.

We present some open questions as follows: (i) Wha

is the competitive ratio of other practical policies, such a

WRR? (ii) We consider the case where the size of each packe

is one, namely fixed. In the setting where packets with vari

able sizes arrive, what is the competitive ratio of PQ or othe

policies? (iii) We are interested in comparing our results with

experimental results using measured data in QoS switches

(iv) The goal was to maximize the sum of the values of th

transmitted packets in this paper, which is generally used fo

the online buffer management problems. However, this ma

not be able to evaluate the actual performance of practica

scheduling algorithms correctly. (We showed that the wors

scenario for PQ is extreme in this paper.) What if anothe

objective function (e.g., fairness) is used for evaluating th

performance of a scheduling algorithm? (v) An obviou

open question is to close the gap between the competitiv

ratio of PQ and our lower bound for any deterministi

algorithm.
Please cite this article as: J. Kawahara et al., Tight analysis of pri

http://dx.doi.org/10.1016/j.comnet.2015.09.001
Appendix A. Comparing both upper counds

Our upper bound is

2 − min
x∈[1,m−1]

{
αx+1∑x+1

j=1 α j

}
= 1 + max

x∈[1,m−1]

{∑x
j=1 α j∑x+1
j=1 α j

}

and the upper bound by Al-Bawani and Souza [2] is

2 − min
j∈[1,m−1]

{
α j+1 − α j

α j+1

}
= 1 + max

j∈[1,m−1]

{
α j

α j+1

}
.

Now we show that

max
x∈[1,m−1]

{∑x
j=1 α j∑x+1
j=1 α j

}
< max

j∈[1,m−1]

{
α j

α j+1

}
.

Define a ∈ arg max j∈[1,m−1]{ α j

α j+1
} and b ∈

arg maxx∈[1,m−1]{
∑x

j=1 α j∑x+1
j=1

α j

}. Then, we have that

αa

αa+1

≥
∑b

j=1 α j∑b
j=1 α j+1

>

∑b
j=1 α j

α1 + ∑b
j=1 α j+1

=
∑b

j=1 α j∑b+1
j=1 α j

.

Appendix B. Restriction of input

Lemma B.1. Let σ be an input such that OPT rejects at least on

packet at an arrival event. Then, there exists an input σ ′ suc

that
VOPT (σ )
VPQ (σ )

≤ VOPT (σ ′)
VPQ (σ ′) and OPT accepts all arriving packets.

Proof. Let e be the first arrival event where OPT rejects

packet, let p be the arriving packet at e, and let t be the even

time when e happens. We construct a new input σ ′′ by re

moving e from a given input σ . Then, PQ for σ ′′ might accep

a packet q which is not accepted for σ after t. Suppose tha

PQ handles priorities to packets in its buffers, and transmit

the packet with the highest priority at each scheduling event

Let Q(i) be a queue at which p arrives at e. Then, at a schedul

ing event after t, a priority which PQ handles to a packet in

Q(j) (j ≤ i) for σ ′′ is higher than that for σ . However, a pri

ority which PQ handles to a packet in Q(j) (j > i) for σ ′′ i

equal to that for σ . Thus, a time when a packet is transmit

ted from Q(j) (j > i) in σ ′′ is the same as that in σ . Also

the number of packets which PQ stores in Q(j) (j > i) in σ ′′ i

equivalent to that in σ . Let k be the integer such that αk is th

value of q. Then, i ≥ k holds. Hence, VPQ(σ ′′) ≤ VPQ(σ ). On th

other hand, VOPT (σ
′′) = VOPT (σ ). According to the inequalit

and the equality,
VOPT (σ ) ≤ VOPT (σ ′′)

. As a result, we construc

VPQ (σ ) VPQ (σ ′′)

ority queuing for egress traffic, Computer Networks (2015),

http://dx.doi.org/10.13039/501100001691
http://dx.doi.org/10.1016/j.comnet.2015.09.001


J. Kawahara et al. / Computer Networks xxx (2015) xxx–xxx 11

ARTICLE IN PRESS
JID: COMPNW [m3Gdc;September 15, 2015;9:13]

a new input σ ′ by removing all arrival events at which OPT873

rejects a packet from σ . Then,
VOPT (σ )
VPQ (σ )

≤ VOPT (σ ′)
VPQ (σ ′) . �874

References875

[1] W. Aiello, Y. Mansour, S. Rajagopolan, A. Rosén, Competitive queue poli-876
cies for differentiated services, J. Algorithms 55 (2) (2005) 113–141.877

[2] K. Al-Bawani, A. Souza, Buffer overflow management with class segre-878
879

[880
881

[882
883

[884
885
886

[887
888
889

[890
891
892

[893
894

[895
896

[1897
898

[1899
900
901

[1902
903

[1904
905
906

[1907
908

[1909
910
911

[1912
913

[1914
915
916

[1917
918
919

[1920
921
922

[2923
924

[2925
926

[2927
928

[2929
930

[2931
932
933

[2934
935
936

[2937
938
939

[2940
941
942

[2943
944

[29] A. Kesselman, A. Rosén, Scheduling policies for CIOQ switches, J. Algo- 945
rithms 60 (1) (2006) 60–83. 946

[30] A. Kesselman, A. Rosén, Controlling CIOQ switches with priority queu- 947
ing and in multistage interconnection networks, J. Interconnect. Netw. 948
9 (1/2) (2008) 53–72. 949

[31] A. Kesselman, K. Kogan, M. Segal, Packet mode and QoS algorithms for 950
buffered crossbar switches with FIFO queuing, Distrib. Comput. 23 (3) 951
(2010) 163–175. 952

[32] A. Kesselman, K. Kogan, M. Segal, Best effort and priority queuing poli- 953
cies for buffered crossbar switches, Chicago J. Theor. Sci. (2012) 1–14. 954

[3 955
956

[3 957
958
959
960

[3 961
962
963
964

[3 965
966
967
968

[3 969
970
971
972

[3 973
974
975

[3 976
977

[4 978
979

[4 980
981

982
983
984
985
986
987
988
989
990
991
992
993

994
995
996
997
998

999
1000
1001
1002
1003
1004

P

h

gation, Inf. Process. Lett. 113 (4) (2013) 145–150.
3] S. Albers, T. Jacobs, An experimental study of new and known online

packet buffering algorithms, Algorithmica 57 (4) (2010) 725–746.

4] S. Albers, M. Schmidt, On the performance of greedy algorithms in
packet buffering, SIAM J. Comput. 35 (2) (2005) 278–304.

5] N. Andelman, Randomized queue management for DiffServ, in: Pro-
ceedings of the 17th ACM Symposium on Parallel Algorithms and Ar-

chitectures, 2005, pp. 1–10.
6] N. Andelman, Y. Mansour, Competitive management of non-

preemptive queues with multiple values, Distrib. Comput. (2003)

166–180.
7] N. Andelman, Y. Mansour, A. Zhu, Competitive queueing policies for

QoS switches, in: Proceedings of the 14th ACM-SIAM Symposium on
Discrete Algorithms, 2003, pp. 761–770.

8] Y. Azar, A. Litichevskey, Maximizing throughput in multi-queue
switches, Algorithmica 45 (1) (2006) 69–90.

9] Y. Azar, Y. Richter, Management of multi-queue switches in QoS net-

works, Algorithmica 43 (1-2) (2005) 81–96.
0] Y. Azar, Y. Richter, An improved algorithm for CIOQ switches, ACM

Trans. Algorithms 2 (2) (2006) 282–295.
1] Y. Azar, Y. Richter, The zero-one principle for switching networks, in:

Proceedings of the 36th ACM Symposium on Theory of Computing,
2004, pp. 64–71.

2] A. Bar-Noy, A. Freund, S. Landa, J. Naor, Competitive on-line switching

policies, Algorithmica 36 (3) (2003) 225–247.
3] M. Bienkowski, A. Madry, Geometric aspects of online packet buffering:

an optimal randomized algorithm for two buffers, in: Proceedings of
the 8th Latin American Theoretical Informatics, 2008, pp. 252–263.

4] M. Bienkowski, An optimal lower bound for buffer management in
multi-queue switches, Algorithmica 68 (2) (2014) 426–447.

5] S. Blanke, D. Black, M. Carlson, E. Davies, Z. Wang, W. Weiss, An archi-

tecture for differentiated services, in: Proceedings of the RFC2475, IETF,
December 1998.

6] A. Borodin, R. El-Yaniv, Online Computation and Competitive Analysis,
Cambridge University Press, 1998.

7] Cisco Systems, Inc, “Campus QoS Design”, http://www.cisco.com/en/
US/docs/solutions/Enterprise/WAN_and_MAN/QoS_SRND/QoSDesign.

html, 2014.

8] Cisco Systems, Inc, “Cisco Catalyst 2955 series switches data
sheets”, http://www.cisco.com/en/US/products/hw/switches/ps628/

products_data_sheets_list.html, 2014.
9] Cisco Systems, Inc, “Cisco Catalyst 6500 series switches data

sheets”, http://www.cisco.com/en/US/products/hw/switches/ps708/
products_data_sheets_list.html, 2014.

0] A. Demers, S. Keshav, S. Shenker, Analysis and simulation of a fair
queueing algorithm, J.. Internetw. Res. Exp. 1 (1) (1990) 3–26.

1] M. Englert, M. Westermann, Lower and upper bounds on FIFO buffer

management in QoS switches, Algorithmica 53 (4) (2009) 523–548.
2] R. Fleischer, H. Koga, Balanced scheduling toward loss-free packet

queuing and delay fairness, Algorithmica 38 (2) (2004) 363–376.
3] M. Goldwasser, A survey of buffer management policies for packet

switches, ACM SIGACT News 41 (1) (2010) 100–128.
4] E. Hahne, A. Kesselman, Y. Mansour, Competitive buffer management

for shared-memory switches, in: Proceedings of the 13th ACM Sympo-

sium on Parallel Algorithms and Architectures, 2001, pp. 53–58.
5] M. Katevenis, S. Sidiropopulos, C. Courcoubetis, Weighted round-robin

cell multiplexing in a general-purpose ATM switch chip, IEEE J. Select.
Area Commun. 9 (8) (October 1991) 1265–1279.

6] A. Kesselman, Z. Lotker, Y. Mansour, B. Patt-Shamir, B. Schieber,
M. Sviridenko, Buffer overflow management in QoS switches, SIAM J.

Comput. 33 (3) (2004) 563–583.

7] A. Kesselman, Y. Mansour, Harmonic buffer management policy for
shared memory switches, Theor. Comput. Sci. 324 (2-3) (2004) 161–

182.
8] A. Kesselman, Y. Mansour, R. van Stee, Improved competitive guaran-

tees for QoS buffering, Algorithmica 43 (1-2) (2005) 63–80.
lease cite this article as: J. Kawahara et al., Tight analysis of prior

ttp://dx.doi.org/10.1016/j.comnet.2015.09.001
3] A. Kesselman, K. Kogan, M. Segal, Improved competitive performance

bounds for CIOQ switches, Algorithmica 63 (1-2) (2012b) 411–424.
4] K. Kobayashi, S. Miyazaki, Y. Okabe, A tight bound on online buffer man-

agement for two-port shared-memory switches, in: Proceedings of the
19th ACM Symposium on Parallel Algorithms and Architectures, 2007,

pp. 358–364.

5] K. Kobayashi, S. Miyazaki, Y. Okabe, A tight upper bound on online
buffer management for multi-queue switches with bicodal buffers, IE-

ICE TRANSACTIONS on Fundam. Electron., Commun. Comput. Sci. E91-
D (12) (2008) 2757–2769.

6] K. Kobayashi, S. Miyazaki, Y. Okabe, Competitive buffer management
for multi-queue switches in QoS networks using packet buffering algo-

rithms, in: Proceedings of the 21st ACM Symposium on Parallel Algo-

rithms and Architectures, 2009, pp. 328–336.
7] K. Kogan, A. Lopez-Ortiz, S. Nikolenko, A. Sirotkin, Multi-queued net-

work processors for packets with heterogeneous processing require-
ments, in: Proceedings of the 5th International Conference on Commu-

nication Systems and Networks, 2013, pp. 1–10.
8] K. Kogan, A. Lopez-Ortiz, S.I. Nikolenko, A.V. Sirotkin, Online Schedul-

ing FIFO policies with admission and Push-Out, Theory Comput. Syst.

(2015).
9] S.I. Nikolenko, K. Kogan, Single and multiple buffer processing, in: En-

cyclopedia of Algorithms, Springer, 2015, pp. 1–9.
0] D. Sleator, R. Tarjan, Amortized efficiency of list update and paging

rules, Commun. ACM 28 (2) (1985) 202–208.
1] M. Sviridenko, “A lower bound for on-line algorithms in the FIFO

model,” unpublished manuscript, 2001.

Jun Kawahara was born in Osaka, Japan, in 1981.
He received the B.S. degree in science and the

M.E. and Ph.D. degrees in informatics from Ky-
oto University, Japan, in 2004, 2006, and 2009,

respectively. In 2009-2010, he worked at Kyoto
University as a Researcher. He joined the JST ER-

ATO Minato Discrete Structure Manipulation Sys-

tem Project as a Researcher in 2010–2012. Cur-
rently, he is an Assistant Professor at Nara Insti-

tute of Science and Technology, Nara, Japan. His
research interests include theoretical computer

science and discrete algorithms.

Koji M. Kobayashi has received his B.E., M.I. and

Ph.D. from Kyoto University. He is a research as-
sociate at National Institute of Informatics, Japan.

His research interests include algorithms and

complexity theory.

Tomotaka Maeda is a research associate in Aca-

demic Center for Computing and Media Studies,

Kyoto University. He received his B.E. and M.I. de-
grees from Kyoto University in 2006 and 2008, re-

spectively. His research interest is Internet archi-
tecture.
ity queuing for egress traffic, Computer Networks (2015),

http://www.cisco.com/en/US/docs/solutions/Enterprise/WAN_and_MAN/QoS_SRND/QoSDesign.html
http://www.cisco.com/en/US/products/hw/switches/ps628/products_data_sheets_list.html
http://www.cisco.com/en/US/products/hw/switches/ps708/products_data_sheets_list.html
http://dx.doi.org/10.1016/j.comnet.2015.09.001

	Tight analysis of priority queuing for egress traffic
	1 Introduction
	2 Model description
	3 Analysis of priority queuing
	3.1 Priority queuing
	3.2 Overview of the analysis
	3.3 Competitive analysis of PQ

	4 Lower bound for deterministic algorithms
	5 Concluding remarks
	 Acknowledgments
	Appendix A Comparing both upper counds
	Appendix B Restriction of input
	 References


