Improved Competitive Guarantees for QoS Buffering

Alex Kesselmanh Yishay Mansouf Rob van Stee
alx@cs.tau.ac.il mansour@cs.tau.ac.il vanstee@uni-freiburg.de
Abstract

We consider a network providing Differentiated Service#f@@rv) which allow Internet service providers
(ISP) to offer different levels of Quality of Service (Qo%®) different traffic streams. We study two types
of buffering policies that are used in network switches sarfipg QoS. In theé=IFO type, packets must be
transmitted in the order they arrive. In theunded-delayype, each packet has a maximum delay time by
which it must be transmitted, or otherwise it is lost. In bothdels, the buffer space is limited, and packets
are lost if the buffer is full. Each packet has an intrinsitiea and the goal is to maximize the total value of
transmitted packets. Our main contribution is an algorifomthe FIFO model for arbitrary packet values
that for the first time achieves a competitive ratio bettant®, namely2 — ¢ for a constant > 0. We also
describe an algorithm for the bounded delay model that siteslour algorithm for the FIFO model, and
show that it achieves the same competitive ratio.

1 Introduction

Today'’s prevalent Internet service model is the best-effordel (also known as the “send and pray” model).
This model does not permit users to obtain better servicanatter how critical their requirements are, and
no matter how much they may be willing to pay for better sexvidVNith the increased use of the Internet
for commercial purposes, such a model is not satisfactogynaore. However, providing any form of stream
differentiation is infeasible in the core of the Internet.

Differentiated Services were proposed as a compromiséigolfor the Internet Quality of Service (Qo0S)
problem. In this approach each packet is assigned a predata QoS, thus aggregating traffic to a small num-
ber of classes [3]. Each class is forwarded using the samkqgmebehavior at the routers, thereby simplifying
the processing and storage requirements. Over the pastdars PDifferentiated Services has attracted a great
deal of research interest in the networking community [18,65 13, 12, 5]. We abstract the DiffServ model as
follows: packets of different QoS priority have distinciwas and the system obtains the value of a packet that
reaches its destination.

To improve the network utilization, most Internet Servicerders (ISP) allow some under-provisioning of
the network bandwidth employing the policy knownsatistical multiplexing.While statistical multiplexing

*School of Computer Science, Tel Aviv University, Tel Aviv®EB, Israel.

Tinstitute for Computer Science, Albert-Ludwigs-Univérsireiburg, Georges-Khler-Allee 79, D-79110 Freiburg i., Bermany.
Work supported by the Deutsche Forschungsgemeinschafed®AL 464/3-1, and by the European Community, Project®@P and
APPOL II.

tends to be very cost-effective, it requires satisfactaiytions to the unavoidable events of overload. In this
paper we study such scenarios in the contextudfering More specifically, we consider an output port of a

network switch with the following activities. At each timé&p, an arbitrary set of packets arrives, but only

one packet can be transmitted. A buffer management algoiitas to serve each packet online, i.e. without
knowledge of future arrivals. It performs two functions:lesgtively rejects and preempts packets, subject to
the buffer capacity constraint, and decides which packsetw. The goal is to maximize the total values of
packets transmitted.

We consider two types of buffer models. In the classkiat-In-First-Out (FIFO) model packets can not
be sent out of order. Formally, for any two packet®’ sent at times, ¢/, respectively, we have thatif > ¢,
then packep has not arrived after packet. If packets arrive at the same time, we refer the order in ey
are processed by the buffer management algorithm, whidiwes them one by one. Most of today’s Internet
routers deploy the FIFO buffering policy. The second modelamnsider is the newounded delay model
This model is warranted by networks that guarantee the QaSrmer of end-to-end delay. Specifically, each
packet arrives with a prescribedlowed delaytime. A packet must be transmitted within this time, elsesit i
lost. Note that in the bounded delay model packets can bdeest. In both models the buffer size is fixed, so
when too many packets arrivieuffer overflonoccurs and some packets must be discarded.

Giving a realistic model for Internet traffic is a major prebi in itself. Network arrivals have often been
modeled as a Poisson process both for ease of simulatiomahdia simplicity. Initial works on DiffServ have
focused on such simple probabilistic traffic models [11, 13pwever, recent examinations of Internet traffic
[14, 19] have challenged the validity of the Poisson modedrédver, measurements of real traffic suggest the
existence of significant traffic variance (burstiness) @amide range of time scales.

We analyze the performance of a buffer management algotihmeans of competitive analysis. Compet-
itive analysis, introduced by Sleator and Tarjan [17] (dee]), compares an on-line algorithm to an optimal
offline algorithmopT, which knows the entire sequence of packet arrivals in aclvaDenote the value earned
by an algorithmaLG on an input sequenceby Va g (o).

Definition 1.1 An online policyA is c-competitive iff for every sequence of packet¥opt(c) < ¢ V(o).

An advantage of competitive analysis is that a uniform pemnce guarantee is provided over all input
instances, making it a natural choice for Internet traffic.

In [1] different non-preemptive policies are studied foe tfvo distinct values model. Recently, this work
has been generalized to multiple packet values [2], whe d@lso present a lower bound ¢B on the perfor-
mance of any online algorithm in the preemptive model. Asialyf preemptive queuing policies for arbitrary
packet values in the context of smoothing video streamsaappe [10]. This paper establishes an impossibility
result, showing that no online policy can have a competitateo better tharb/4, and demonstrates that the
greedy policy is at least-competitive. In [7] the greedy policy has been shown to eéahithe competitive
ratio of 2 in both FIFO and the bounded delay models. Our model is idanto that of [7]. The loss of a
policy is analyzed in [8], where they present a policy witlhngetitive ratio better tha for the case of two and
exponential packet values. In [9] they study the case of ket values and present 8-competitive policy.
The problem of whether the competitive ratio2bf the natural greedy policy can be improved has been open
for a long time. It this paper we solve it positively.

Our Results. The main contribution of this paper is an algorithm for th&®Imodel forarbitrary packet

values that achieves a competitive rati®2of e for a constant > 0. In particular, this algorithm accomplishes
a competitive ratio ofl.983 for a particular setting of parameters. This is the first uppeund below the
bound of 2 that was shown in [7]. We also show a lower bound.4f9 on the performance of any online
algorithm, improving on [2], and a specific lower boundg®= 1.618 on the performance of our algorithm.
Then we describe an algorithm for the bounded delay modékthaulates our algorithm for the FIFO model,
and demonstrate that it achieves the same competitive tatemntrast to previous work, we assume that in the
bounded delay model the buffer size is fixed.

The rest of the paper is organized as follows. In Section 2e&fime our model. The FIFO and the bounded
delay models are studied in Section 3 and Section 4, respctBSection 5 contains the concluding remarks.

2 Model Description

We consider a QoS buffering system that is able to l®lolackets. Packets may arrive to the queue at any time
and send events are synchronized with time. The buffer neanagt algorithm has to decide at each step which
of the packets to drop and which to transmit, subject to tHebaapacity constraint. The value of packeis
denoted by (p). The system obtains the value of the packets it sends, ararthef the buffer management
algorithm is to maximize the total value of the transmittedhets. Time is slotted. At the beginning of a time
slot a set of packets (possibly empty) arrives and at the &tithe slot a packet is scheduled if any. We denote
by A(t) the set of packets arriving at time sloby Q(¢) the set of packets in the buffer after the arrival phase at
time slott, and byALG(t) the packet sent (or scheduled) at the end of timetsfainy by an algorithmALG.

At any time slott, |Q(t)| < B and|ALG(t)| < 1, whereagA(t)| can be arbitrarily large. We also denote by
Q(t, > w) the subset of)(¢) of packets with value at least.

As mentioned in the introduction, we consider both FIFO éxsffand bounded delay buffers in this paper.
In the FIFO model, the packet transmitted at titrie always the first (oldest) packet in the buffer among the
packets inQ(t). We consider two variants of the bounded delay model. Iruthitiorm bounded delay model,
there is a single fixed bound on the delay of all packets, atiteimariable bounded delay model, there may be
different delay bounds for different packets. This last eldd equivalent to real-time scheduling of unit-size
weighted jobs with deadlines.

3 FIFO Buffers

3.1 Algorithm PG

The main idea of the algorithi?G is to make proactive preemptions of low value packets whgh kalue
packets arrive. The algorithm is similar to the one preskimne[8], except that each high value packet can
preempt at most one low value packet. Intuitively, we try ¢amrase the delay that a high value packet suffers
due to low value packets preceding it in the FIFO order. A falrdefinition is given in Figure 1.

The parameter oPG is the preemption factof. For sufficiently large value of, PG performs like the
greedy algorithm and only drops packets in case of overflamth@ other hand, too small values®€an cause
excessive preemptions of packets and a large loss of valugs, Tve need to optimize the value/®fn order

The -Preemptive Greedy Algorithm.

1. When a packep of valuev(p) arrives, drop the first packet in the FIFO order such that(p’) <
v(p)/B, if any (v’ is preemptefl

2. Acceptp if there is free space in the buffer.

3. If pis not accepted then drop it if the buffer is full an¢p) is less than the minimal value among the
packets currently in the buffep (s rejected.

4. Otherwise, drop the packetwith the minimal value from the buffer and accepfp pushes oup’).

Figure 1: Algorithm PG.

to achieve a balance between maximizing the current thjouigdnd minimizing the potential future loss.

Next we will introduce a few useful definitions. We say thab&ketp transitively preempta packep’ if p
either preemptg’ or p preempts or pushes out another pagKetwhich in its turn transitively preempis. We
also say that a packetreplacesa packety’ if (1) p transitively preemptg’ and (2)p is eventually scheduled.
The chain of replacementontains all packets transitively preemptedzbyWe say thap directly replaces’
if in the chain of replacement between them no packet exgeist preempted (e.gp may push oup” that

preempts’).

3.2 Overload Intervals

The main concept of the proof is that@ferload intervals Before introducing a formal definition, we will give
some intuition. Consider a timeat which a packet of value is rejected or pushed out andis the largest
value among the packets that are rejected or pushed ousairttd. Note that all packets in the buffer at the end
of time slott have value at least. Such an event defines aroverloadedntervalZ = [t,,t¢). The interval
starts at the earliest timg before timet such that only packets of valueor greater are served i, t], or
after the preceding overload interval with a higher ovedl@alue ends. Then if no packet is dropped after time
t, Z ends at the last time at which a packet of value at ledstscheduled (see Figure 2). In case at some time
t' > t a packet of value is rejected or pushed out,is the largest value among the packets that are rejected or
pushed out at this time, and a packet frgit) is still present in the buffer, we proceed as followsy I «,

we extend to includet’. In casey > «, we start a new interval with a higher overload value. Othisew

if v < a then we start a new interval when the first packet fr@ti’) \ Q(¢) is eventually scheduled if any.
Otherwise, if all packets from)(t') \ Q(t) are preempted, we create a zero length intefVak [t;,t) whose
overload value ig. Next we define the notion of overload interval more formally

Definition 3.1 An «a-overflowtakes place at timeif a packet of valuex is rejected or pushed out at this time,
whereq is said to be theverload value

Definition 3.2 A packef is said to beassociatedavith interval[t, ¢') if p arrived later than the packet scheduled
at timet — 1 if any and earlier than the packet scheduled at tithié any.

arrivals

PG | L

OPT [I —

overload intervals 4 Y

Figure 2:An example of overload interval.

We construct overload intervals starting from the highestrimad value and ending with the lowest overload
value.

Definition 3.3 AnintervalZ = [ts,tf), witht; > ¢,, is ana-overloadednterval if at least one packet with
valuea associated witlT is rejected or pushed out, no packet associated Withith higher value is rejected or
pushed out, only packets with value at leasire served during, all packets served during arrive no later
than the lasta-overflow, andZ is a maximal such interval taking into account overload im#ds with higher
overload values.

We note that overload intervals agésjoint.

Definition 3.4 A packetp belongs taan a-overloaded intervall = [t,,) if p is associated witd and (i) p is
served durindZ, or (ii) p is rejected or pushed out no later than the lasbverflow, or (iii)p is preempted and
it arrived no earlier than the first and no later than the lastgiet that belongs t@ that is served, rejected or
pushed out.

Thus directly before and after such an interval, either thieb is empty, a lower-value packet is served
(possibly as part of g-overloaded interval withy < «), or there is ay-overloaded interval withy > «.
Whenever am-overloaded interval is immediately followed by a-overloaded interval’ with v > «, we
have that in the first time step @f a packet of value is rejected or pushed out.

The following observation states that overload intervadésveell-defined.
Observation 1 Any packet that has been rejected or pushed out belongs tthexae overload interval.

Next we introduce some useful definitions related to an oaeflinterval.

Definition 3.5 For an overload intervalZ let BELONG(Z) denote the set of packets that belongZto This
set consists of four distinct subsets: scheduled packetZ{), preempted packet®REEMPT(Z)), rejected
packets REJECT(Z)) and packets that were pushed ortU6HED(Z)). Finally, denote byREPLACE(Z) the set
of packets that replace packets fre&sREEMPT(Z). These packets are either®(Z) or are served later.

We divide the schedule d?PG into maximal sequences of consecutive overload intenfalscoeasing and
then decreasing overload value.

Definition 3.6 Anoverload sequencgis a maximal sequence containing intervals= [t.,t}), 7o = [t3,t7),
Y A [t’;,t’;) with overload valuesu, ..., wy such thattif <ttlforl <i <k—1,w < wyy for
1<i<m-—1landw; > w4 form < i < k — 1, wherek is the number of intervals i§ and w,,, is the
maximal overload value among the intervals witlsin

Ties are broken by associating an overload interval withldibest overload sequence. We will abbreviate
BELONG(Z;),PG(Z;), ... by BELONG;, PG;, ... We make the following observation, which follows from the
definition of an overload interval.

Observation 2 For 1 < i < k, all packets inREJECT, U PUSHED, have value at mosb; while all packets in
PG; have value at leasb;.

3.3 Analysis of thePG Algorithm

In this section we will analyze the performance of A& algorithm. We show thaPG achieves a competitive
ratio of 2 — ¢, wheree(3) > 0 is a constant depending only gh Optimizing the value of, we get that for
6 = 15 the competitive ratio oPG is close t01.983, that ise ~ 0.017. The crux of the proof is to show that
when PG drops a packet of value saythat is scheduled bgPT, it schedules another packet of valu@nd an
additional packet with a non-negligible value, roughly3, which allows us to break the ratio @f achieved
by the greedy algorithm.

In the sequel we fix an input sequencel et us denote bpPTandpPG the set of packets scheduled byt
and PG, respectively. We also denote bropthe set of packets scheduled by T and dropped byPG, that
is OPT\ PG. In a nutshell, we will construct fractional assignment in which we will assign to packetsria
the valuelppT(o) so that each packet is assigned at mast-ae fraction of its value. The general assignment
scheme is presented on Figure 3.

Main Assignment Routing(o):
1. Assign the value of each packet frere N oPTto itself.
2. Assign the value of each packet frammopthat has beepreemptedo the packeteplacingit.

3. Consider all overload sequences starting from the sadige and up to the latest one. Assign the value
of each packet fronrmroPthat belongs to the sequence under consideration and hasdpeetedor
pushed outising the assignment routine for the overload sequence.

Figure 3: The main routine.

Before we describe the overload sequence assignment eéowtnneed some definitions. Consider an
overload sequencg. We introduce the following notation:

OPT, = OPTN BELONG;,
SHARED;, = OPTNPG;,

6

OVFLOPT; = OPTN (REJECT, U PUSHED),
PRMOPT, = OPTN PREEMPT

We write PG(S) = UF_, PG; and defineoPT(S), SHARED(S), OVFLOPT(S), andPRMOPT(S) analogously.
Definition 3.7 For 1 < i < k, OUT; is the set of packets that have been replaced by packetsiestsi

Clearly,ouT; C PREEMPT,. Two intervalsZ; andZ; are calledadjacentif eithertic =t orti = ti;. The next
observation will become important later.

Observation 3 For an intervalZ;, if |PG;| + |ouT;| < B thenZ; is adjacent to another interval; such that
Wi > W;.

1_
Suppose that the arrival time of the earliest packe&gnoONG(.S) is ¢, and letEARLY (S) = Ui;talPG(t) be
the set of packets sent betwegrand timet.. Intuitively, packets fronEARLY (S) are packets outsidé that
interact with packets fron$ and may be later assigned some value of packets frBoR(.S).

For the sake of analysis, we make some simplifying assumgtidfterward we show how to relax them.

1. For anyl < i < k the number of packets iDvFLOPT; is not less than the number of packets in
PG; \ SHARED; plus the number of packets ouT;, that iS|OVFLOPT;| > |PG; \ SHARED;| + |OUT;|.

2. No packet fromexTRA(S) belongs to another overload sequence (theeseRA(S) will be defined
later).

We say that a packet &vailableafter executing the first two steps of the main assignmertinedf it has
been assigned at most & ﬁ fraction of its value. (The meaning of this definition willdmme clear later.)

The sequence assignment routine presented on Figure Asdisegvalue of all packets fromvFLOPT(S).

Next we show that the mapping routine is feasible under tearaptions (1) and (2). Then we derive an
upper bound on the value assigned to any packegirinally, we demonstrate how to relax these assumptions.
First we need auxiliary lemmas.

Let PREVH(S) be the subset a@)(¢,) containing packets preempted or pushed out by packetsEEmnNG(.S).
Note thatPREVRA(S) N BELONG(S) = (). The next claim bounds the difference between the numbeaakeis
in oPT(S) andPG(S).

Claim 3.1 For an overload sequencgthe following holds;oPT(S)|—|PG(S)| < B+|ouT(S)|—|PREVAS)|.

Proof: Lett be the last time during at which a packet frorBELONG(.S) has been rejected or pushed out. It
must be the case tha@l —t' > B —|ouT(S)] since at time’ the buffer was full of packets frorBELONG(.S)
and any packet outsidEELONG(.S) can preempt at most one packet fremLONG(.S). We argue thabpPT has
scheduled at mogt + 2B — t! — |PREVR(S)| packets fronBELONG(.S). That is due to the fact that the earliest
packet fromBELONG(S) arrived at or after time¢! — B + |PREVRF(S)|. On the other handPG has scheduled
at leastt’ + B — t! — |ouT(9)| packets fronBELONG(S), which yields the claim. 1

The following lemma shows that if the buffer contains a lamgenber of “valuable” packets theAG sends
packets with non-negligible value.

Sequence Assignment Routine):

1. ForintervalZ; s.t. 1 < i < k, assign the value of each of tjms; \ SHARED;| + |oUT;| most valuable
packets fromDVFLOPT; to a packet ifPG; \ SHARED;) U REPLACE;.

2. Let UNASG; be the subset of thevFLOPT; of packets that remained unassign@mASG(S) =
UF_|UNASG;, SMALL (S) be the subset 0NASG(S) containing themax(JUNASG(S)| — B/2,0)
packets with the lowest value amsRER,, = PG, U REPLACE,,. Find a seEXTRA(S) of packets
from (PG(S) \ PGp,) U EARLY(S) S.t. [EXTRA(S)| = |SMALL(S)| and the value of théth largest
packet iNEXTRA(S) is at least as large as that of théh largest packet isMALL (S) divided by .
For each packet frorBxTRA(SS) that is assigned more than a- m fraction of its value, remove
from it a% fraction of its value (this value will be reassigned at thetrstep).

3. Assign the value of each pair of packets fremALL (S) andUNASG(S) \ SMALL(S) to a pair of
availablepackets fronPGRER,, and a packet fronEXTRA(S) so that each packet is assigned &
1 — e fraction of its value. (The proper value gfwill be determined later.)

4. Assign al — 1/ fraction of the value of each packet frooNASG(SS) that is unassigned yet to an
available packet inPGRER,, and and al /g fraction of its value to some packet frorGRER,, that
has not been assigned any value at Stepthe current step of this assignment routine (note that|thi
packet may have been assigned some value by the main routine)

Figure 4: The sequence assignment routine.

Lemma 3.2 If at timet, |Q(¢,> w)| > B/2 and the earliest packet fro (¢, > w) arrived before or at time
t — B/2 then the packet scheduled at the next time slot has valuastulg 5.

Proof: Letp be the first packet from@(¢, > w) in the FIFO order and lef < ¢t — B/2 be the arrival time of
p. Let X be the set of packets with value less thar)3 that were in the buffer beforg at timet’. We show
that no packet fronX is present in the buffer at timet 1. We havel X | < B. AtleastB /2 packets are served
betweent’ and¢. All these packets precededsincep is still in the buffer at time. So at mostB/2 packets
in X are not (yet) served at time However, at leasB /2 packets with value greater than or equaktdave
arrived by timet and each of them preempts from the buffer the first packetarFIFO order with value of at
mostw/ 3, if any. This shows that all packets K have been either served or dropped by time |

Next we will use Lemma 3.2 to show that for each but B largest packets frordNASG(S), PG has
scheduled some extra packet with value that constitutesst & /3 fraction of its value. The following crucial
lemma explicitly constructs the sekTRA(.S) for the sequence assignment routine.

Lemma 3.3 For an overload sequencé, we can find a seexTRA(S) of packets fromPG(S) \ PG,,) U
EARLY (S) such that| EXTRA(S)| = |SMALL (S)| and the value of thé-th largest packet iIrEXTRA(SS) is at
least as large as that of tHeth largest packet irsMALL (S) divided byg.

Proof: Recall thaiSMALL (S)| = max(|UNASG(S)|—B/2,0). To avoid trivialities, assume thaiNASG(S)| >
B/2. Let us denotéUNASG;| by z; and the set of packets frooPT; \ PRMOPT, that have been scheduled by

opPT before timet’, by PREDOPT. Note that
x; = |OVFLOPT;| — |PG; \ SHARED;| — |OUT;|.

We argue that for any interval;, |PREDOPT;| > ;. If it is not the case then we obtain that the schedule of
oPTis unfeasible by an argument similar to that of Claim 3.1 évbs thatoprT;| > |PG;| + |OUT;|). We also
claim that|PREDOPT,| > Zf:m x; and PREDOPT,, contains at IeasEf:mJrl x; packets with value greater
than or equal tav,,. Otherwise the schedule afPT is either unfeasible or can be improved by switching a
packetp € UE_ . (OPT; \ SHARED;) and a packep’ € BELONG,;, \ OPT,, S.t. v(p) < wy, andv(p') > wy,.

Let MAXUP; be the set of ther; most valuable packets fromREDOPT; for 1 < j < m. It must be
the case that the value of tligh largest packet imAXUP; is at least as large as that of theh largest
packet iNnUNASG; for 1 < [< |UNASG;|. That is due to the fact that by Observation 2 theleast
valuable packets fronovFLOPT; are also ther; least valuable packets fro@vFLOPT; U SHARED;. Now
for j starting fromk and down tom — 1, let MAXDOWN ; be the set containing arbitrary; packets from
PREDOPT, \ (Ug;:n_HMAXDOWN,-) with value at leastv,,. Finally, letmaxupr,, be the set of the:;,,, most
valuable packets frorRREDOPT,, \ (uf:mHMAXDOWN,-). Clearly, any packet iMAXDOWN ; is greater than
any packet irREJECT; for m + 1 < j < k. Similarly to the case of < m, one can show that the value
of the [-th largest packet imAXUP,, is at least as large as that of thé¢h largest packet iIUNASG,, for
1 <1 < |UNASG,,|.

Let MAXP(S) = (U MAXUP;) U (UF_ . MAXDOWN;) and lett,, be the time at whictoPT schedules
n-th packet fromvaxp (S). We also denote byaxp (S, t,,) the set of packets fromaxp (S) that arrived by
timet,. Consider time,, s.t. B/2+1 < n < |[UNASG(S)| and letLARGE(t,,) be the set of3 /2 largest packets
in MAXP(S,t,). We show that at timeé,,, PG schedules a packet with value of at leasf 3, wherew' is the
minimal value among packets imRGE(¢,,). If all packets fromLARGE(¢,,) are present in the buffer at time
t, then we are done by Lemma 3.2. Note that the earliest paaiet fARGE(¢,,) arrived before or at time
t, — B/2 sinceopPT schedules all of them by timg,. In case a packet from LARGE(¢,,) has been dropped,
by the definition ofPG and the construction of the intervals, the packet schedatiéiuis time has value at least
v(p) > w'/B.

We define the set

UNASG(S
EXTRA(S) = U‘n:B/Q-l—l(”PG(tn).

Observe that the last packet fraaxTRA(S) is sent earlier thar* and thuseXTRA(S) N PG, = . It is easy
to see that the set defined above satisfies the condition tdrihma. ||

Now we are ready to state the main theorems.
Theorem 3.4 The mapping routine is feasible.

Proof: If all assignments are done at Stepr Step2 of the main assignment routine then we are done.

Consider an overload sequengéhat is processed by the sequence assignment routine. By Gla, we
obtain that the number of unassigned packets is boundeddbmve by:

|[UNASG(S)| < B — |PRMOPT(S)| — |PREVRAS)| 1)
since

|[UNASG(S)| = |oVFLOPT(S)| + |SHARED(S)| — |[PG(S)| — |oUT(S)]

9

and
|OPT(S)| = |SHARED(S)| 4+ |[OVFLOPT(S)| + |PRMOPT(S)|.

Observe that each packethat replaces a packgt with valuew can be assigned a valuewfif p’ € OPT.
In addition, ifp’ belongs to another overload sequer¢ehenp can be assigned an extra valueuoft Step3
or Step4 of the sequence assignment routine.

Remember tha#GRER,, = PG,, UREPLACE,,. LetASG! be the subset GfGRER,, containing packets each
of which has been assigned at the first two steps of the maignassnt routine more thanlat+ % fraction
of its value. By the mapping construction, every such paokest have directly replaced a packet frém 7.
We show that all packets directly replaced by packets fr@a! belong torRMOPT(S) U PREVR(S). Consider
such a packep. If p is directly preempted by a packet froasc! then we are done. Else, suppose that
pushed out by a packet, which is transitively preempted by a packet fra®c'. In this case by the overload

sequence constructiop,must belong t&. Thus, we have that:

|ASG!| < |PRMOPT(S)| 4 |PREVR(S)].

We denote byasc? the subset 0PGRER,, containing packets that have been assigned some valuepa Ste
of the sequence assignment routine. Note that

|ASG?| = 2max(|UNASG(S)| — B/2,0).

Finally, letAsG® andAsG* be the subsets GfGRER,, containing packets that have been assigned at Step
4 of the sequence assignment routiné a 1/ and al/j fraction of the value of a packet fromNASG(SS),
respectively. Note that

|ASG?| = |ASG?| = |UNASG(S)| — 2 max(JUNASG(S)| — B/2,0).

Now we will show that the assignment is feasible, i.e. thevgae intersection oAsG!, Asc? andasc? is
empty andasc? N (AsG? U AsG?) =) . By (1) we have that

|AsG!| + |AsG?| + |AsG?| < B.
Obviously,
|AsG?| < B — |asG?| — |AsGl).
We are done since Observation 3 implies that the number dfgp@inPGRER,, is at leastB. |
Theorem 3.5 Any packet fronPGis assigned at most2— e fraction of its value, where(3) > 0 is a constant
depending or# for 5 > 2.

Proof: If all assignments are done at Stepr Step2 of the main assignment routine then obviously no packet
is assigned more thanla+ 1/(5 — 1) fraction of its value. That is due to the fact that each paocketluew
may either preempt a packet of value at mogt; or push out another packgt of value less thamw, replacing

the packet(s) transitively preempted By

Next we will derive the ratiof that is used at Step of the sequence assignment routine. Consider a
pair of packetg; € SMALL(S), pa € (UNASG(S) \ SMALL(S)) and a pair of packetgs, ps from PG, U

10

OUT,,. Letps € EXTRA(S) be the extra packet used in the assignment. Noteuhat) < v(p2) < wp,
min(v(p3),v(ps)) > wy, andv(ps) > v(p1)/B. Letalsov(p;) = w = w,, —J. The ratiof that accounts for
the value of the relevant packets is as follows:

v(pr) +v(p2) +v(ps) - 5 2wm —0+ %

v(ps) +v(pa) +o(ps) — 2wpm+ 3
In cased > me we have that
_ wm _ 1\2wnm 2(ﬁ 1y
f<2wm ﬁ+(1 5)52 :2 ﬁ+ .
2wy, 2
If 6 < % then
f<2wm+(1—%)2ggn 2+ 200
2wy, + (1 — §) 2+5(6, L
Thus, we obtain that
2 6+2(6 1) 2_|_2(6 1)
f = max

2 2+%

At this point we are ready to compute the overall ratio. It @ to see that any packet #sG' and
BELONG(S) \ PGRER,, can be assigned at most & % + % fraction of its value, where a fraction %fis due
to Step4 of the sequence assignment routine. By the constructibpaekets inasG? andASG3 are available.
Thus any packet insG? andAsG? can be assigned at most a- f + ﬁ and a2 — 6 + 5(5) fraction
of its value, respectively. Hence, we obtain that no packeissigned more than2a— ¢ fraction of its value,
where

. 2 1 2 1 2
e:2—mﬁ1nmax<1—l—ﬁ+ﬁ 1+f+m>2_g+m>'

Now let us go back to the assumption (1), thatis= |OVFLOPT;| — (|PG; \ SHARED;| + |oUT;|) > 0. We
argue that there exist two indicés< m andr > ms.t. x; > 0forl < ¢ < randx; <0forl1 <i<lor
I < i < k. In this case we can restrict our analysis to the subsequefingeontaining the intervalg;, ..., Z..
Otherwise, there exist two indicésj s.t. 7 < j < mor: > j > m, z; > 0andz; < 0. Thus, there are a
packetp € opT; and a packep’ € PG; \ OPT; s.t. v(p’) > v(p). We obtain that the schedule oPT can be
improved by switching andp’.

It remains to consider the assumption (2), that is no paaket EXTRA(S) belongs to another overload
sequences’. In this case we sharp the bound of Claim 3.1 applied to bajheseces.

Claim 3.6 For any two consecutive overload sequengéand.S the following holds:|oPT(S)| + |oPT(S")| —
IPG(S)| — |PG(S")| < 2B + |ouT(S)| — |PREVA(S)| — |PREVA(S’)| — [EXTRA(S) N BELONG(S")|.

Proof: According to the proof of Claim 3.1} —t, > B—|ouT(S)| wheret, is the last time during' at which
a packet fronBELONG(.S) has been rejected or pushed out. ket |[EXTRA(S)NBELONG(S’)|. We argue that

11

opThas scheduled at mast+ 2B — '} — |PREVA(S’)| packets fromBELONG(S) UBELONG(S’). That is due
to the fact that the earliest packet fr@aLONG(S') arrived at or after time’! — B + |PREVAS’)|. Observe
that between time'! and timet’} at mostB — z — |PREVHS)| packets outside BELONG(.S) U BELONG(S’)
have been scheduled BG. Hence, PG has scheduled at least+ z + |PREVA(S)| — /1 — |ouT(S)| packets
from BELONG(.S) U BELONG(S”), which yields the claim. 1

Using Claim 3.6, we can extend our analysis to any numberamnise overload sequences without affect-
ing the resulting ratio.

3.4 Lower Bounds

In this section we will show a specific lower bound¢®t: 1.618 on the performance of thBG algorithm and
a general lower bound df419 on the performance of any online algorithm. The latter bosiightly improves
the bound of/2 ~ 1.414 obtained in [2].

Theorem 3.7 The PG algorithm has a competitive ratio of at least

Proof: Suppose that the buffer is empty at time 0 and consider the following scenarios. In the first scenario
at timet = 0, B packets with values, 3, .. ., 37 arrive one by one. Th&G algorithm preempts all of them
but the last packet whilepPT schedules all the packets. Thus, the ratio between the whloeT and PG is
close tog /(5 — 1) for sufficiently largeB.

In the second scenario, at time= 0 there arrives a burst aB packets of valué + ¢. There arek phases,
each of lengthB. Thei-th phase takes place durifg - (i — 1),..., (B - i) — 1]. Every time slot throughout
i-th phase there arrives one packet of valtie- e. Finally, at timet = Bk there arrives a burst a8 packets of
value 3¥ + e. The PG algorithm schedules all but the laBtpackets of valug?® + e. On the other handypT
sends all but the firsB packets of valud + ¢. Hence, the ratio between the valueadT and PG is nearly
2 — 1/ for sufficiently largek.

To optimize the lower bound, i.e. maximize= min(5/(5 —1),2 — 1/3), we equate both of these ratios:
B/(B—1)=2-1/3. We get that? = 3+T*/5 =¢+1landthudb=¢. 1

Now let us turn to a general lower bound. Defirte= /19 + 3v/33 andR = (19 — 3v/33)(v*)2/96 +
v* /6 + 2/3 ~ 1.419.

Theorem 3.8 Any online algorithmA has a competitive ratio of at lea®.

Proof: Suppose thatLG maintains a competitive ratio less thBmand letv = v*/3+4/(3v*)+4/3 ~ 2.839.

We define a sequence of packets as follows. At tirael, B packets with valué arrive. Ateachtime, ..., [y,

a packet of value arrives, where + [y is the time at whichaLG serves the first packet of value(i.e. the
time at which there remain no packets of vali)e Depending ori;, the sequence either stops at this point or
continues with a new phase.

Basically, at the start of phaseB packets of value‘~! arrive. During the phase, one packet of valtie
arrives at each time step untiLG serves one of them. This is the end of the phase. If the sequamtinues
until phasen, then in phase: only B packets of value™~! arrive. Let us denote the length of phaday I; for
i=1,. n—landdeflnesz_z (v Y fori=1,...,n.

12

If the sequence stops during phase n, thenALG earnsl; + lyv + I3v% + ... + Lo~ + jv? = s; + [0
while opTcan earn at leagtv + lov? + ... 4 (li_1 + B)v' ! + v = v-s; + Bv*~!. The implied competitive
ratio is (v - s; + Bv'™1)/(s; + l;v"). We only stop the sequence in this phase if this ratio is at Bawhich
depends of;. We now determine the value ffor which the ratio is exactlyR. Note thati;v* = (s; —s;_1)-v.
We have thafv - s; + Bv'=1)/(s; + l;v*) = R implies

vRsi—1 + Bv'~! v - (%)Z
S; = ,50=0 = s; =
Rv+1)—w (R —1)v?

It can be seen that /v’ — B/(v}(R — 1)) fori — oo, sinceR/(R(v +1) —v) < 1for R > 1.

Thus if underaLG the length of phaseis less thar;, the sequence stops and the ratio is proved. Otherwise,
if ALG continues until phase, it earnsl; + lov + I3v? + ... + [,v" "' + B -v" = 5, + Bv™ whereasoPT can
earn at leastiv + lpv? 4+ ... + [,v" + B - v" = v - s, + Bv". The implied ratio is

v

vs, + B v+ B m+1 v+v2(R—1)
N _

— = =R.
sp + Bon o+ B ﬁr(%_l)—kl 1+v2(R-1)

4 Bounded Delay Buffers

In this section we consider the bounded delay model. We shatithe value gained bypTin the B-uniform

bounded delay model equals to thata# T in the FIFO model. Moreover, we demonstrate thatr does not
need a buffer with capacity greater thBn Let us denote by }/ (o) the value gained by the algorithrhin the

model M (either FIFO or bounded delay (BD)). A similar claim has besade in [7].

Lemma 4.1 For any input sequence, the value ofopT in the B-uniform bounded delay model with buffer
of infinite capacity equals the value oPT in the FIFO model with buffer of capaciti, that is VL (o) =
VEBO(0)

Proof: We argue that any feasible schedule in the uniform boundé& adeodel can be transformed to an
equivalentfeasibleschedule in the FIFO model in which the same set of packe&nis Assume wlog thabPT

in the bounded model schedules all packets that are accepocitie buffer. If it is not the case, one can admit
only packets that are eventually sent without affectinguidleie of the solution. We claim that at any time the
buffer of oPT contains at mosB packets. Otherwise, the delay of some packet must becorategtbani
and it has to be dropped. That contradicts to our assumpiiba.further transformation is done by swapping
packets so that the FIFO order is maintained. Note that tR®Frder coincides with the Earliest Deadline
First (EDF) order. 1

Now consider the algorithn¥ PG in the B-uniform bounded delay model that simulates i@ algorithm
in the FIFO model, that is accepts, drops and sends the sacketpa

Theorem 4.2 The competitive ratio ob PG in the B-uniform bounded delay model equals to thatReF in
the FIFO model.

13

Proof: Suppose thaPG is c-competitive in the FIFO model and fix an input sequesc®y our assumption,
c-VEEFO (o) > VEILIEO (o). Lemma 4.1 implies that (o) = VELLO (o). Clearly, VEL. (o) = VELFC (o).
Thus, we obtain that - V&Z.(0) > VEL (o), which yields the theorem. |

5 Conclusion

In this paper we study QoS buffering in the FIFO and uniformrmbed delay models. Our main result consists
of algorithms in both models for arbitrary packet valued tbathe first time achieve a competitive ratio strictly
better thar2. One of the interesting future research directions is teela significant gap between the lower
and upper bounds. Another open problem is whether we cark biheacompetitive ratio of in the variable
bounded delay model.

References

[1] W. A. Aiello, Y. Mansour, S. Rajagopolan and A. Rosénot@petitive Queue Policies for Differentiated
Services,"Proceedings of INFOCOM 2000p. 431-440.

[2] N. Andelman, Y. Mansour and An Zhu, “Competitive QueugiRolicies for QoS Switches,The 14th
ACM-SIAM SODAJan. 2003.

[3] Y. Bernet, A. Smith, S. Blake and D. Grossman, “A Concaptdodel for Diffserv Routers,Internet draft
March 2000.

[4] A. Borodin and R. El-Yaniv, “Online Computation and Coetitive Analysis,” Cambridge University
Press 1998.

[5] D. Clark and J. Wroclawski, “An Approach to Service Allmtton in the Internet,Internet draff July 1997.

[6] C. Dovrolis, D. Stiliadis and P. Ramanathan, "ProparéibDifferentiated Services: Delay Differentiation
and Packet SchedulingRroceedings of ACM SIGCOMM’9%p. 109-120.

[7] A. Kesselman, Z. Lotker, Y. Mansour, B. Patt-Shamir, Bhieber and M. Sviridenko, “Buffer Overflow
Management in QoS Switche$toceedings of STOC 200dp. 520-529.

[8] A.Kesselman and Y. Mansour, “Loss-Bounded Analysididferentiated ServicesProceedings of SODA
2001, pp. 591-600.

[9] Z. Lotker and B. Patt-Shamir, “Nearly optimal FIFO buffemanagement for DiffServ,Proceedings of
PODC 2002 pp. 134-142.

[10] Y. Mansour, B. Patt-Shamir and Ofer Lapid, “Optimal Sstting Schedules for Real-Time Streams,”
Proccedings of PODC 200@p. 21-29.

[11] M. May, J. Bolot, A. Jean-Marie, and C. Diot, "Simple Remance Models of Differentiated Services
Schemes for the Internet?roceedings of IEEE INFOCOM 199fp. 1385-1394, March 1999.

14

[12] K. Nichols, V. Jacobson and L. Zhang, “A Two-bit Differated Services Architecture for the Internet,”
Internet draft July 1999.

[13] T. Nandagopal, N. Venkitaraman, R. Sivakumar and V.rBhavan, “Relative Delay Differentation and
Delay Class Adaptation in Core-Stateless Networlfpceedings of IEEE Infocom 2000p. 421-430,
March 2000.

[14] V. Paxson and and S. Floyd, “Wide-Area Traffic: The Faalof Poisson Modeling JEEE/ACM Transac-
tions on NetworkingVol. 3, No. 3, pp. 226-244, June 1995.

[15] S. Sahu, D. Towsley and J. Kurose, "A Quantitative Stoflpifferentiated Services for the Internet,”
Proceedings of IEEE Global Internet’99p. 1808-1817, December 1999.

[16] N. Semret, R. Liao, A. Campbell and A. Lazar, “Peeringl &rovisioning of Differentiated Internet
Services,"Proceedings of INFOCOM 2000p. 414-420, March 2000.

[17] D. Sleator and R. Tarjan, “Amortized Efficiency of Lispdate and Paging Rule$;ACM 28 pp. 202-208,
1985.

[18] I. Stoica and H. Zhang, “ Providing Guaranteed Serviggkout Per Flow Management?roceedings of
SIGCOM 1999pp. 81-94.

[19] A. Veres and M. Boda, “The Chaotic Nature of TCP CongesiControl,” Proceedings of INFOCOM
200Q pp. 1715-1723, March 2000.

15

