
Improved Competitive Guarantees for QoS Buffering

Alex Kesselman∗

alx@cs.tau.ac.il

Yishay Mansour∗

mansour@cs.tau.ac.il

Rob van Stee†

vanstee@uni-freiburg.de

Abstract

We consider a network providing Differentiated Services (Diffserv) which allow Internet service providers
(ISP) to offer different levels of Quality of Service (QoS) to different traffic streams. We study two types
of buffering policies that are used in network switches supporting QoS. In theFIFO type, packets must be
transmitted in the order they arrive. In thebounded-delaytype, each packet has a maximum delay time by
which it must be transmitted, or otherwise it is lost. In bothmodels, the buffer space is limited, and packets
are lost if the buffer is full. Each packet has an intrinsic value, and the goal is to maximize the total value of
transmitted packets. Our main contribution is an algorithmfor the FIFO model for arbitrary packet values
that for the first time achieves a competitive ratio better than2, namely2 − ǫ for a constantǫ > 0. We also
describe an algorithm for the bounded delay model that simulates our algorithm for the FIFO model, and
show that it achieves the same competitive ratio.

1 Introduction

Today’s prevalent Internet service model is the best-effort model (also known as the “send and pray” model).
This model does not permit users to obtain better service, nomatter how critical their requirements are, and
no matter how much they may be willing to pay for better service. With the increased use of the Internet
for commercial purposes, such a model is not satisfactory any more. However, providing any form of stream
differentiation is infeasible in the core of the Internet.

Differentiated Services were proposed as a compromise solution for the Internet Quality of Service (QoS)
problem. In this approach each packet is assigned a predetermined QoS, thus aggregating traffic to a small num-
ber of classes [3]. Each class is forwarded using the same per-hop behavior at the routers, thereby simplifying
the processing and storage requirements. Over the past few years Differentiated Services has attracted a great
deal of research interest in the networking community [18, 6, 16, 13, 12, 5]. We abstract the DiffServ model as
follows: packets of different QoS priority have distinct values and the system obtains the value of a packet that
reaches its destination.

To improve the network utilization, most Internet Service Providers (ISP) allow some under-provisioning of
the network bandwidth employing the policy known asstatistical multiplexing.While statistical multiplexing

∗School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel.
†Institute for Computer Science, Albert-Ludwigs-Universitt Freiburg, Georges-Khler-Allee 79, D-79110 Freiburg i. Br., Germany.

Work supported by the Deutsche Forschungsgemeinschaft, Project AL 464/3-1, and by the European Community, Projects APPOL and
APPOL II.

1

tends to be very cost-effective, it requires satisfactory solutions to the unavoidable events of overload. In this
paper we study such scenarios in the context ofbuffering. More specifically, we consider an output port of a
network switch with the following activities. At each time step, an arbitrary set of packets arrives, but only
one packet can be transmitted. A buffer management algorithm has to serve each packet online, i.e. without
knowledge of future arrivals. It performs two functions: selectively rejects and preempts packets, subject to
the buffer capacity constraint, and decides which packet tosend. The goal is to maximize the total values of
packets transmitted.

We consider two types of buffer models. In the classicalFirst-In-First-Out (FIFO) model packets can not
be sent out of order. Formally, for any two packetsp, p′ sent at timest, t′, respectively, we have that ift′ > t,
then packetp has not arrived after packetp′. If packets arrive at the same time, we refer the order in which they
are processed by the buffer management algorithm, which receives them one by one. Most of today’s Internet
routers deploy the FIFO buffering policy. The second model we consider is the newbounded delay model.
This model is warranted by networks that guarantee the QoS parameter of end-to-end delay. Specifically, each
packet arrives with a prescribedallowed delaytime. A packet must be transmitted within this time, else it is
lost. Note that in the bounded delay model packets can be reordered. In both models the buffer size is fixed, so
when too many packets arrive,buffer overflowoccurs and some packets must be discarded.

Giving a realistic model for Internet traffic is a major problem in itself. Network arrivals have often been
modeled as a Poisson process both for ease of simulation and analytic simplicity. Initial works on DiffServ have
focused on such simple probabilistic traffic models [11, 15]. However, recent examinations of Internet traffic
[14, 19] have challenged the validity of the Poisson model. Moreover, measurements of real traffic suggest the
existence of significant traffic variance (burstiness) overa wide range of time scales.

We analyze the performance of a buffer management algorithmby means of competitive analysis. Compet-
itive analysis, introduced by Sleator and Tarjan [17] (see also [4]), compares an on-line algorithm to an optimal
offline algorithmOPT, which knows the entire sequence of packet arrivals in advance. Denote the value earned
by an algorithmALG on an input sequenceσ by VALG (σ).

Definition 1.1 An online policyA is c-competitive iff for every sequence of packetsσ, VOPT(σ) ≤ c · VA(σ).

An advantage of competitive analysis is that a uniform performance guarantee is provided over all input
instances, making it a natural choice for Internet traffic.

In [1] different non-preemptive policies are studied for the two distinct values model. Recently, this work
has been generalized to multiple packet values [2], where they also present a lower bound of

√
2 on the perfor-

mance of any online algorithm in the preemptive model. Analysis of preemptive queuing policies for arbitrary
packet values in the context of smoothing video streams appears in [10]. This paper establishes an impossibility
result, showing that no online policy can have a competitiveratio better than5/4, and demonstrates that the
greedy policy is at least4-competitive. In [7] the greedy policy has been shown to achieve the competitive
ratio of 2 in both FIFO and the bounded delay models. Our model is identical to that of [7]. The loss of a
policy is analyzed in [8], where they present a policy with competitive ratio better than2 for the case of two and
exponential packet values. In [9] they study the case of two packet values and present a1.3-competitive policy.
The problem of whether the competitive ratio of2 of the natural greedy policy can be improved has been open
for a long time. It this paper we solve it positively.

Our Results. The main contribution of this paper is an algorithm for the FIFO model forarbitrary packet

2

values that achieves a competitive ratio of2− ǫ for a constantǫ > 0. In particular, this algorithm accomplishes
a competitive ratio of1.983 for a particular setting of parameters. This is the first upper bound below the
bound of 2 that was shown in [7]. We also show a lower bound of1.419 on the performance of any online
algorithm, improving on [2], and a specific lower bound ofφ ≈ 1.618 on the performance of our algorithm.
Then we describe an algorithm for the bounded delay model that simulates our algorithm for the FIFO model,
and demonstrate that it achieves the same competitive ratio. In contrast to previous work, we assume that in the
bounded delay model the buffer size is fixed.

The rest of the paper is organized as follows. In Section 2 we define our model. The FIFO and the bounded
delay models are studied in Section 3 and Section 4, respectively. Section 5 contains the concluding remarks.

2 Model Description

We consider a QoS buffering system that is able to holdB packets. Packets may arrive to the queue at any time
and send events are synchronized with time. The buffer management algorithm has to decide at each step which
of the packets to drop and which to transmit, subject to the buffer capacity constraint. The value of packetp is
denoted byv(p). The system obtains the value of the packets it sends, and theaim of the buffer management
algorithm is to maximize the total value of the transmitted packets. Time is slotted. At the beginning of a time
slot a set of packets (possibly empty) arrives and at the end of time slot a packet is scheduled if any. We denote
by A(t) the set of packets arriving at time slott, by Q(t) the set of packets in the buffer after the arrival phase at
time slott, and byALG(t) the packet sent (or scheduled) at the end of time slott if any by an algorithmALG.
At any time slott, |Q(t)| ≤ B and|ALG(t)| ≤ 1, whereas|A(t)| can be arbitrarily large. We also denote by
Q(t,≥ w) the subset ofQ(t) of packets with value at leastw.

As mentioned in the introduction, we consider both FIFO buffers and bounded delay buffers in this paper.
In the FIFO model, the packet transmitted at timet is always the first (oldest) packet in the buffer among the
packets inQ(t). We consider two variants of the bounded delay model. In theuniform bounded delay model,
there is a single fixed bound on the delay of all packets, and inthevariablebounded delay model, there may be
different delay bounds for different packets. This last model is equivalent to real-time scheduling of unit-size
weighted jobs with deadlines.

3 FIFO Buffers

3.1 Algorithm PG

The main idea of the algorithmPG is to make proactive preemptions of low value packets when high value
packets arrive. The algorithm is similar to the one presented in [8], except that each high value packet can
preempt at most one low value packet. Intuitively, we try to decrease the delay that a high value packet suffers
due to low value packets preceding it in the FIFO order. A formal definition is given in Figure 1.

The parameter ofPG is the preemption factorβ. For sufficiently large value ofβ, PG performs like the
greedy algorithm and only drops packets in case of overflow. On the other hand, too small values ofβ can cause
excessive preemptions of packets and a large loss of value. Thus, we need to optimize the value ofβ in order

3

The β-Preemptive Greedy Algorithm.

1. When a packetp of valuev(p) arrives, drop the first packetp′ in the FIFO order such thatv(p′) ≤
v(p)/β, if any (p′ is preempted).

2. Acceptp if there is free space in the buffer.

3. If p is not accepted then drop it if the buffer is full andv(p) is less than the minimal value among the
packets currently in the buffer (p is rejected).

4. Otherwise, drop the packetp′ with the minimal value from the buffer and acceptp (p pushes outp′).

Figure 1: Algorithm PG.

to achieve a balance between maximizing the current throughput and minimizing the potential future loss.

Next we will introduce a few useful definitions. We say that a packetp transitively preemptsa packetp′ if p

either preemptsp′ or p preempts or pushes out another packetp′′, which in its turn transitively preemptsp′. We
also say that a packetp replacesa packetp′ if (1) p transitively preemptsp′ and (2)p is eventually scheduled.
Thechain of replacementcontains all packets transitively preempted byp. We say thatp directly replacesp′

if in the chain of replacement between them no packet exceptp′ is preempted (e.g.p may push outp′′ that
preemptsp′).

3.2 Overload Intervals

The main concept of the proof is that ofoverload intervals. Before introducing a formal definition, we will give
some intuition. Consider a timet at which a packet of valueα is rejected or pushed out andα is the largest
value among the packets that are rejected or pushed out at this time. Note that all packets in the buffer at the end
of time slott have value at leastα. Such an event defines anα-overloadedintervalI = [ts, tf). The interval
starts at the earliest timets before timet such that only packets of valueα or greater are served in[ts, t], or
after the preceding overload interval with a higher overload value ends. Then if no packet is dropped after time
t, I ends at the last time at which a packet of value at leastα is scheduled (see Figure 2). In case at some time
t′ > t a packet of valueγ is rejected or pushed out,γ is the largest value among the packets that are rejected or
pushed out at this time, and a packet fromQ(t) is still present in the buffer, we proceed as follows. Ifγ = α,
we extendI to includet′. In caseγ > α, we start a new interval with a higher overload value. Otherwise,
if γ < α then we start a new interval when the first packet fromQ(t′) \ Q(t) is eventually scheduled if any.
Otherwise, if all packets fromQ(t′) \ Q(t) are preempted, we create a zero length intervalI ′ = [tf , tf) whose
overload value isγ. Next we define the notion of overload interval more formally.

Definition 3.1 Anα-overflow takes place at timet if a packet of valueα is rejected or pushed out at this time,
whereα is said to be theoverload value.

Definition 3.2 A packetp is said to beassociatedwith interval[t, t′) if p arrived later than the packet scheduled
at timet − 1 if any and earlier than the packet scheduled at timet′ if any.

4

OPT

PG

arrivals

I 21Ioverload intervals

Figure 2:An example of overload interval.

We construct overload intervals starting from the highest overload value and ending with the lowest overload
value.

Definition 3.3 An intervalI = [ts, tf), with tf ≥ ts, is anα-overloadedinterval if at least one packet with
valueα associated withI is rejected or pushed out, no packet associated withI with higher value is rejected or
pushed out, only packets with value at leastα are served duringI, all packets served duringI arrive no later
than the lastα-overflow, andI is a maximal such interval taking into account overload intervals with higher
overload values.

We note that overload intervals aredisjoint.

Definition 3.4 A packetp belongs toanα-overloaded intervalI = [ts, tf) if p is associated withI and (i)p is
served duringI, or (ii) p is rejected or pushed out no later than the lastα-overflow, or (iii)p is preempted and
it arrived no earlier than the first and no later than the last packet that belongs toI that is served, rejected or
pushed out.

Thus directly before and after such an interval, either the buffer is empty, a lower-value packet is served
(possibly as part of aγ-overloaded interval withγ < α), or there is aγ-overloaded interval withγ > α.
Whenever anα-overloaded intervalI is immediately followed by aγ-overloaded intervalI ′ with γ > α, we
have that in the first time step ofI ′ a packet of valueγ is rejected or pushed out.

The following observation states that overload intervals are well-defined.

Observation 1 Any packet that has been rejected or pushed out belongs to exactly one overload interval.

Next we introduce some useful definitions related to an overload interval.

Definition 3.5 For an overload intervalI let BELONG(I) denote the set of packets that belong toI. This
set consists of four distinct subsets: scheduled packets (PG(I)), preempted packets (PREEMPT(I)), rejected
packets (REJECT(I)) and packets that were pushed out (PUSHED(I)). Finally, denote byREPLACE(I) the set
of packets that replace packets fromPREEMPT(I). These packets are either inPG(I) or are served later.

5

We divide the schedule ofPG into maximal sequences of consecutive overload intervals of increasing and
then decreasing overload value.

Definition 3.6 Anoverload sequenceS is a maximal sequence containing intervalsI1 = [t1s, t
1
f),I2 = [t2s, t

2
f),

. . . ,Ik = [tks , t
k
f) with overload valuesw1, . . . , wk such thattif ≤ ti+1

s for 1 ≤ i ≤ k − 1, wi < wi+1 for
1 ≤ i ≤ m − 1 andwi > wi+1 for m ≤ i ≤ k − 1, wherek is the number of intervals inS andwm is the
maximal overload value among the intervals withinS.

Ties are broken by associating an overload interval with thelatest overload sequence. We will abbreviate
BELONG(Ii), PG(Ii), . . . by BELONGi, PGi, . . . We make the following observation, which follows from the
definition of an overload interval.

Observation 2 For 1 ≤ i ≤ k, all packets inREJECTi ∪ PUSHEDi have value at mostwi while all packets in
PGi have value at leastwi.

3.3 Analysis of thePG Algorithm

In this section we will analyze the performance of thePG algorithm. We show thatPG achieves a competitive
ratio of 2 − ǫ, whereǫ(β) > 0 is a constant depending only onβ. Optimizing the value ofβ, we get that for
β = 15 the competitive ratio ofPG is close to1.983, that isǫ ≈ 0.017. The crux of the proof is to show that
whenPG drops a packet of value sayα that is scheduled byOPT, it schedules another packet of valueα and an
additional packet with a non-negligible value, roughlyα/β, which allows us to break the ratio of2, achieved
by the greedy algorithm.

In the sequel we fix an input sequenceσ. Let us denote byOPT andPG the set of packets scheduled byOPT

andPG, respectively. We also denote byDROP the set of packets scheduled byOPT and dropped byPG, that
is OPT\ PG. In a nutshell, we will construct afractional assignment in which we will assign to packets inPG

the valueVOPT(σ) so that each packet is assigned at most a2 − ǫ fraction of its value. The general assignment
scheme is presented on Figure 3.

Main Assignment Routine(σ):

1. Assign the value of each packet fromPG∩ OPT to itself.

2. Assign the value of each packet fromDROP that has beenpreemptedto the packetreplacingit.

3. Consider all overload sequences starting from the earliest one and up to the latest one. Assign the value
of each packet fromDROP that belongs to the sequence under consideration and has been rejectedor
pushed outusing the assignment routine for the overload sequence.

Figure 3: The main routine.

Before we describe the overload sequence assignment routine we need some definitions. Consider an
overload sequenceS. We introduce the following notation:

OPTi = OPT∩ BELONGi,

SHAREDi = OPT∩ PGi,

6

OVFLOPTi = OPT∩ (REJECTi ∪ PUSHEDi),

PRMOPTi = OPT∩ PREEMPTi

We writePG(S) = ∪k
i=1PGi and defineOPT(S), SHARED(S), OVFLOPT(S), andPRMOPT(S) analogously.

Definition 3.7 For 1 ≤ i ≤ k, OUTi is the set of packets that have been replaced by packets outsideS.

Clearly, OUTi ⊆ PREEMPTi. Two intervalsIi andIj are calledadjacentif either tif = tjs or tis = tjf . The next
observation will become important later.

Observation 3 For an intervalIi, if |PGi| + |OUTi| < B thenIi is adjacent to another intervalIj such that
wj > wi.

Suppose that the arrival time of the earliest packet inBELONG(S) is ta and letEARLY(S) = ∪t1
s
−1

t=ta PG(t) be
the set of packets sent betweenta and timet1s. Intuitively, packets fromEARLY(S) are packets outsideS that
interact with packets fromS and may be later assigned some value of packets fromDROP(S).

For the sake of analysis, we make some simplifying assumptions. Afterward we show how to relax them.

1. For any1 ≤ i ≤ k the number of packets inOVFLOPTi is not less than the number of packets in
PGi \ SHAREDi plus the number of packets inOUTi, that is|OVFLOPTi| ≥ |PGi \ SHAREDi| + |OUTi|.

2. No packet fromEXTRA(S) belongs to another overload sequence (the setEXTRA(S) will be defined
later).

We say that a packet isavailableafter executing the first two steps of the main assignment routine if it has
been assigned at most a1+ 2

β(β−1) fraction of its value. (The meaning of this definition will become clear later.)
The sequence assignment routine presented on Figure 4 assigns the value of all packets fromOVFLOPT(S).

Next we show that the mapping routine is feasible under the assumptions (1) and (2). Then we derive an
upper bound on the value assigned to any packet inPG. Finally, we demonstrate how to relax these assumptions.
First we need auxiliary lemmas.

Let PREVP(S) be the subset ofQ(ta) containing packets preempted or pushed out by packets fromBELONG(S).
Note thatPREVP(S) ∩ BELONG(S) = ∅. The next claim bounds the difference between the number of packets
in OPT(S) andPG(S).

Claim 3.1 For an overload sequenceS the following holds:|OPT(S)|−|PG(S)| ≤ B+|OUT(S)|−|PREVP(S)|.

Proof: Let t′ be the last time duringS at which a packet fromBELONG(S) has been rejected or pushed out. It
must be the case thattkf − t′ ≥ B − |OUT(S)| since at timet′ the buffer was full of packets fromBELONG(S)

and any packet outsideBELONG(S) can preempt at most one packet fromBELONG(S). We argue thatOPT has
scheduled at mostt′ + 2B − t1s − |PREVP(S)| packets fromBELONG(S). That is due to the fact that the earliest
packet fromBELONG(S) arrived at or after timet1s − B + |PREVP(S)|. On the other hand,PG has scheduled
at leastt′ + B − t1s − |OUT(S)| packets fromBELONG(S), which yields the claim.

The following lemma shows that if the buffer contains a largenumber of “valuable” packets thenPG sends
packets with non-negligible value.

7

Sequence Assignment Routine(S):

1. For intervalIi s.t.1 ≤ i ≤ k, assign the value of each of the|PGi \ SHAREDi|+ |OUTi| most valuable
packets fromOVFLOPTi to a packet in(PGi \ SHAREDi) ∪ REPLACEi.

2. Let UNASGi be the subset of theOVFLOPTi of packets that remained unassigned,UNASG(S) =

∪k
i=1UNASGi, SMALL (S) be the subset ofUNASG(S) containing themax(|UNASG(S)| − B/2, 0)

packets with the lowest value andPGREPm = PGm ∪ REPLACEm. Find a setEXTRA(S) of packets
from (PG(S) \ PGm) ∪ EARLY(S) s.t. |EXTRA(S)| = |SMALL (S)| and the value of thel-th largest
packet inEXTRA(S) is at least as large as that of thel-th largest packet inSMALL (S) divided byβ.
For each packet fromEXTRA(S) that is assigned more than a1 + 2

β(β−1) fraction of its value, remove

from it a 2
β fraction of its value (this value will be reassigned at the next step).

3. Assign the value of each pair of packets fromSMALL (S) and UNASG(S) \ SMALL (S) to a pair of
availablepackets fromPGREPm and a packet fromEXTRA(S) so that each packet is assigned af ≤
1 − ǫ fraction of its value. (The proper value off will be determined later.)

4. Assign a1 − 1/β fraction of the value of each packet fromUNASG(S) that is unassigned yet to an
availablepacket inPGREPm and and a1/β fraction of its value to some packet fromPGREPm that
has not been assigned any value at Step3 or the current step of this assignment routine (note that this
packet may have been assigned some value by the main routine).

Figure 4: The sequence assignment routine.

Lemma 3.2 If at time t, |Q(t,≥ w)| ≥ B/2 and the earliest packet fromQ(t,≥ w) arrived before or at time
t − B/2 then the packet scheduled at the next time slot has value at leastw/β.

Proof: Let p be the first packet fromQ(t,≥ w) in the FIFO order and lett′ ≤ t − B/2 be the arrival time of
p. Let X be the set of packets with value less thanw/β that were in the buffer beforep at timet′. We show
that no packet fromX is present in the buffer at timet + 1. We have|X| ≤ B. At leastB/2 packets are served
betweent′ andt. All these packets precededp sincep is still in the buffer at timet. So at mostB/2 packets
in X are not (yet) served at timet. However, at leastB/2 packets with value greater than or equal tow have
arrived by timet and each of them preempts from the buffer the first packet in the FIFO order with value of at
mostw/β, if any. This shows that all packets inX have been either served or dropped by timet.

Next we will use Lemma 3.2 to show that for each but theB/2 largest packets fromUNASG(S), PG has
scheduled some extra packet with value that constitutes at least a1/β fraction of its value. The following crucial
lemma explicitly constructs the setEXTRA(S) for the sequence assignment routine.

Lemma 3.3 For an overload sequenceS, we can find a setEXTRA(S) of packets from(PG(S) \ PGm) ∪
EARLY(S) such that|EXTRA(S)| = |SMALL (S)| and the value of thel-th largest packet inEXTRA(S) is at
least as large as that of thel-th largest packet inSMALL (S) divided byβ.

Proof: Recall that|SMALL (S)| = max(|UNASG(S)|−B/2, 0). To avoid trivialities, assume that|UNASG(S)| >

B/2. Let us denote|UNASGi| by xi and the set of packets fromOPTi \ PRMOPTi that have been scheduled by

8

OPT before timetis by PREDOPTi. Note that

xi = |OVFLOPTi| − |PGi \ SHAREDi| − |OUTi|.

We argue that for any intervalIj, |PREDOPTj | ≥ xj. If it is not the case then we obtain that the schedule of
OPT is unfeasible by an argument similar to that of Claim 3.1 (observe that|OPTj | ≥ |PGj| + |OUTj|). We also
claim that|PREDOPTm| ≥ ∑k

i=m xi andPREDOPTm contains at least
∑k

i=m+1 xi packets with value greater
than or equal towm. Otherwise the schedule ofOPT is either unfeasible or can be improved by switching a
packetp ∈ ∪k

i=m+1(OPTi \ SHAREDi) and a packetp′ ∈ BELONGm \ OPTm s.t.v(p) < wm andv(p′) ≥ wm.

Let MAXUPj be the set of thexj most valuable packets fromPREDOPTj for 1 ≤ j < m. It must be
the case that the value of thel-th largest packet inMAXUPj is at least as large as that of thel-th largest
packet in UNASGj for 1 ≤ l ≤ |UNASGj|. That is due to the fact that by Observation 2 thexj least
valuable packets fromOVFLOPTj are also thexj least valuable packets fromOVFLOPTj ∪ SHAREDj. Now
for j starting fromk and down tom − 1, let MAXDOWN j be the set containing arbitraryxj packets from
PREDOPTm \ (∪j−1

i=m+1MAXDOWN i) with value at leastwm. Finally, let MAXUPm be the set of thexm most
valuable packets fromPREDOPTm \ (∪k

i=m+1MAXDOWN i). Clearly, any packet inMAXDOWN j is greater than
any packet inREJECTj for m + 1 ≤ j < k. Similarly to the case ofj < m, one can show that the value
of the l-th largest packet inMAXUPm is at least as large as that of thel-th largest packet inUNASGm for
1 ≤ l ≤ |UNASGm|.

Let MAXP(S) = (∪m
i=1MAXUPi) ∪ (∪k

i=m+1MAXDOWN i) and lettn be the time at whichOPT schedules
n-th packet fromMAXP(S). We also denote byMAXP(S, tn) the set of packets fromMAXP(S) that arrived by
time tn. Consider timetn s.t.B/2+1 ≤ n ≤ |UNASG(S)| and letLARGE(tn) be the set ofB/2 largest packets
in MAXP(S, tn). We show that at timetn, PG schedules a packet with value of at leastw′/β, wherew′ is the
minimal value among packets inLARGE(tn). If all packets fromLARGE(tn) are present in the buffer at time
tn then we are done by Lemma 3.2. Note that the earliest packet from LARGE(tn) arrived before or at time
tn − B/2 sinceOPT schedules all of them by timetn. In case a packetp from LARGE(tn) has been dropped,
by the definition ofPG and the construction of the intervals, the packet scheduledat this time has value at least
v(p) > w′/β.

We define the set
EXTRA(S) = ∪|UNASG(S)|

n=B/2+1 PG(tn).

Observe that the last packet fromEXTRA(S) is sent earlier thantms and thusEXTRA(S) ∩ PGm = ∅. It is easy
to see that the set defined above satisfies the condition of thelemma.

Now we are ready to state the main theorems.

Theorem 3.4 The mapping routine is feasible.

Proof: If all assignments are done at Step1 or Step2 of the main assignment routine then we are done.

Consider an overload sequenceS that is processed by the sequence assignment routine. By Claim 3.1, we
obtain that the number of unassigned packets is bounded fromabove by:

|UNASG(S)| ≤ B − |PRMOPT(S)| − |PREVP(S)| (1)

since
|UNASG(S)| = |OVFLOPT(S)| + |SHARED(S)| − |PG(S)| − |OUT(S)|

9

and
|OPT(S)| = |SHARED(S)| + |OVFLOPT(S)| + |PRMOPT(S)|.

Observe that each packetp that replaces a packetp′ with valuew can be assigned a value ofw if p′ ∈ OPT.
In addition, ifp′ belongs to another overload sequenceS′ thenp can be assigned an extra value ofw at Step3
or Step4 of the sequence assignment routine.

Remember thatPGREPm = PGm∪REPLACEm. Let ASG1 be the subset ofPGREPm containing packets each
of which has been assigned at the first two steps of the main assignment routine more than a1+ 2

β(β−1) fraction
of its value. By the mapping construction, every such packetmust have directly replaced a packet fromOPT .
We show that all packets directly replaced by packets fromASG1 belong toPRMOPT(S)∪ PREVP(S). Consider
such a packetp. If p is directly preempted by a packet fromASG1 then we are done. Else, suppose thatp is
pushed out by a packetp′, which is transitively preempted by a packet fromASG1. In this case by the overload
sequence construction,p must belong toS. Thus, we have that:

|ASG1| ≤ |PRMOPT(S)| + |PREVP(S)|.

We denote byASG2 the subset ofPGREPm containing packets that have been assigned some value at Step 3

of the sequence assignment routine. Note that

|ASG2| = 2max(|UNASG(S)| − B/2, 0).

Finally, let ASG3 andASG4 be the subsets ofPGREPm containing packets that have been assigned at Step
4 of the sequence assignment routine a1 − 1/β and a1/β fraction of the value of a packet fromUNASG(S),
respectively. Note that

|ASG3| = |ASG4| = |UNASG(S)| − 2max(|UNASG(S)| − B/2, 0).

Now we will show that the assignment is feasible, i.e. the pairwise intersection ofASG1, ASG2 andASG3 is
empty andASG4 ∩ (ASG2 ∪ ASG3) = ∅ . By (1) we have that

|ASG1| + |ASG2| + |ASG3| ≤ B.

Obviously,
|ASG4| ≤ B − |ASG2| − |ASG3|.

We are done since Observation 3 implies that the number of packets inPGREPm is at leastB.

Theorem 3.5 Any packet fromPG is assigned at most a2− ǫ fraction of its value, whereǫ(β) > 0 is a constant
depending onβ for β > 2.

Proof: If all assignments are done at Step1 or Step2 of the main assignment routine then obviously no packet
is assigned more than a1 + 1/(β − 1) fraction of its value. That is due to the fact that each packetof valuew

may either preempt a packet of value at mostw/β or push out another packetp′, of value less thanw, replacing
the packet(s) transitively preempted byp′.

Next we will derive the ratiof that is used at Step3 of the sequence assignment routine. Consider a
pair of packetsp1 ∈ SMALL (S), p2 ∈ (UNASG(S) \ SMALL (S)) and a pair of packetsp3, p4 from PGm ∪

10

OUTm. Let p5 ∈ EXTRA(S) be the extra packet used in the assignment. Note thatv(p1) ≤ v(p2) ≤ wm,
min(v(p3), v(p4)) ≥ wm andv(p5) ≥ v(p1)/β. Let alsov(p1) = w = wm − δ. The ratiof that accounts for
the value of the relevant packets is as follows:

f =
v(p1) + v(p2) + v(p5) · 2

β

v(p3) + v(p4) + v(p5)
≤

2wm − δ + 2w
β2

2wm + w
β

.

In caseδ ≥ wm

β , we have that

f <
2wm − wm

β + (1 − 1
β)2wm

β2

2wm
=

2 − 1
β + 2(β−1)

β3

2
.

If δ < wm

β then

f <
2wm + (1 − 1

β)2wm

β2

2wm + (1 − 1
β)wm

β

=
2 + 2(β−1)

β3

2 + β(β−1)
β3

.

Thus, we obtain that

f = max

2 − 1
β + 2(β−1)

β3

2
,
2 + 2(β−1)

β3

2 + β(β−1)
β3

 .

At this point we are ready to compute the overall ratio. It is easy to see that any packet inASG1 and
BELONG(S)\PGREPm can be assigned at most a1+ 2

β−1 + 1
β fraction of its value, where a fraction of1β is due

to Step4 of the sequence assignment routine. By the construction, all packets inASG2 andASG3 are available.
Thus any packet inASG2 andASG3 can be assigned at most a1 + f + 2

β(β−1) and a2 − 1
β + 2

β(β−1) fraction
of its value, respectively. Hence, we obtain that no packet is assigned more than a2 − ǫ fraction of its value,
where

ǫ = 2 − min
β

max

(

1 +
2

β − 1
+

1

β
, 1 + f +

2

β(β − 1)
, 2 − 1

β
+

2

β(β − 1)

)

.

Now let us go back to the assumption (1), that isxi = |OVFLOPTi| − (|PGi \ SHAREDi|+ |OUTi|) ≥ 0. We
argue that there exist two indicesl ≤ m andr ≥ m s.t. xi ≥ 0 for l ≤ i ≤ r andxi ≤ 0 for 1 ≤ i < l or
l < i ≤ k. In this case we can restrict our analysis to the subsequenceof S containing the intervalsIl, . . . ,Ir.
Otherwise, there exist two indicesi, j s.t. i < j ≤ m or i > j ≥ m, xi > 0 andxj < 0. Thus, there are a
packetp ∈ OPTi and a packetp′ ∈ PGj \ OPTj s.t. v(p′) > v(p). We obtain that the schedule ofOPT can be
improved by switchingp andp′.

It remains to consider the assumption (2), that is no packet from EXTRA(S) belongs to another overload
sequenceS′. In this case we sharp the bound of Claim 3.1 applied to both sequences.

Claim 3.6 For any two consecutive overload sequencesS′ andS the following holds:|OPT(S)|+ |OPT(S′)|−
|PG(S)| − |PG(S′)| ≤ 2B + |OUT(S)| − |PREVP(S)| − |PREVP(S′)| − |EXTRA(S) ∩ BELONG(S′)|.

Proof: According to the proof of Claim 3.1,tmf −tl ≥ B−|OUT(S)| wheretl is the last time duringS at which
a packet fromBELONG(S) has been rejected or pushed out. Letz = |EXTRA(S)∩BELONG(S′)|. We argue that

11

OPT has scheduled at mosttl + 2B − t′1s − |PREVP(S′)| packets fromBELONG(S)∪ BELONG(S′). That is due
to the fact that the earliest packet fromBELONG(S′) arrived at or after timet′1s − B + |PREVP(S′)|. Observe
that between timet′1s and timetkf at mostB − z − |PREVP(S)| packets outside ofBELONG(S) ∪ BELONG(S′)

have been scheduled byPG. Hence,PG has scheduled at leasttl + z + |PREVP(S)| − t′1s − |OUT(S)| packets
from BELONG(S) ∪ BELONG(S′), which yields the claim.

Using Claim 3.6, we can extend our analysis to any number consecutive overload sequences without affect-
ing the resulting ratio.

3.4 Lower Bounds

In this section we will show a specific lower bound ofφ ≈ 1.618 on the performance of thePG algorithm and
a general lower bound of1.419 on the performance of any online algorithm. The latter boundslightly improves
the bound of

√
2 ≈ 1.414 obtained in [2].

Theorem 3.7 ThePG algorithm has a competitive ratio of at leastφ.

Proof: Suppose that the buffer is empty at timet = 0 and consider the following scenarios. In the first scenario
at timet = 0, B packets with values1, β, . . . , βB arrive one by one. ThePG algorithm preempts all of them
but the last packet whileOPT schedules all the packets. Thus, the ratio between the valueof OPT andPG is
close toβ/(β − 1) for sufficiently largeB.

In the second scenario, at timet = 0 there arrives a burst ofB packets of value1 + ǫ. There arek phases,
each of lengthB. Thei-th phase takes place during[B · (i − 1), . . . , (B · i) − 1]. Every time slot throughout
i-th phase there arrives one packet of valueβi + ǫ. Finally, at timet = Bk there arrives a burst ofB packets of
valueβk + ǫ. ThePG algorithm schedules all but the lastB packets of valueβk + ǫ. On the other hand,OPT

sends all but the firstB packets of value1 + ǫ. Hence, the ratio between the value ofOPT andPG is nearly
2 − 1/β for sufficiently largek.

To optimize the lower bound, i.e. maximizelb = min(β/(β − 1), 2− 1/β), we equate both of these ratios:
β/(β − 1) = 2 − 1/β. We get thatβ = 3+

√
5

2 = φ + 1 and thuslb = φ.

Now let us turn to a general lower bound. Definev∗ =
3
√

19 + 3
√

33 andR = (19 − 3
√

33)(v∗)2/96 +

v∗/6 + 2/3 ≈ 1.419.

Theorem 3.8 Any online algorithmA has a competitive ratio of at leastR.

Proof: Suppose thatALG maintains a competitive ratio less thanR and letv = v∗/3+4/(3v∗)+4/3 ≈ 2.839.
We define a sequence of packets as follows. At timet = 1, B packets with value1 arrive. At each time2, . . . , l1,
a packet of valuev arrives, wheret + l1 is the time at whichALG serves the first packet of valuev (i.e. the
time at which there remain no packets of value1). Depending onl1, the sequence either stops at this point or
continues with a new phase.

Basically, at the start of phasei, B packets of valuevi−1 arrive. During the phase, one packet of valuevi

arrives at each time step untilALG serves one of them. This is the end of the phase. If the sequence continues
until phasen, then in phasen only B packets of valuevn−1 arrive. Let us denote the length of phasei by li for
i = 1, . . . , n − 1 and definesi =

∑i
j=1(ljv

j−1) for i = 1, . . . , n.

12

If the sequence stops during phasei < n, thenALG earnsl1 + l2v + l3v
2 + . . . + liv

i−1 + liv
i = si + liv

i

while OPT can earn at leastl1v + l2v
2 + . . . +(li−1 +B)vi−1 + liv

i = v · si +Bvi−1. The implied competitive
ratio is (v · si + Bvi−1)/(si + liv

i). We only stop the sequence in this phase if this ratio is at leastR, which
depends onli. We now determine the value ofli for which the ratio is exactlyR. Note thatlivi = (si−si−1) ·v.
We have that(v · si + Bvi−1)/(si + liv

i) = R implies

si =
vRsi−1 + Bvi−1

R(v + 1) − v
, s0 = 0 ⇒ si =

vi − (Rv
R(v+1)−v)i

(R− 1)v2
B.

It can be seen thatsi/v
i → B/(v2(R− 1)) for i → ∞, sinceR/(R(v + 1) − v) < 1 for R > 1.

Thus if underALG the length of phasei is less thanli, the sequence stops and the ratio is proved. Otherwise,
if ALG continues until phasen, it earnsl1 + l2v + l3v

2 + . . . + lnvn−1 + B · vn = sn + Bvn whereasOPT can
earn at leastl1v + l2v

2 + . . . + lnvn + B · vn = v · sn + Bvn. The implied ratio is

vsn + Bvn

sn + Bvn
=

v sn

vn
+ B

sn

vn
+ B

→
v

v2(R−1)
+ 1

1
v2(R−1) + 1

=
v + v2(R− 1)

1 + v2(R− 1)
= R.

4 Bounded Delay Buffers

In this section we consider the bounded delay model. We show that the value gained byOPT in theB-uniform
bounded delay model equals to that ofOPT in the FIFO model. Moreover, we demonstrate thatOPT does not
need a buffer with capacity greater thanB. Let us denote byV M

A (σ) the value gained by the algorithmA in the
modelM (either FIFO or bounded delay (BD)). A similar claim has beenmade in [7].

Lemma 4.1 For any input sequenceσ, the value ofOPT in the B-uniform bounded delay model with buffer
of infinite capacity equals the value ofOPT in the FIFO model with buffer of capacityB, that isV BD

OPT(σ) =

V FIFO
OPT (σ).

Proof: We argue that any feasible schedule in the uniform bounded delay model can be transformed to an
equivalentfeasibleschedule in the FIFO model in which the same set of packets is sent. Assume wlog thatOPT

in the bounded model schedules all packets that are acceptedinto the buffer. If it is not the case, one can admit
only packets that are eventually sent without affecting thevalue of the solution. We claim that at any time the
buffer of OPT contains at mostB packets. Otherwise, the delay of some packet must become greater thanB
and it has to be dropped. That contradicts to our assumption.The further transformation is done by swapping
packets so that the FIFO order is maintained. Note that the FIFO order coincides with the Earliest Deadline
First (EDF) order.

Now consider the algorithmSPG in theB-uniform bounded delay model that simulates thePG algorithm
in the FIFO model, that is accepts, drops and sends the same packets.

Theorem 4.2 The competitive ratio ofSPG in theB-uniform bounded delay model equals to that ofPG in
the FIFO model.

13

Proof: Suppose thatPG is c-competitive in the FIFO model and fix an input sequenceσ. By our assumption,
c·V FIFO

PG (σ) ≥ V FIFO
OPT (σ). Lemma 4.1 implies thatV BD

OPT(σ) = V FIFO
OPT (σ). Clearly,V BD

SPG(σ) = V FIFO
PG (σ).

Thus, we obtain thatc · V BD
SPG(σ) ≥ V BD

OPT(σ), which yields the theorem.

5 Conclusion

In this paper we study QoS buffering in the FIFO and uniform bounded delay models. Our main result consists
of algorithms in both models for arbitrary packet values that for the first time achieve a competitive ratio strictly
better than2. One of the interesting future research directions is to close a significant gap between the lower
and upper bounds. Another open problem is whether we can break the competitive ratio of2 in the variable
bounded delay model.

References

[1] W. A. Aiello, Y. Mansour, S. Rajagopolan and A. Rosén, “Competitive Queue Policies for Differentiated
Services,”Proceedings of INFOCOM 2000, pp. 431-440.

[2] N. Andelman, Y. Mansour and An Zhu, “Competitive Queueing Policies for QoS Switches,”The 14th
ACM-SIAM SODA, Jan. 2003.

[3] Y. Bernet, A. Smith, S. Blake and D. Grossman, “A Conceptual Model for Diffserv Routers,”Internet draft,
March 2000.

[4] A. Borodin and R. El-Yaniv, “Online Computation and Competitive Analysis,” Cambridge University
Press, 1998.

[5] D. Clark and J. Wroclawski, “An Approach to Service Allocation in the Internet,”Internet draft, July 1997.

[6] C. Dovrolis, D. Stiliadis and P. Ramanathan, ”Proportional Differentiated Services: Delay Differentiation
and Packet Scheduling”,Proceedings of ACM SIGCOMM’99, pp. 109-120.

[7] A. Kesselman, Z. Lotker, Y. Mansour, B. Patt-Shamir, B. Schieber and M. Sviridenko, “Buffer Overflow
Management in QoS Switches,”Proceedings of STOC 2001, pp. 520-529.

[8] A. Kesselman and Y. Mansour, “Loss-Bounded Analysis forDifferentiated Services,”Proceedings of SODA
2001, pp. 591-600.

[9] Z. Lotker and B. Patt-Shamir, “Nearly optimal FIFO buffer management for DiffServ,”Proceedings of
PODC 2002, pp. 134-142.

[10] Y. Mansour, B. Patt-Shamir and Ofer Lapid, “Optimal Smoothing Schedules for Real-Time Streams,”
Proccedings of PODC 2000, pp. 21-29.

[11] M. May, J. Bolot, A. Jean-Marie, and C. Diot, ”Simple Performance Models of Differentiated Services
Schemes for the Internet,”Proceedings of IEEE INFOCOM 1999, pp. 1385-1394, March 1999.

14

[12] K. Nichols, V. Jacobson and L. Zhang, “A Two-bit Differentiated Services Architecture for the Internet,”
Internet draft, July 1999.

[13] T. Nandagopal, N. Venkitaraman, R. Sivakumar and V. Bharghavan, “Relative Delay Differentation and
Delay Class Adaptation in Core-Stateless Networks,”Proceedings of IEEE Infocom 2000, pp. 421-430,
March 2000.

[14] V. Paxson and and S. Floyd, “Wide-Area Traffic: The Failure of Poisson Modeling,”IEEE/ACM Transac-
tions on Networking, Vol. 3, No. 3, pp. 226-244, June 1995.

[15] S. Sahu, D. Towsley and J. Kurose, ”A Quantitative Studyof Differentiated Services for the Internet,”
Proceedings of IEEE Global Internet’99, pp. 1808-I817, December 1999.

[16] N. Semret, R. Liao, A. Campbell and A. Lazar, “Peering and Provisioning of Differentiated Internet
Services,”Proceedings of INFOCOM 2000, pp. 414-420, March 2000.

[17] D. Sleator and R. Tarjan, “Amortized Efficiency of List Update and Paging Rules,”CACM 28, pp. 202-208,
1985.

[18] I. Stoica and H. Zhang, “ Providing Guaranteed Serviceswithout Per Flow Management,”Proceedings of
SIGCOM 1999, pp. 81-94.

[19] A. Veres and M. Boda, “The Chaotic Nature of TCP Congestion Control,” Proceedings of INFOCOM
2000, pp. 1715-1723, March 2000.

15

