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Abstract

Combined input and output queued (CIOQ) architectures with a moderate fabric speedup S > 1
have come to play a major role in the design of high performance switches. The switch policy that
controls such switches must consist of two components. A buffer management policy that controls
admission to buffers, and a scheduling policy that is responsible for the transfer of packets from input
buffers to output buffers. The goal of the switch policy is to maximize the throughput of the switch.
When all packets have a uniform value (or importance), this corresponds to the number of packets
sent from the switch. When packets have variable values, this corresponds to the total value of the
sent packets.

We derive a number of scheduling policies for CIOQ switches and analyze their throughput using
competitive analysis. We thus give for these policies a uniform throughput guarantee, regardless
of specific traffic patterns. For the case of packets with uniform values we present a switch policy
that is 3-competitive for any speedup. For the case of packets with variable values we propose two
switch policies. One achieves a competitive ratio of 4S, and the other achieves a competitive ratio
of 8 min(k,2�logα�), where k is the number of distinct packet values and α is the ratio between the
largest and the smallest value.
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1. Introduction

Switch architectures based on a non-blocking fabric are widely used in today’s packet
networks. A critical aspect of such an architecture is the placement of switch buffers. In
the output queuing (OQ) architecture, packets arriving from input lines immediately cross
the switching fabric, and join a queue at the switch output port. Thus, the OQ architecture
allows one to maximize the throughput, and permits the accurate control of packet latency.
However, in order to avoid contention, the internal speed of an OQ switch must be at least
the sum of all the input line rates. The recent developments in networking technology
produced a dramatic growth of line rates and have made the speedup requirements of OQ
switches difficult to meet. This has in turn generated great interest in the input queuing
(IQ) switch architecture, where packets arriving from input lines are queued at input ports.
The packets are then extracted from input queues to cross the switching fabric and to be
forwarded to the output ports.

However, the IQ architecture can lead to low throughput, and it does not allow the
control of latency through the switch. For random traffic, uniformly distributed over all
outputs, the throughput (i.e., the average number of packets sent in a time step) of an IQ
switch has been shown to be limited to approximately 58% of the throughput achieved by
an OQ switch [14]. A major problem of the IQ architecture is head-of-line (HOL) block-
ing, which occurs when packets at the head of the various input queues contend on the
same output port of the switch. To alleviate the problem of HOL blocking one can main-
tain at each input a separate queue for each output. This technique is known as virtual
output queuing (VOQ). A large number of scheduling algorithms, based on different kinds
of matchings between input and outputs ports, have been proposed in the literature for
the IQ architecture: these are PIM [4], IRRM [23], iSLIP [21], iOCF [22], RPA [19] and
Batch [11], to name a few. These algorithms achieve high throughput when the traffic pat-
tern is admissible (uniform), i.e., the aggregate arrival rate to an input or output port is less
than 1. However, their performance typically degrades when the traffic is non-uniform [18].

Another method to get the delay guarantees of an IQ switch closer to that of an OQ
switch is to increase the speedup S of the switch fabric. A switch is said to have a
speedup S, if the switch fabric runs S times faster than each of the input or output lines.
Hence, an OQ switch has a speedup of N (where N is the number of lines), while an IQ
switch has a speedup of one. For values of S between 1 and N packets need to be buffered
at the inputs before switching as well as at the outputs after switching. This architecture
is called a combined input and output queued (CIOQ) architecture. CIOQ switches with
a moderate speedup S have received considerable attention in the literature [8,10,12,29].
Prabhakar and McKeown [25] consider the question whether a CIOQ switch can be de-
signed to behave identically to an OQ switch. It is proved that a CIOQ switch with VOQ at
the inputs and a speedup of just 4 can be designed to exactly mimic the behavior of an OQ
switch, regardless of the nature of the arriving traffic. This result has been later improved
by Chuang et al. [9] who show that a speedup of 2 − 1/N is necessary and sufficient to
exactly emulate an OQ switch.

Most of the above works on the control of IQ and CIOQ switches assume that there
is always enough buffer space to store the packets when and where needed. Thus, packet
drop due to insufficient buffer space never occurs, and all packets arriving to the switch
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eventually cross the switch. However, contrary to this setting, it is observed empirically that
in the Internet packets are routinely dropped in switches. In the present work we address
the question of the design of control policies for switches when buffer space is limited, and
thus packet drop may occur. The aim of the policy is that of maximizing the throughput of
the switch, i.e., maximizing the number of packets that cross the switch rather than being
dropped due to insufficient buffer space. We provide robust control policies for CIOQ
switches. Since Internet traffic is difficult to model and it does not seem to follow the more
traditional Poisson arrival model [24,27], we do not assume any specific traffic model.
Rather, we analyze our policies against arbitrary traffic and provide a uniform throughput
guarantee for all traffic patterns using competitive analysis [7,26].

The switch policy controlling a CIOQ switch consists of a buffer management policy
and a scheduling policy. The buffer management policy controls the usage of the buffers
while the scheduling policy selects packets to be transferred from the inputs to the outputs.
We consider the cases of uniform (unit) value packets, as well as variable value packets.
The unit value case corresponds to the Best Effort model. In the case of variable value
packets, each packet has an intrinsic value, and this corresponds to the DiffServ model [6].
The actual value of a packet may be proportional to the amount of money charged by the
Internet Service Provider (ISP) for the corresponding service, or may represent the relative
priority of the various packets. The goal of the switch policy is that of maximizing the total
value of packets sent.

Our results

First we consider the case of unit value packets. We present a switch policy that is
3-competitive for any speedup and is 2-competitive for a speedup of 1. We note that im-
plementing “back pressure” (i.e., packets are not transferred to output ports whose buffers
are full) helps to achieve a constant competitive ratio in this case.

For the case of variable value packets, we give two scheduling policies, which can be
combined with an arbitrary buffer management policy for the input buffers. If the buffer
management policy is c-competitive for a single buffer, then the first policy is (2 · c · S)-
competitive while the second policy is (4 · c · min(k,2 · �logα�))-competitive for any
speedup, where k is the number of distinct packet values and α is the ratio between the
highest and the lowest packet value.

To conclude the paper we briefly consider the question of comparing the throughput of a
CIOQ switch to the throughput of an OQ switch with FIFO buffers and having a “similar”
amount of memory.

Related work

The control of OQ switches with limited buffer space is essentially reduced to the con-
trol of a single output buffer. Thus, work on the control of a single finite buffer, in the face
of arbitrary traffic, can be regarded as a work on the control of OQ switches (clearly, the
question is of interest when packets have variable values). A number of such works consid-
ering a single First-In-First-Out (FIFO) buffer appeared in the literature in recent years. If
the buffer policy is allowed to drop packets that have been already accepted, it is said to be
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preemptive, otherwise it is said to be non-preemptive. Aiello et al. [2] analyze various non-
preemptive policies for the special case of two different packet values. Andelman et al. [3]
generalize these results to multiple packet values. The question of video smoothing is stud-
ied by Mansour et al. [20], where they establish an upper bound of 4 on the competitive
ratio of the preemptive greedy policy. This result has been later improved to 2 by Kessel-
man et al. [15], where they also introduced a new bounded-delay packet model. The work
of Kesselman and Mansour [16] studies the case in which all packet values are powers of
some constant and analyzes the loss rather than the throughput of a policy. The analysis of
a single buffer has been later extended to shared memory OQ switches. Competitive analy-
sis of preemptive and non-preemptive scheduling policies was given by Hahne et al. [13]
and Kesselman and Mansour [17], respectively. Aiello et al. [1] study the throughput of
various protocols in a network of OQ switches with limited buffer space.

The work mostly related to the present paper is the work of Azar and Richter [5], where
they consider a system of multiple FIFO buffers. The main contribution of that work is to
show that one can control such a system by a specific scheduling policy, defined in that
work, and a separate arbitrary local buffer management policy for any of the buffers. Azar
and Richter show that the competitive ratio of the resulting policy is twice that of the local
buffer management policy. Using previous results on the management of a single buffer
they thus provide a 4-competitive algorithm for this model. The present paper extends the
work of Azar and Richter to CIOQ switches, by using their technique of decoupling the
buffer management policy from the scheduling policy.

The rest of the paper is organized as follows. The model description appears in Sec-
tion 2. Our switch policies are defined in Section 3. The analysis of switch policies for
CIOQ switches appears in Section 4. In Section 5 we compare the throughput of a CIOQ
switch to that of an OQ switch. We mention some conclusions in Section 6.

2. Model description

We consider an N × N CIOQ switch (see Fig. 1). Packets, of equal size, arrive at input
ports, and each packet is labeled with the output port on which it has to leave the switch.
For a packet p, we denote by V (p) its value. We assume that packets can have k distinct

Fig. 1. An example of a CIOQ switch.



64 A. Kesselman, A. Rosén / Journal of Algorithms 60 (2006) 60–83
values, all in the range [1..α]. For simplicity of presentation, we also assume that the sizes
of the buffers are divisible by min(k, �logα�).

Unless otherwise stated, we assume that VOQ (Virtual Output Queuing) is implemented
at the input ports, and each input i maintains for each output j a separate queue VOQi,j of
capacity BIi,j . Each output j maintains a queue OQj of capacity BOj .

We divide time into discrete steps, where a step is the arrival time between two packets
at an input. That is, during each time step one packet can arrive at each input port, and one
packet can be forwarded on each output port.

We divide each time step into three phases. The first phase is the transmission phase
during which the first packet from each non-empty output queue is sent on the output link.
We denote by Pj (t) the packet that is sent from output j in time step t if any, or a dummy
packet with zero value otherwise. We denote by tT the transmission phase of time step t .
The second phase is the arrival phase. In the arrival phase at most one packet arrives at
each input port. We denote by tA the arrival phase of time step t . The third phase is the
scheduling phase when packets are transferred from input buffers to output buffers. In a
switch with a speedup of S, up to S packets can be removed from any input and up to S

packets can be added to each output. This is done in (up to) S cycles, where in each cycle
at most one packet is removed from each input and at most one packet is added to each
output. Thus, during the scheduling phase we compute (up to) S matchings between input
and outputs. We denote the sth scheduling cycle (1 � s � S) at time step t by ts .2

Suppose that the switch is managed by a policy A. We introduce the following notation.
For any time τ (τ may be a time step t , or a phase tA or tT or a scheduling cycle ts ), we
denote by LA

i,j (τ ) the length of VOQi,j , by OA
j (τ) the length of OQj and by LA(p, τ) the

position of packet p in the queue in which it resides, just before time τ . By XA
i,j (ts) we

denote the variable indicating whether a packet has been scheduled from input i to output
j in scheduling cycle ts (i.e., XA

i,j (ts) = 1 if some packet has been scheduled from input i

to output j and XA
i,j (ts) = 0 otherwise).

The state of the switch just before a scheduling cycle begins is described by an N × N

bipartite multi-graph. The set of nodes VNI ,NO
represents the input and the output ports

and each packet p in VOQi,j induces an edge (i, j) whose weight equals the value of p,
V (p). We denote by EA(ts) the set of packets in the input buffer of A at the very beginning
of scheduling cycle ts . We also denote by GA(ts) = (VNI ,NO

,EA(ts)) the corresponding
bipartite graph.

We usually assume that FIFO order is maintained, i.e., packets must leave a virtual
output buffer, or an output buffer, in the order of their arrivals. So, only the first packet
(in the FIFO order) from each queue can participate in the matching. We also consider for
our constructions some switch policies in a relaxed, non-FIFO, model in which packets
may leave a buffer not necessarily according to FIFO order. However, these policies will
be used only as a tool for the analysis and as building blocks for actual policies.

The switch policy is composed of two main components, namely, a buffer management
policy and a scheduling policy.

2 With slight abuse of notation we say that t0 = (t − 1)S , and that tS+1 = (t + 1)1.
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Buffer management policy

The buffer management policy controls the admission of packets into the buffers. More
specifically, when a packet arrives to a buffer, the buffer management policy decides
whether to accept or drop it. An accepted packet can be later preempted if the preemption
is allowed. Separate buffer management policies may control different buffers. However,
in all our constructions we use the same policy for all input buffer and the same policy for
all output buffers.

Scheduling policy

The scheduling policy at every scheduling cycle first decides which packets are eligible
for being transferred from the inputs to the outputs. Then it specifies which of those packets
are actually transferred. This is done by computing a matching in a bipartite graph between
the inputs and the outputs. Then the packets are transferred according to this matching.
A scheduling policy may compute a constrained matching where no packet is destined to
an output if its buffer is full. This mechanism is called “back pressure”.

When a policy in the relaxed, non-FIFO, model is defined, one has also to specify how
packets are sent from the output buffers. This is done by specifying the transmission policy.
For policies in the FIFO model such specification is not needed (since packets are always
sent out of the output buffers in FIFO order).

Competitive analysis

The aim of a switch policy is that of maximizing the total value of the packets sent from
the output buffers. Let σ be a sequence of packets arriving at the inputs of the switch. Let
V A(σ) and V OPT(σ ) be the total value of packets transmitted out of the sequence σ , by an
online switch policy A and an optimal offline policy OPT , respectively. The competitive
ratio of A is defined as follows.

Definition 1. An online switch policy A is said to be c-competitive if for every input
sequence of packets σ , V OPT(σ ) � c ·V A(σ)+ a, where a is a constant independent of σ .

The competitive ratio of a buffer management policy for a single FIFO buffer is defined
in a similar way.

3. Switch policies

In this section we describe the switch policies that we consider in this paper. First we
define a simple tail-drop buffer management policy.

Tail Drop Buffer Management Policy (TD). Accept the arriving packet p if there is free
space in the buffer. Drop p in case the buffer is full.
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Next we present a natural preemptive greedy buffer management policy.

Greedy Buffer Management Policy (GRD). Accept the arriving packet p if there is free
space in the buffer. Drop p if the buffer is full and V (p) is less than the minimal value
among the packets currently in the buffer. Otherwise, drop from the buffer the packet with
the minimal value and accept p.

Now we describe a greedy switch policy for unit value packets.

Greedy Unit Switch Policy (GU).
Input/Output Buffer Management: Apply the TD policy.
Scheduling: The set of eligible packets is defined with respect to the FIFO order, with the
restriction that no packet is destined to an output if its buffer is full (i.e., back pressure is
enforced). Compute a maximum size matching.

Now we turn to the case of variable value packets. Following [5], we define a switch
policy that is based on a simulation of another switch policy that may break the FIFO order,
i.e., in this simulation packets from a queue may be sent in an arbitrary order. The schedul-
ing decisions of the simulated policy will be used to determine the actual scheduling of our
switch policy, which will extract (possibly different) packets from the same input queues
at the same scheduling cycles, but in the FIFO order. First we define a greedy switch policy
in the relaxed non-FIFO model.

Greedy Variable Relaxed Switch Policy (GVR).
Input/Output Buffer Management: Apply the GRD policy.
Scheduling: The set of eligible packets includes one packet from each VOQi,j . The eligible
packet from a queue VOQi,j is a packet with the maximal value among the packets in
VOQi,j . Compute a maximum weight matching.
Transmission: Send the packet at the head of each output queue (i.e., in FIFO order).

Next we define a greedy switch policy in the FIFO model that uses the schedule of the
GVR policy, and an arbitrary buffer management policy P for the input buffers.

Greedy Variable FIFO Switch Policy (GVFP ).
Input Buffer Management: Apply the policy P .
Output Buffer Management: Apply the GRD policy.
Scheduling: Simulate the GVR switch policy and follow its schedule.

Similarly, we define another switch policy in the non-FIFO model, to be later used in
the construction of a switch policy in the FIFO model. This policy partitions the resources
of the switch (buffer space and internal and output bandwidth) equally between different
classes of packets. We divide the packets into classes according to their values. If k �
2�logα�, we divide the packets into k classes so that each class contains packets with the
same value. Otherwise we define �logα� classes where the packets in class 1 � i � �logα�
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have values in the range [2i−1,2i ). Let M be the number of classes, that is M = k if
k � 2�logα� and M = �logα� otherwise.

Partition Variable Relaxed Switch Policy (PVR).
Input/Output Buffer Management: For a buffer of size B , allocate B/M buffer space for
each class (i.e., simulate a complete partition policy of every buffer). Apply the TD policy
within each class using the space allocated for that class. Namely, a packet of class i is
accepted iff the number of packets of this class in the buffer does not exceed B/M .
Scheduling (scheduling cycle ts ): We define j = ((t − 1) · S + s)%M + 1 to be the current
packet class in a Round-Robin order. The set of eligible packets is the set of packets in
class j , with the restriction that no packet is destined to an output if its buffer is full (i.e.,
back pressure is enforced). A buffer is considered full if all the space allocated to the
relevant class is occupied. Compute a maximum size matching.
Transmission (time step t): We define j = (t − 1)%M + 1 to be the current packet class
in a Round-Robin order. Send the packet of the j th class closest to the head of the buffer
(i.e., we transmit packets out of each output buffer in a Round-Robin order between the
classes).

The corresponding partition switch policy in the FIFO model is as follows.

Partition Variable FIFO Switch Policy (PVFP ).
Input Buffer Management: Apply the policy P .
Output Buffer Management: Apply the TD policy.
Scheduling: Simulate the PVR switch policy and follow its schedule.

4. Analysis of the switch policies

In this section we analyze the performance of our switch policies.

4.1. Unit value packets

In this section we consider the case of packets with unit values. We show that the GU
policy is 3-competitive for any speedup and 2-competitive for a speedup of 1. We note that
a result in [5] implies that no online deterministic switch policy can have a competitive
ratio better that 2 − 1/N .

In what follows we assume a given input packet sequence σ . To analyze the through-
put of the GU policy we introduce some helpful definitions. The next definition concerns
packets that OPT may deliver during a time step while GU does not (recall that the value
of each packet is exactly 1).

Definition 2. For a given switch policy A, a packet sent by OPT from output j at time t is
said to be extra if V (P OPT

j (t)) = 1 and V (P A
j (t)) = 0.

In the following definition we consider the difference between the queue length of an
online policy A and OPT , which will be later related to extra packets.
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Definition 3. For a switch policy A and a scheduling cycle ts , we denote max(LOPT
i,j (ts) −

LA
i,j (ts),0) by DLA,OPT

i,j (ts) and max(OOPT
j (ts) − OA

j (ts),0) by DOA,OPT
j (ts).

We will map each extra packet of OPT to a packet sent by GU, in a such way that each
GU packet is mapped to at most twice. First we need some auxiliary claims.

Observation 1. Consider an extra packet p, and let ts be the scheduling cycle in which
p was transferred by OPT to its output buffer. Then, at the beginning of scheduling cycle
ts+1, p’s position in the output queue of OPT is larger than the length of the corresponding
output queue maintained by GU.

The observation follows from the fact that all extra packets sent by OPT should even-
tually appear in an output queue of OPT when the corresponding GU queue is empty, and
from the fact that both OPT and GU send packets from output buffers greedily.

Definition 4. We call a packet p scheduled during scheduling cycle ts to OQj of OPT a
potentially extra packet, if LOPT(p, ts+1) > OGU

j (ts+1).

The following claim bounds from above the number of new potentially extra packets
that can be created in OPT during a scheduling cycle.

Claim 1. The number of new potentially extra packets created during scheduling cycle ts ,
that is

N∑
j=1

DOGU,OPT
j (ts+1) −

N∑
j=1

DOGU,OPT
j (ts),

is bounded from above by the size of a maximum matching in the graph G′ = (VNI ,NO
,

EOPT(ts) \ EGU(ts)) plus the size of a maximum constrained matching in the graph
GGU(ts).

Proof. Obviously, the number of packets from G′ scheduled by OPT during scheduling
cycle ts is bounded by the size of a maximum matching in G′. It remains to consider the
packets that OPT schedules from G′′ = (VNI ,NO

,EOPT(ts) ∩ EGU(ts)). Assume that OPT
and GU schedule matchings M in G′′ and MC in GGU(ts), respectively. If |M| � |MC|,
we are done. So suppose that |M| > |MC|. It must be the case that M contains at least
|M| − |MC| packets destined to the outputs which have full buffers in GU. Otherwise,
there exists another constrained matching MC′ obtained from M by removing the packets
destined to the full outputs in GU such that |MC′| > |MC|, which contradicts to maximality
of MC. Obviously, OPT cannot produce new potentially extra packets in the output buffers
that are currently full in GU. Therefore, the number of new potentially extra packets from
G′′ is bounded by the size of a maximum constrained matching in GGU(ts). �

The next claim takes care of the situation in which the difference between the length of
an input queue of OPT and the corresponding queue of GU grows.
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Claim 2. For a given scheduling cycle ts , the increase in the difference between the length
of an input queue of OPT and the length of the corresponding input queue of GU, that is
DLGU

i,j ,OPT(ts+1) − DLGU,OPT
i,j (ts), is bounded by XGU

i,j (ts) − XOPT
i,j (ts).

Proof. If s �= S (i.e., the considered cycle is not the last cycle of a time step) then be-
tween scheduling cycle ts and scheduling cycle ts+1 there is no arrival phase and trivially
DLGU,OPT

i,j (ts+1) − DLGU,OPT
i,j (ts) is a binary indicator of whether GU scheduled some

packet at this scheduling cycle while OPT did not schedule any. Otherwise, if s = S, then
between scheduling cycle ts and scheduling cycle ts+1 a packet p may arrive to VOQi,j .
Note that GU admits p unless its buffer is full while OPT may or may not accept it. But
this may only decrease the difference.

The following mapping routine guarantees that all potentially extra packets are mapped
to packets sent by GU (this will be proved in what follows). The routine is executed at
each scheduling cycle, and adds some mappings according to the actions of GU and OPT .
Note that once a packet of OPT is mapped to some packet of GU, this mapping is never
changed.

Mapping Routine (scheduling cycle ts ).

Step 1. For each output j , and each input i, if LOPT
i,j (ts+1) > LGU

i,j (ts+1), DLGU,OPT
i,j (ts+1) >

DLGU,OPT
i,j (ts) then map the last packet that is still unmapped in VOQi,j of OPT to the

packet scheduled by GU from input i to output j during scheduling cycle ts .

Step 2. For each unmapped packet p scheduled by OPT to output j during schedul-
ing cycle ts such that LOPT(p, ts+1) > OGU

j (ts+1), map p to a packet scheduled during
scheduling cycle ts by GU that is mapped to at most once.

Note that each GU packet is mapped to at most twice (once at Step 1 and once at Step 2).

Lemma 1. The mapping routine is feasible. Each packet of OPT that becomes a potentially
extra packet is immediately mapped.

Proof. The proof is by induction on the scheduling cycle. The basis is trivial. Suppose that
the mapping is feasible till scheduling cycle ts−1 and let us show that it is also feasible
at scheduling cycle ts . By Claim 2, there exists a sufficient number of packets scheduled
by GU to be mapped to at Step 1 and each such packet can therefore be used exactly
once. Each such packet has not been previously used by the mapping routine since it was
not yet scheduled. We now consider Step 2. According to Claim 1, the number of new
potentially extra packets is bounded by the size of a maximum matching in the graph
G′ = (VNI ,NO

,EOPT(ts) \ EGU(ts)) plus the size of a maximum constrained matching
in the graph GGU(ts). However, all packets from G′ are already mapped by Step 1 at
scheduling cycle ts or beforehand. Thus, the number of new potentially extra packets that
are still to be mapped is bounded by the number of packets scheduled by GU during ts .
Hence, Step 2 is feasible as well, which proves the lemma. �
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Now we are ready to show that GU has the competitive ratio of 3.

Theorem 1. The competitive ratio of GU is at most 3 for any speedup.

Proof. Clearly, the number of packets sent by OPT is bounded by the number of packets
sent by GU plus the number of extra packets. By Observation 1, every extra packet must
first be a potentially extra packet. Lemma 1 implies that all potentially extra packets are
mapped by the mapping routine to GU packets and no GU packet is mapped to more than
twice. Therefore, V OPT(σ ) � 3V GU(σ ), for any input sequence σ . �

We also show that GU achieves the competitive ratio of 2 for the special case of S = 1.

Theorem 2. The competitive ratio of GU is at most 2 for a speedup S = 1.

Proof. We use a variant of the mapping routine, in which in Step 2 every unmapped packet
scheduled by OPT is mapped (i.e., we drop the condition that only packets satisfying
LOPT(p, ts+1) > OGU

j (ts+1) are mapped).
First, observe that the mapping routine remains feasible (for S = 1). To see that note

that any OPT packet that has to be mapped in Step 2 (i.e., it is not already mapped), is in a
buffer VOQi,j such that LGU

i,j (ts) > 0. For S = 1, GU schedules a maximum size matching
on its non-empty buffers (no back pressure is used since in fact there are no output buffers).
Therefore, the number of packets that have to be mapped in Step 2 at scheduling cycle ts
is at most the number of packets scheduled by GU during ts .

Furthermore, observe that the modified mapping routine maps every packet scheduled
by OPT out of the input buffers. The theorem follows since the mapping routine maps at
most two OPT packets to every packet scheduled by GU, and GU transmits out of the
switch every packet scheduled out of the input buffers. �

Most of the scheduling policies in commercial switches are based on maximal matching,
which can be easily computed in a distributed fashion, as opposed to maximum matching.
If GU uses maximal matching rather than maximum matching, its competitive ratio is in-
creased by 1, compared to the original policy. To see that we can use a mapping routine
in which in Step 2 every GU packet is used for the mapping of at most two OPT pack-
ets (rather than just one OPT packet as in the original routine). Observe that the modified
mapping routine remains feasible. The feasibility of Step 1 does not depend on the partic-
ular scheduling policy used. The feasibility of Step 2 follows from the arguments for the
original GU policy and from the fact that the size of a maximal matching is at least half
the size of a maximum matching. We therefore have that GU with maximal matching is
4-competitive in the general case and 3-competitive in the case of S = 1.

4.2. Variable value packets

In this section we consider the case of packets with variable values. We study two poli-
cies that may use an arbitrary local buffer management policy P for the input buffers (it
may be preemptive or non-preemptive). Let the competitive ratio of P for a single buffer
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be CP and let M ′ = min(k,2�logα�). We show that the GVFP policy is (2 · S · CP )-
competitive and that the PVFP policy is (4 · M ′ · CP )-competitive. This implies that
GVFGRD and PVFGRD are 4S-competitive and 8M ′-competitive, respectively, since GRD
is 2-competitive [15].

4.2.1. Simulation technique
We extend the technique of [5]. Specifically, we show that by combining a schedule of

a CR-competitive switch policy (which does not drop packets at the outputs) that runs in
the relaxed non-FIFO model, together with any CP -competitive local (input) buffer man-
agement policy, we obtain a new switch policy that achieves a competitive ratio of CR ·CP

in the FIFO model. First we need some lemmas. The following lemma shows that for any
given finite input sequence, the value of an optimal solution in the FIFO model equals that
of an optimal solution in the relaxed non-FIFO model.

Lemma 2. For any finite input sequence σ , the value of OPT in the non-FIFO model equals
the value of OPT in the FIFO model.

Proof. We argue that any feasible schedule in the non-FIFO model can be transformed
to a schedule in the FIFO model, in which the same set of packets is sent. First, without
loss of generality, assume that OPT in the non-FIFO model never preempts packets at the
inputs or drops packets at the outputs. If this is not the case, one can admit to the input
buffers only packets that are eventually sent from the output buffers without affecting the
value of the solution. Second, we transform the schedule by swapping the order in which
packets are sent so that FIFO order is maintained. Such a transformation is always feasible
since no packet is scheduled before its arrival time. The value of the resulting solution does
not change since the number of packets in any buffer at any given time does not change.
Hence, no packet is dropped at the buffers or the output buffers. The lemma follows. �

Clearly, a similar claim holds when we consider a single buffer rather than a switch with
input and output buffers.

In the next lemma we consider the total value of packets scheduled out of input buffers
by a switch policy operating in the FIFO model, which uses an arbitrary buffer manage-
ment policy P , and whose schedule is defined by another (simulated) switch policy which
operates in the non-FIFO model. We compare the total value of packets scheduled out of
input buffers by this policy to the total value of packets scheduled out of input buffers by
the optimal policy (i.e., we consider the competitive ratio of this policy, with respect to
the measure of packets scheduled out of the input buffers, rather than packets sent out of
the switch). The ratio we show is a function of the competitive ratio of the simulated pol-
icy, and the competitive ratio of its input buffer management policy for a single buffer, P .
A similar claim is implicitly proved in [5]. For an input sequence σ and a schedule H , we
denote the total value of packets scheduled out of input buffers by a policy A in model M

(FIFO or non-FIFO) by V A
M(σ,H). We also denote the total value of packets scheduled out

of VOQi,j by A in model M by V A(VOQi,j , σ,H).
M
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Lemma 3. Fix an input sequence σ . Consider a switch policy AR , running in the non-
FIFO model, in which every packet scheduled out of an input buffer is eventually sent out
of the switch. Consider now a switch policy A running in the FIFO model, that uses the
schedule H of AR on σ , and a buffer management policy P for the input buffers. Then,
the total value of packets scheduled out of the input buffers by A is at least V A

FIFO(σ,H) �
V OPT

FIFO(σ )/(CR · CP ), where CR is the competitive ratio of AR , and CP is the competitive
ratio of P .

Proof. Fix a schedule H of AR on input sequence σ . In a nutshell, H defines the time
steps at which the various input queues are allowed to transmit. Since P is CP -competitive
in the FIFO model,

V A
FIFO(VOQi,j , σ,H) � V OPT

FIFO(VOQi,j , σ,H)/CP .

By arguments similar to those in the proof of Lemma 2, applied to a single buffer, we get:

V
AR

non-FIFO(VOQi,j , σ,H) � V OPT
non-FIFO(VOQi,j , σ,H) = V OPT

FIFO(VOQi,j , σ,H).

Hence we obtain:

V A
FIFO(VOQi,j , σ,H) � V

AR

non-FIFO(VOQi,j , σ,H)/CP .

Notice that the value of A equals the total value sent out of the input buffers since no
packet is dropped at the outputs. Therefore, we obtain:

V A
FIFO(σ,H) =

N∑
i=1

N∑
j=1

V A
FIFO(VOQi,j , σ,H)

�
N∑

i=1

N∑
j=1

V
AR

non-FIFO(VOQi,j , σ,H)/CP

= V
AR

non-FIFO(σ )/CP � V OPT
non-FIFO(σ )/(CR · CP ) = V OPT

FIFO(σ )/(CR · CP ),

where we use the fact that AR is CR-competitive and the last equality follows by Lem-
ma 2. �
4.2.2. Analysis of the GVFP policy

First we demonstrate that GVR is 2-competitive for S = 1 in the non-FIFO model. We
emphasize that the GVR policy is used only as a simulation tool to determine the scheduling
decisions of the GVFP policy.

We follow the line of the proof in [5]. Let us denote by Ri,j,k(τ ) the packet with the
kth largest value in VOQi,j just before an arbitrary time τ (τ may be a time step t , or a
phase tA or tT or a scheduling cycle ts ). For k > Li,j (τ ), let Ri,j,k(τ ) = 0. We define the
potential of the system just before time τ to be the sum of all positive pairwise differences
between the sorted values in all input queues of OPT and GVR just before time τ . That is,

Φ(τ) =
N∑ N∑BIi,j∑

max
((

ROPT
i,j,k (τ ) − RGV R

i,j,k (τ )
)
,0

)
.

i=1 j=1 k=1
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Notice that Φ(τ) � 0 for any time τ .
The next claim follows immediately from the proof of Claim 1 in [5].

Claim 3. [5] Under the GRD buffer management policy, the potential does not increase
during the arrival phase.

Let us denote by WA(σ, t) the total value of packets that a switch policy A schedules out
of the input buffers by the end of time step t on input sequence σ . We give the following
lemma.

Lemma 4. For any speedup S, for any sequence of packets σ and for any time step t ,
WOPT(σ, t) + Φ(t + 1) � 2WGVR(σ, t).

Proof. The proof is by induction on the time step. We assume that initially all buffers
of both GVR and OPT are empty. Therefore we have that Φ(1) = 0, and that the lemma
trivially holds at time t = 0. Now assume that the lemma holds for time step t and let us
show that it also holds for time step t + 1.

We consider the transmission phase, the packet arrival phase and the scheduling phase
separately. For a given phase, let us denote by �WGVR the total value of packets scheduled
by GVR during this phase, by �WOPT the total value of packets scheduled by OPT during
this phase and by �Φ the increase in Φ during this phase.

Transmission phase. Notice that for the transmission phase we have �WGVR =
�WOPT = 0, and that Φ does not change. We therefore have for the transmission phase
�WOPT + �Φ � �WGVR.

Arrival phase. Next we deal with the packet arrival phase. Clearly, �WGVR =
�WOPT = 0. By Claim 3, �Φ � 0. Therefore, we have that �WOPT +�Φ � �WGVR for
the arrival phase.

Scheduling phase. Last, we concentrate on the scheduling phase. We consider the schedul-
ing cycles of the phase in sequence. For a given cycle s, denote by �WGVR

s the total value
of packets scheduled by GVR during the cycle, by �WOPT

s the total value of packets sched-
uled by OPT during the cycle and by �Φs the increase in Φ during the cycle. The increase
in the potential during the scheduling cycle of GVR is as follows.

�1Φ =
N∑

i=1

N∑
j=1

BIi,j∑
k=1

XGVR
i,j (ts)max

((
ROPT

i,j,k (ts) − RGVR
i,j,k+1(ts)

)
,0

)

−
N∑

i=1

N∑
j=1

BIi,j∑
k=1

XGVR
i,j (ts)max

((
ROPT

i,j,k (ts) − RGVR
i,j,k (ts)

)
,0

)

�
N∑

i=1

N∑
j=1

BIi,j∑
k=1

XGVR
i,j (ts)

× (
max

((
ROPT(ts) − RGVR(ts)

)
,0

) + (
RGVR(ts) − RGVR (ts)

))

i,j,k i,j,k i,j,k i,j,k+1
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−
N∑

i=1

N∑
j=1

BIi,j∑
k=1

XGVR
i,j (ts)max

((
ROPT

i,j,k (ts) − RGVR
i,j,k (ts)

)
,0

)

=
N∑

i=1

N∑
j=1

BIi,j∑
k=1

XGVR
i,j (ts)

(
RGVR

i,j,k (ts) − RGVR
i,j,k+1(ts)

)

=
N∑

i=1

N∑
j=1

BIi,j∑
k=1

XGVR
i,j Ri,j,1(ts) = �WGVR

s .

Now we consider the scheduling cycle of OPT . Suppose that OPT schedules the ri,j th
largest packet from VOQi,j , if any. Otherwise (if OPT does not schedule a packet from
VOQi,j ), let ri,j = BIi,j + 1. We have that the increase in the potential during the schedul-
ing cycle of OPT is as follows.

�2Φ =
N∑

i=1

N∑
j=1

BIi,j∑
k=ri,j

XOPT
i,j (ts)max

((
ROPT

i,j,k+1(ts) − RGVR
i,j,k (ts)

)
,0

)

−
N∑

i=1

N∑
j=1

BIi,j∑
k=ri,j

XOPT
i,j (ts)max

((
ROPT

i,j,k (ts) − RGVR
i,j,k (ts)

)
,0

)

�
N∑

i=1

N∑
j=1

BIi,j∑
k=ri,j +1

XOPT
i,j (ts)max

((
ROPT

i,j,k (ts) − RGVR
i,j,k (ts)

)
,0

)

−
(

N∑
i=1

N∑
j=1

BIi,j∑
k=ri,j +1

XOPT
i,j (ts)max

((
ROPT

i,j,k (ts) − RGVR
i,j,k (ts)

)
,0

)

+
N∑

i=1

N∑
j=1

XOPT
i,j (ts)max

((
ROPT

i,j,ri,j
(ts) − RGVR

i,j,ri,j
(ts)

)
,0

))

�
N∑

i=1

N∑
j=1

XOPT
i,j (ts)

(
RGVR

i,j,ri,j
(ts) − ROPT

i,j,ri,j
(ts)

)

�
N∑

i=1

N∑
j=1

XGVR
i,j (ts)R

GVR
i,j,1(ts) − �WOPT

s

= �WGVR
s − �WOPT

s .

The last inequality follows from the fact that GVR computes a maximum weight match-
ing that in particular has weight greater than or equal to the weight of the matching
scheduled by OPT with respect to the GVR packets. Putting it altogether, we obtain that
for scheduling cycle s

�WOPT
s + �Φs = �WOPT + �1Φ + �2Φ
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� �WOPT
s + �WGVR

s + �WGVR
s − �WOPT

s

= 2�WGVR
s .

Summing over all the scheduling cycles we have for the scheduling phase that

�WOPT + �Φ � 2�WGVR.

The lemma now follows from the inductive hypothesis and the three inequalities for the
three phases. �

Using the above lemma, we can prove the following theorem.

Theorem 3. The competitive ratio of GVR is at most 2 for a speedup S = 1.

Proof. Suppose that OPT schedules the last packet in σ out of an input buffer at time
step t∗. Since Φ is non-negative at any time we have that by Lemma 4, WOPT(σ, t∗) �
2WGVR(σ, t∗). Note that for a speedup S = 1, any packet scheduled by GVR to an output
buffer at time step t is transmitted at time step t + 1. Therefore, all packets scheduled by
GVR to output buffers are also transmitted out of the switch. The theorem follows since
OPT transmits out of the switch at most the total value of packets scheduled out of the
input buffers. �

Now we can derive the competitive ratio of the GVFP policy. For the case of a speedup
S = 1, for which GVR does not drop packets at the outputs, the competitive ratio follows
directly from Lemma 3 and Theorem 3.

Theorem 4. The competitive ratio of the GVFP policy is at most 2CP for a speedup S = 1.

Next we consider the case of S > 1.

Theorem 5. The competitive ratio of the GVFP policy is at most 2SCP for any speedup.

Proof. Intuitively, the theorem follows since for a speedup of S > 1, GVFP loses at the
output buffers at most a factor of S with respect to the value of packets scheduled out of
the input buffers.

To give a formal proof of the theorem, we proceed as follows. We first consider the
GVR policy in a setting where the output buffers are not limited in space. That is, any
packet scheduled out of the input buffers is added to an output buffer and is eventually sent
out of the switch. There is no shortage of buffer space at the outputs. In this setting, we
have that the GVR policy is 2-competitive for any speedup S by arguments similar to those
used in the proof of Theorem 3. Considering still this setting we therefore have that GVFP

is 2CP competitive for any speedup using Lemma 3 (as for the case of S = 1).
We now compare the total value of packets sent by GVFP in the above setting to the total

value of packets sent by GVFP in the (“regular”) setting of output buffers of limited space.
We argue that we loose at most a factor of S with respect to the setting of output buffers
of unlimited space. To see this we note that each output buffer is managed separately by
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GRD. Denote by x the total value of packets accepted by GRD into an output buffer and
by y the total value of packets preempted by GRD from the output buffer. Then, the total
value of packets sent out of an output buffer equals x − y. Now observe that for each time
step one packet is first sent out of the output buffer (unless it is empty) and then at most
S packets arrive. Therefore, before the S packets arrive there is at least one free slot in the
buffer. It follows that for each time step, the increase in x − y is at least an 1/S fraction of
the total value of the packets that arrive to the output buffer. This concludes the proof of
the theorem. �
4.2.3. Analysis of the PVFP policy

Next we demonstrate that PVFP achieves a competitive ratio of 4M ′CP for any speedup
(recall that M ′ = min(k,2�logα�)). First we demonstrate that the simulated PVR policy is
4M ′-competitive. For a given input sequence σ , and any class l, we will compare the
total value of packets of the lth class sent by PVR, denoted V PVR

l (σ ), to the total value
of packets of the same class sent by OPT , denoted V OPT

l (σ ), and show that V PVR
l (σ ) �

V OPT
l (σ )/(4M ′).

In what follows we assume a given input sequence σ and restrict our attention to packets
from the lth class. Recall that PVR operates in the non-FIFO model and divides the buffer
space and the bandwidth equally between the different classes. Roughly speaking, each
class is allocated 1/M fraction of the input buffer space, switch fabric bandwidth, output
buffer space and the output bandwidth. We will map each packet from the lth class sent by
OPT to a packet sent by PVR, in such a way that each PVR packet is mapped to at most
4M times.

Let VOQPVR
i,j (l) and OQPVR

j (l) be the space of VOQi,j and OQj , respectively, allocated

by PVR to packets from the lth class. Let us denote by LPVR
i,j (ts , l) and OPVR

j (ts , l) the

number of packets in VOQPVR
i,j (l) and OQPVR

j (l) at the beginning of scheduling cycle ts .
The following mapping routine guarantees that all packets from the lth class sent by

OPT are mapped to packets from the lth class sent by PVR (this will be proved in what
follows). The routine is executed at each scheduling cycle at which PVR schedules packets
from the lth class, and adds or modifies some mappings according to the actions of PVR
and OPT .

Mapping Routine (scheduling cycle ts at which PVR scheduled the lth class). Let t ′q
be the previous scheduling cycle at which PVR scheduled the lth class.

Step 1. Consider each input queue VOQi,j separately. If during (t ′q, ts] PVR accepted at

least one packet of the lth class into VOQPVR
i,j (l), then add a mapping from all the packets

of the lth class accepted by OPT into VOQi,j during (t ′q, ts] to that packet.
If during (t ′q, ts] both PVR and OPT did not accept any packet of the lth class into

VOQi,j nothing has to be done.
If during (t ′q, ts] PVR did not accept any packet into VOQPVR

i,j (l) while OPT accepted at

least one packet of the lth class into VOQi,j , VOQPVR
i,j (l) must be full just before ts . In this

case, cancel all mappings involving packets of PVR that are in VOQPVR
i,j (l) just before ts

(if any). Then, add a mapping from all the OPT packets of the lth class that are in VOQi,j
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just before ts , to the packets of PVR in VOQPVR
i,j (l) just before ts , in an even way. (We will

later show that each packet of PVR is mapped to at most M times in any of the cases.)

Step 2. Consider all packets from the lth class scheduled during (t ′q, ts] by OPT from
an input queue VOQi,j such that LPVR

i,j (ts , l) > 0 to an output queue OQj such that

OPVR
j (ts , l) < BOj /M . First, cancel all mappings involving these packets (if any). Then,

add a mapping from all these packets to packets from the lth class scheduled by PVR dur-
ing scheduling cycle ts in an even way. (We will later show that each PVR packet is mapped
to at most M times.)

Step 3. Consider all packets from the lth class scheduled during (t ′q, ts] by OPT to output

queues OQj such that OQPVR
j (l) is full just before ts , i.e., OPVR

j (ts , l) = BOj /M . First,
cancel all the mappings involving these packets (if any). Then, map each such packet p

scheduled by OPT to OQj during scheduling cycle t ′′r (t ′q < t ′′r � ts ) to the packet in posi-

tion �LOPT(p, t ′′r )/M	 in OQPVR
j (l) just before ts . (We will later show that such a packet

must exist, and that any such packet is mapped to at most 2M times in Step 3 during the
execution of the algorithm.)

Consider an OPT packet p of the lth class scheduled from VOQi,j to Oj . The map-
ping routine is built so that p is mapped no later than scheduling cycle ts , where ts is the
first scheduling cycle after p is scheduled by OPT , in which PVR schedules the lth class.
If VOQPVR

i,j (l) is not empty just before ts , then p is mapped by either Step 2 or Step 3
(depending on whether OPVR

j (l) is full or not just before ts ). If VOQPVR
i,j (l) is empty just

before ts , then the mapping of p that is done in Step 1 (possibly already in previous cycles)
is used.

First we demonstrate that all OPT packets are mapped.

Claim 4. Each packet from the lth class sent by OPT is mapped to a PVR packet from the
lth class.

Proof. We show that each OPT packet p of the lth class scheduled from VOQi,j to Oj

receives a mapping which is final (i.e., never changes) no later than ts , where ts is the
first scheduling cycle after p is scheduled by OPT , in which PVR schedules the lth class.
First observe that each packet accepted by OPT to some input queue at time step t ′, is
mapped by Step 1 no later than t ′s , where t ′s is the first scheduling cycle in which PVR
scheduled packets of the lth class in time step t ′ or later. Now, to see that p receives its
final mapping by the claimed time, observe that by the mapping routine, p is never mapped
again after ts . If VOQPVR

i,j (l) is not empty and OPVR
j (l) is not full just before ts , then p is

mapped by Step 2 at ts . If VOQPVR
i,j (l) is not empty and OPVR

j (l) is full just before ts , then

p is mapped at ts by Step 3. If VOQPVR
i,j (l) is empty just before ts , then the mapping of

p created in Step 1 either at ts or beforehand is used (observe that p must be mapped in
Step 1 no later than ts ). �

Next we show that there always exists a PVR packet to map to as required by the map-
ping routine, and that each PVR packet is mapped to at most 4M times.
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Lemma 5. The mapping routine is feasible. Each PVR packet is mapped to at most 4M

times.

Proof. We consider each of the steps of the mapping routine separately.

Step 1. First observe that by the specifications of the step, the required PVR packets always
exist. Next observe that if a PVR packet is mapped to in more than one execution of Step 1
(in two different scheduling cycles) then the previous mappings are first canceled. We now
argue that each PVR packet is mapped to at most M times in a single execution of Step 1.
Note that during (t ′q, ts] at most M packets (of the lth class) can arrive (and be accepted
by OPT) to VOQi,j . Therefore, if in Step 1 a mapping to a new accepted packet of PVR is
created, at most M packets are mapped to it. In case in Step 1 new mappings are created
for all the OPT packets of the lth class in VOQi,j , then observe that LOPT

i,j (ts) � BIi,j and
LPVR

i,j (ts , l) = BIi,j /M .

Step 2. Consider all packets from the lth class scheduled by OPT during (t ′q, ts] from
an input queue VOQi,j such that LPVR

i,j (ts , l) > 0 to an output queue OQj such that

OPVR
j (ts , l) < BOj /M . Since PVR computes a maximum size constrained matching during

ts and in each input queue under consideration there exists a packet (from the lth class)
that is eligible for scheduling, the number of packets from the lth class scheduled by OPT
from these queues during (t ′q, ts] is bounded by M times the number of packets from the
lth class scheduled by PVR during ts . Thus, we can map all such packets scheduled by
OPT to packets scheduled by PVR so that each PVR packet is mapped to at most M times.

Step 3. Consider a packet p scheduled by OPT that arrives at t ′′r , t ′q < t ′′r � ts , to an output
queue OQj of OPT such that OPVR

j (ts , l) = BOj /M . The specified mapping is well defined

because OOPT
j (t ′′r ) � BOj and OPVR

j (ts , l) = BOj /M . Note that for any scheduling cycle

ts in which a mapping is added in Step 3, no packet is sent from OQPVR
j (l) during [t ′q, ts),

because otherwise OQPVR
j (l) would not be full just before scheduling cycle ts . Therefore,

the position of a packet p to which a mapping is added in Step 3 at scheduling cycle ts is
the same position it had in any scheduling cycle in [t ′q, ts) (and in particular such packet

was in OQPVR
j (l) during the whole interval of time).

We now argue that any PVR packet receives at most 2M mappings in Step 3 during the
course of the algorithm, that is we show that at most 2M different packets can be mapped
to any single packet that passes through OQPVR

j (l). Note that for both OPT and PVR no
packet is ever preempted from OQj and a packet is sent out whenever possible (i.e., for
OPT , in each time step when OQOPT

j is not empty, and for PVR, in each time step when

packets of the lth class are to be sent and OQPVR
j (l) is not empty). Using Lemma 2, we

assume without loss of generality that OPT sends packets out of OQj in FIFO order. We
therefore observe that the relative order of packets in OQj (of OPT) never changes and
that the distance between two packets in OQj (of OPT) never changes.

Thus, for a given packet p that passes through OQPVR
j (l) we can identify the first packet

(according to the order defined in OQj of OPT) that is mapped to p. Let this packet be p′.
Denote by t̂a the scheduling cycle in which it arrives to OQj and let q ′ be the position
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in OQj to which it arrives. Let ts , t̂a � ts be the scheduling cycle in which the mapping
between p′ and p is created, and let q be the position of p in OQPVR

j (l) just before ts . By
the specifications of Step 3 we have that �q ′/M	 = q . To show that at most 2M packets
are mapped to p, we demonstrate that any packet other than p′ that is mapped to p must
be at distance at most 2M − 1 from p′ in OQj .

Assume towards a contradiction that a packet p′′ at distance δ � 2M from p′ in OQj

is mapped to p. Let t̂b be the scheduling cycle in which p′′ arrives to OQj , and let q ′′ be
the position of p′′ in OQj after its arrival to OQj . Consider time interval [t̂b, t̂a), and let
x be the number of packets sent out from OQj by OPT in this time interval and y be the
number of packets sent out from OQPVR

j (l) by PVR in this time interval. Since p is present

in OQPVR
j (l) at both t̂b and t̂a , we know that OQPVR

j (l) is never empty during [t̂b, t̂a), and

therefore we have that x � M(y + 1), because (unless OQPVR
j (l) is empty) OPT cannot

send M packets without PVR sending at least one packet in the same time interval. We
now have that q ′′ = q ′ −x + δ and therefore �(q ′ −x + δ)/M	 = q −y. On the other hand,⌊(

q ′ − x + δ
)
/M

⌋
�

⌊(
q ′ − M(y + 1) + δ

)
/M

⌋
�

⌊(
q ′ − My + M

)
/M

⌋
= ⌊

q ′/M
⌋ − y + 1 > q − y .

This is a contradiction and hence p′′ cannot be mapped to p.
By the above we can conclude that at any time any PVR packet has at most 4M map-

pings: at most M mappings created at Step 1, at most M mappings created at Step 2, and
at most 2M mappings created at Step 3. �

The next lemma shows that PVR loses at most a factor of 4M ′ with respect to the optimal
throughput of the lth class.

Lemma 6. For any input sequence σ and any class l, V PVR
l (σ ) � V OPT

l (σ )/(4M ′) for any
speedup.

Proof. According to Claim 4 and Lemma 5, all packets from the lth class sent by OPT are
mapped by the mapping routine, which maps to any single PVR packet of the lth class at
most 4M packets. The lemma follows since the values of packets in the same class differ
by at most a factor of 2 if we have M = �logα� classes, and are identical if we have M = k

classes. �
The following theorem shows that the PVR policy is (4M ′)-competitive.

Theorem 6. The competitive ratio of PVR in the non-FIFO model is at most 4M ′ for any
speedup.

Proof. By Lemma 6,

V PVR(σ ) =
M∑

V PVR
l (σ ) �

M∑
V OPT

l (σ )/
(
4M ′) = V OPT(σ )/

(
4M ′). �
l=1 l=1
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Observe that no packets are dropped by PVR at the outputs (because back pressure is
used). The following claim states that output buffers never overflow under PVFP .

Claim 5. No packet is dropped at the outputs under PVFP .

The claim holds since at any time the total number of packets in an output buffer of
PVFP is less than or equal to the number of packets in the corresponding output buffer of
PVR, which does not drop packets at the outputs.

Finally, we derive the competitive ratio of the PVFP policy using Lemma 3, Theorem 6
and Claim 5.

Theorem 7. The competitive ratio of the PV RP policy is at most 4 · M ′ · CP for any
speedup.

5. Comparing to OQ switches

In this section we briefly consider the question of comparing the throughput of a CIOQ
switch to that of an OQ switch with FIFO buffers that has a “similar” amount of mem-
ory. We show a memory allocation for the CIOQ switch, and a switch policy which is
4-competitive with respect to the optimal throughput achievable by the OQ switch.

We also formulate a closely related question of how to divide the memory available to a
CIOQ switch between the input ports and the output ports. That is, given the total amount
of memory and the speedup of the switch, how much memory should be placed at the
inputs and how much at the outputs. We assume here, as in [9], that each input port has
a single buffer (VOQ is not implemented) and that there is no FIFO constraint imposed
on the input buffers (i.e., at any time any packet can be extracted from an input buffer).
Suppose that we have a total of M units of memory, each unit capable of storing a single
packet. Obviously, for S = 1 all M units of memory should be placed at the inputs and for
S = N all M units should be placed at the outputs. However, it is unclear what should be
done for 1 < S < N . Xie and Lea [28], study this question using simulations.

In the following lemma we consider a CIOQ switch with a speedup S = 2, and the Crit-
ical Cell First (CCF) scheduling policy for CIOQ switches [9]. This scheduling policy uses
a simulation of a “shadow” OQ switch, and assuming that there are no memory space con-
straints, allows the CIOQ switch to completely mimic the traffic sent out of the simulated
OQ switch [9]. We show a memory allocation for the CIOQ switch, and a feasible memory
partition between the input and the output ports, which is sufficient for this setting. That is,
the set of packets transmitted from the CIOQ switch will be identical to the set of packets
transmitted from the OQ switch.

Lemma 7. If we want to simulate a FIFO OQ switch that has a total memory of MOQ slots
(divided equally between the output ports) using a CIOQ switch that has a speedup S = 2
and uses for scheduling CCF [9], then the memory requirement of the CIOQ switch is at
most 3MOQ. A feasible memory partition is to allocate 2MOQ slots to the inputs and MOQ

slots to the outputs (divided equally between the input and the output ports).
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Proof. Denote by BOQ the size of a buffer in the OQ switch. We denote the size of an input
buffer and an output buffer in the CIOQ switch by BICIOQ and BOCIOQ, respectively. We
install in the CIOQ switch buffers of size BICIOQ = 2BOQ and BOCIOQ = BOQ. Now we
show that this allocation is sufficient. Notice that the delay of a packet in the OQ switch is
at most BOQ. Since CCF completely mimics the OQ switch [9], the delay of any packet in
the CIOQ switch is also bounded by BOQ. Therefore, any input queue would never contain
more than 2BOQ packets (recall that S = 2) and any output queue would never contain
more than BOQ packets. Otherwise, the delay constraint would be violated. �

We now assume that we have an OQ switch and a CIOQ switch with an arbitrary
speedup, and with memory allocation and partition as in the above lemma. We define a
switch policy for the CIOQ switch and compare the throughout achieved by this policy to
the optimal throughput achievable on the OQ switch. This policy is defined using the CCF
scheduling policy, and an arbitrary buffer management policy P .

Simulate OQ Variable Switch Policy (SOVP ).
Input Buffer Management: Simulate a FIFO OQ switch with the buffer management policy
P and accept/drop packets that P accepts/drops in the simulated OQ switch.
Output Buffer Management: Apply the TD policy.
Scheduling: Every time step, apply the Critical Cell First (CCF) algorithm [9] and compute
two matchings, as if S = 2. (CCF makes its decisions based on a simulation of the OQ
switch on an input sequence that contains the packets accepted by P .) For S � 2, schedule
both of the matchings. For S < 2, select for scheduling the matching with the maximum
weight and drop the packets of the second matching.

We show an upper bound on the competitive ratio (with respect to the optimal through-
out in the OQ switch) of SOVP , as a function of CP .

Theorem 8. Consider a FIFO OQ switch and a CIOQ switch with memory allocation as
in Lemma 7. For any speedup, the competitive ratio of SOVP is at most 2CP with respect
to the optimal throughput achievable in the OQ switch.

Proof. It is shown in [9] that if there are no memory constraints, a CIOQ switch with
speedup S = 2 using CCF can completely mimic the OQ switch. First assume that S � 2.
If the switch is provided with memory allocation and partition as in Lemma 7, then there
is never a shortage of memory space, and therefore the packets sent from the CIOQ switch
are identical to those sent from the OQ switch that uses P . It follows that the competitive
ratio of SOVP (with respect to the optimal throughput in the OQ switch) is at most CP . For
S < 2 we lose at most a factor of 2 since during each time step only the heavier matching
is scheduled and the other is dropped. �

If we use as the buffer management policy (P ) the greedy policy GRD which is
2-competitive, we have that SOVGRD is 4-competitive with respect to the optimal through-
out in the OQ switch.
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6. Concluding remarks

A major problem addressed today in networking research is the need for fast switch
architectures supporting guaranteed QoS. In this paper we consider the CIOQ architec-
ture that gained popularity as a platform for high performance switches. We design robust
switch policies that maximize the switch throughput for any traffic pattern and use com-
petitive analysis to analyze their performance.

An intriguing open problem is whether one can obtain a constant-competitive switch
policy for an arbitrary speedup in the case of arbitrary packet values or whether a lower
bound depending on the speedup can be shown. Another interesting direction is to further
study how the available memory should be partitioned between the input ports and the
output ports for a given speedup to achieve the best performance, and how the performance
of a switch is affected by such a division.
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