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ABSTRACT
The online buffer management problem formulates the prob-
lem of queuing policies of network switches supporting QoS
(Quality of Service) guarantee. We focus on multi-queue
switches in QoS networks proposed by Azar et al. To achieve
good upper bounds, they introduced so-called “the relaxed
model”. Also, they showed that if the competitive ratio of
the single-queue model is at most c, and if the competitive
ratio of the relaxed model is at most c′, then the competitive
ratio of the multi-queue switch model is cc′. They proved
that c′ ≤ 2, and obtained upper bounds on the competitive
ratios for several multi-queue switch models.

In this paper, we propose an online algorithm called DS
(Dual Scheduling) for the competitive ratio of the relaxed
model and obtain some better competitive ratios of the 2-
value multi-queue switch model, where the value of packets
is restricted to 1 and α(≥ 1). DS uses as subroutine any on-
line algorithms A for the non-preemptive unit-value switch
model, which has also been extensively studied. We prove
that if the competitive ratio of A is at most c, then the

competitive ratio of DS is at most αc(2−c)+c2−2c+2
α(2−c)+c−1

, which

is strictly better than 2.
The followings are a couple of examples of the improve-

ment on the competitive ratios of the 2-value multi-queue
switch models using our result: (i) We have improved the
competitive ratio of deterministic algorithms for the non-
preemptive 2-value multi-queue switch model from 4 to 3.177
for large enough B, where B is the number of packets each
queue can simultaneously store. (ii) We have proved that
the competitive ratio of randomized algorithms for the non-
preemptive 2-value multi-queue switch model is at most 17

2
−√

30 � 3.023 for large enough B.
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1. INTRODUCTION
A great amount of work has been done in order to guaran-

tee Quality of Service (QoS) on the Internet. One possible
way of supporting QoS is differentiated services (DiffServ),
where a traffic descriptor assigns a value to each packet ac-
cording to the importance of the packet. QoS switches then
try to decide acceptance/rejection and/or the order of trans-
mission of packets using priority values. The goal of the
buffer management algorithm is to maximize the total value
of transmitted packets.

Recently, this kind of problem is modeled as online prob-
lems, and a great amount of work has been done. There
have been proposed a lot of models, and the most basic one
is the following [1]: A switch has a buffer of bounded size B.
An input is a sequence of events. Each event is an arrival
event or a send event. At an arrival event, one packet arrives
at an input port. Each packet has the priority value and the
size (the size is always one in this simplest case). A switch
can store packets provided that the total size of stored pack-
ets does not exceed B, namely, a switch can store up to B
packets simultaneously. At an arrival event, if the buffer is
full, the new packet is rejected. If there is a room for the
new packet, an online policy determines, without knowledge
of the future, to accept it or not. At each send event, the
packet at the head of the queue is transmitted. The goal of
the problem is to maximize the sum of the values of trans-
mitted packets. A goodness of an online policy is evaluated
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by the competitive analysis [10, 26]. If, for any input σ,
an online policy A obtains value at least 1/c of the optimal
offline policy for σ, then we say that A is c-competitive.

Up to the present, several models have been considered.
Among them, Azar et al. have introduced the multi-queue
switches model [7]. In this model, a switch consists of m
input ports and one output port, and each packet has a
destination port. Each port has a buffer (FIFO queue),
which can simultaneously store up to B packets. An in-
put is a sequence of events. Each event is an arrival event
or a scheduling event (which is similar to the send event de-
scribed above). When a packet arrives at an arrival event,
an online policy determines to accept it (if the buffer has
room for the new packet), reject it, or preempt (namely,
drop packets already in the buffer to make space) and ac-
cept the new packet. (We consider both models in which
preemption is allowed and not.) At a scheduling event, an
online policy selects one nonempty buffer and transmits the
first packet of the queue through the output port.

Previous Results. Several results on the competitiveness
of the multi-queue switch model have been presented [2, 6,
7, 8, 13, 14, 25]. Table 1 summarizes the current best upper
and lower bound results for several models. In the multi-
value multi-queue switch model, α(≥ 1) is the ratio between
the largest and the smallest values of packets. Among them,
let us briefly review the technique in [7], which we improve
in this paper.

In [7], the authors proposed a technique to convert an
online algorithm for the single queue model into that of the
multi-queue switch model, so that the competitive ratio of
the latter is at most twice that of the former. More formally,
they defined the relaxed model of the multi-queue switch
model (which will be formally defined in Sec. 2.2). They
showed that if (i) the competitive ratio of the single queue
model is at most c, and (ii) the competitive ratio of the
preemptive relaxed model is at most c′, then the competitive
ratio of the corresponding multi-queue switch model is at
most cc′. They proved that the competitive ratio of a greedy
algorithm for the relaxed model is at most 2, and combining
this with the results for the single-queue models (Table 2),
they obtained upper bounds described in Table 1.

Our Results. In this paper, we present a new interest-
ing technique to construct some algorithms for the 2-value
multi-queue switch model, where the value of packets is re-
stricted to 1 and α(≥ 1), using algorithms for the unit-value
multi-queue switch model. As a result, we can show com-
petitive ratios for the multi-value multi-queue switch model.
In particular, we propose an algorithm DS(A1) for the pre-
emptive relaxed model, where A1 is an online algorithm for
the unit-value multi-queue switch model that are used as
subroutines. We prove that if the competitive ratio of A1

is at most c, then the competitive ratio of DS(A1) is at

most αc(2−c)+c2−2c+2
α(2−c)+c−1

. Using this result, we improve upper

bounds on the competitive ratios of the 2-value multi-queue
switch model, as summarized in Table 1 (Details are in-
cluded in Sec. 5).

Note that Azar et al. [7] showed that improving com-
petitive ratios for the single-queue models implies improv-
ing competitive ratios for the multi-queue switch models.
Our results in this paper give additional potential: Improv-

ing competitive ratios for the unit-value multi-queue switch
models also implies improving competitive ratios for the 2-
value multi-queue switch models.

Related Results. For the unit-value multi-queue model,
a lot of works have been done. Azar et al. [7] gave a lower
bound 1.366 − Θ(1/m) of deterministic algorithms for any
B, and an upper bound e

e−1
(� 1.581) of a randomized al-

gorithm. Albers et al. [2] showed that no greedy algorithm

can be better than 2−1/B−Θ(m−1/(2B−2))-competitive for
any B and large enough m. They also gave a 17/9(� 1.89)-
competitive deterministic algorithm for B ≥ 2, and it is
optimal in the case B = 2. Furthermore, a lower bound

e
e−1

(� 1.581) of online deterministic algorithms for any B
and large enough m, and a lower bound 1.465 of online ran-
domized algorithms for any B and large enough m were
presented. Azar et al. [6] showed a e

e−1
(� 1.58)-competitive

deterministic algorithm for B > log m. Also, Schmidt [25]
presented a 3/2-competitive randomized algorithm.

As for the single-queue models, the current upper and
lower bounds on competitive ratios are summarized in Ta-
ble 2.

The online buffer management for some switches such as
shared-memory switches [12, 16, 22], CIOQ switches [18, 9,
21], and crossbar switches [19, 20] are extensively studied.

2. PRELIMINARIES
In this section, we formally define the problem studied in

this paper, and the relaxed model introduced in [7].

2.1 Online Buffer Management Problem
for Multi-Queue Switches

A multi-queue switch has m input ports (FIFO queues)
each of which is equipped with a buffer whose size is B. The
size of a packet is one, and hence each port can store up to
B packets simultaneously. Each packet has its value cor-
responding to the priority. In the unit-value switch model,
the value of any packet is identical, say one. In the 2-value
switch model, which is studied in this paper, each packet
takes one of two values, say, 1 and α(≥ 1). We call a packet
with value 1 (α, respectively) a 1-packet (an α-packet, re-
spectively).

An input is a sequence of events. An event is an arrival
event or a scheduling event. At an arrival event, a packet
(say, p) arrives at an input port (1 through m), and the task
of an online algorithm (or an online policy) is to select one
of the following actions: insert an arriving packet into the
corresponding queue (accept p), drop it (reject p), or drop a
packet p′ existing in the current buffer and accept p (preempt
p′). (We consider in this paper both preemptive and non-
preemptive models.) If a packet is accepted, it is stored at
the tail of the corresponding input queue. At a scheduling
event, an online algorithm selects one nonempty input port
from m ones and transmits the packet at the head of the
selected queue.

The gain of an algorithm is the sum of the values of trans-
mitted packets, and our goal is to maximize it. The gain
of an algorithm A for an input σ is denoted by VA(σ). If
VA(σ) ≥ VOPT (σ)/c for an arbitrary input σ, we say that
A is c-competitive, where OPT is an optimal offline policy
for σ. Without loss of generality, we can assume that OPT
never preempts packets.
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Table 1: Competitve ratios for the multi-queue switch models

Non-Preemptive Preemptive

Lower Bound Upper Bound Lower Bound Upper Bound

deterministic

algorithm

2-value

1 + 1
α ln(α/(α−1)) [13] 4 - 2

α
† [7] e

e−1
≈ 1.58 [2] 2.564∗, 2.6† [7]

3.177‡ [this paper] 2.465‡ [this paper]

3.778§ [this paper] 2.577§ [this paper]

multi-value ln(α) + 1 [5] 2 ln(α) + 4 [7] e
e−1

≈ 1.58 [2] 3 − 1/α [14]

randomized

algorithm
2-value

1.465 [2] 1.465 [2] 2.5‡ [7]

3.023† [this paper] 2.214‡ [this paper]

2.297† [this paper]

multi-value 1.465 [2] 1.465 [2]

∗B → ∞, †any B, ‡large enough B, §B ≥ 2

Table 2: Competitve ratios for the single-queue model

Non-Preemptive Preemptive

Lower Bound Upper Bound Lower Bound Upper Bound

deterministic

algorithm

2-value 2 − 1/α [1] 2 − 1/α [5] 1.28 [15, 27] 1.282 [11]

multi-value ln(α) + 1 [5] ln(α) + 2 [4] 1.419 [17] 1.732 [11]

randomized

algorithm

2-value 1.197 [3] 1 + α− 1
2 − α−1 [3]

multi-value

2.2 The Relaxed Model
The relaxed model is the same as the usual preemptive

multi-queue switch model defined in Sec. 2.1, except for the
following relaxation: In the original model, only a packet at
the head of an input queue can be transmitted at a schedul-
ing event, but in the relaxed model, any packet can be trans-
mitted (namely, the buffer is not a queue). As is the case
with the multi-queue switch model, we can assume, with-
out loss of generality, that OPT never preempts. Through-
out this paper, for simplicity, the 2-value multi-queue switch
model (the unit-value multi-queue switch model and the pre-
emptive relaxed model, respectively) is denoted by M2 (M1,
and Mr, respectively). In addition, we denote OPT2 (OPT1

and OPTr, respectively) optimal offline algorithms for M2

(M1 and Mr, respectively).

3. ALGORITHM DS

We propose Dual Scheduling Algorithm(DS) for Mr in
Sec. 3.1, and analyze the competitive ratio of DS in Sec. 3.2.

3.1 Dual Scheduling Algorithm(DS)
In this section, we give the definition of Dual Scheduling

Algorithm (DS). Let A1 be a work-conserving online algo-
rithm for M1. An algorithm which transmits a packet at a
scheduling event whenever its buffer is not empty is called
work-conserving. (See [7], e.g.) DS uses A1 as a subrou-
tine, and hence it is written as DS(A1), but for simplicity,
we write “DS” instead of “DS(A1)” when A1 is clear.

We give some definitions. For a time t when an event
occurs, t− represents a moment before t and after the pre-
vious event occurred. Similarly, t+ is a moment after t and

before the next event occurs. The jth queue of the switch
is denoted as Q(j)(1 ≤ j ≤ m). For an algorithm A for

Mr or M1, h
(j)
A (t) denotes the number of packets A holds in

Q(j) at time t when no event happens. For an algorithm Ar

for Mr, g
(j)
Ar

(t) denotes the number of α-packets Ar holds

in Q(j) at time t when an event does not happen. Let σ(t)
denote the prefix of the input σ up to time t. To define an
algorithm, we need to specify its buffer management policy
at an arrival event, and a scheduling policy at a scheduling
event.

First, we sketch an outline of DS. When an arrival event
happens, DS greedily accepts an α-packet. When a schedul-
ing event occurs at time t, DS(A1) uses two subroutines
AS(A1) (standing for α-packet Scheduling algorithm) and
OS(A1) (standing for 1-packet Scheduling algorithm). (Hence
A1 is actually a subsubroutine of DS.) For simplicity, we
write AS and OS instead of AS(A1) and OS(A1), respec-
tively, when A1 is clear.

DS calls AS if DS holds at least one α-packet. AS re-
turns to DS the name of the α-packet which DS should
transmit at t. Otherwise, DS calls OS, which returns to
DS the name of the 1-packet which should be transmitted
at t. (In Mr, it suffices to decide the queue from which a
packet is transmitted. Instead we require AS and OS to
decide the name of the packet to be transmitted for later
analysis.) Specifically, AS constructs σ′(t) by removing all
arrival events where a 1-packet arrives within [0, t] from σ(t).
Then, AS(A1) calls Scheduling Routine as a subsubrou-
tine, and returns the name of the packet which A1 should
return to DS. On the other hand, OS(A1) constructs σ′′(t)
by removing all scheduling events where OS(A1) is not called
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by DS from σ(t), and calls Scheduling Routine. For using
A1 as a subroutine of AS or OS, in Scheduling Routine,
we assume that A1 gives a priority to each arriving packet,
and transmits the packet with the highest priority at each
scheduling event.

Dual Scheduling Algorithm (DS)

Buffer Management: DS accepts packets greedily, namely,
when a 1-packet p arrives at Q(i) at time t, DS accepts p if

h
(i)
DS(t−) < B. Otherwise, p is rejected. When an α-packet

q arrives at Q(i) at t, if h
(i)
DS(t−) < B, then DS accepts q.

If h
(i)
DS(t−) = B and g

(i)
DS(t−) < B, DS preempts a 1-packet

and accepts q. Otherwise, DS rejects q.

Scheduling:
At a scheduling event at time t, execute one of the following
cases:
Case D1: (

Pm
i=1 g

(i)
DS(t−) > 0, namely, DS has at least one

α-packet):
DS calls AS, decides the α-packet p to be transmitted,

and transmits p. DS finishes the execution at t.

Case D2: (
Pm

i=1 g
(i)
DS(t−) = 0, namely, DS does not have

any α-packet):
DS calls OS, decides the 1-packet p to be transmitted,

and transmits p. DS finishes the execution at t.

AS and OS are defined in the following:

α-Packet Scheduling Algorithm(AS(A1)):
(AS is called at time t. )
Step A1:
AS converts σ(t) into σ′(t) by removing all arrival

events of 1-packets from σ(t).
Step A2:
AS calls Scheduling Routine(AS, A1, σ′(t), t) (defined

later), which returns the packet p. Then, AS returns p to
DS, and finishes this routine at t.

1-Packet Scheduling Algorithm(OS(A1)):
(OS is called at time t. )
Step O1:
OS converts σ(t) into σ′′(t) by removing all scheduling

events where OS is not called by DS before t.
Step O2:
OS calls Scheduling Routine(OS, A1, σ′′(t), t), which

returns the packet p. Then, OS returns p to DS, and finishes
this routine at t.

However, since two kinds of packets, namely 1-packets and
α-packets can arrive at an arrival event in σ′′(t), A1 cannot
be run for σ′′(t) if nothing is done. So A1 executes a buffer
management for arriving packets according to the following
definition.

Buffer Management for A1: A1 accepts 1-packets
greedily, namely, when an α-packet q arrives at Q(i)

at time t′′, A1 accepts q if h
(i)
A1

(t′′−) < B. Otherwise,

A1 rejects q. When a 1-packet p arrives at Q(i) at t′′,
if h

(i)
A1

(t′′−) < B, then A1 accepts p. If h
(i)
A1

(t′′−) = B

and there exists an α-packet q′ in Q(i), A1 preempts q′

and accepts p. It is easy to see that if h
(i)
A1

(t′′−) = B,

there does not exist an α-packet q′ in Q(i) and DS ac-
cepts, then A1 preempts q′′ which DS does not hold
at Q(i) at t−, and accepts p. Otherwise, p is rejected.
For simplicity, when A1 accepts (rejects, respectively)
a packet, we say that “OS accepts (rejects, respec-
tively) it”.

Scheduling Routine(ALG, A1, δ, s�):
Step S0:

Let sj denote the jth scheduling event within
[0, s�]. Let nj be the number of arrival events within
[0, sj ] (1 ≤ j ≤ �). Let x be the parameter, and x := 1.
Step S1:
Let y be the parameter, and y := 1.

A1 prioritizes all arrival events which happen within
[0, sx] according to its definition. (We need not con-
sider the buffer management in the case ALG = AS
since each arriving packet in σ′(t) is unique, namely,
an α-packet. However, in the case ALG = OS, the
buffer management for A1 which is defined above must
be used.) In this regard, a marked arrival event is cer-
tainly the lowest priority. (Marking is done in Step
S2.)
Step S2:
Suppose that A1 transmits the packet p which arrives

at the yth highest priority arrival event. Then, p is
marked. We say that ALG transmits p. If DS stores
p at sx− and x < � holds, x := x + 1, and go back
to Step S1. Else, if DS stores p at sx− and x = �
holds, A1 returns p, and this routine is finished at s�.
Else, if DS does not store p at sx− and y < nx holds,
y := y + 1 and go back to Step S2. Else, if DS does
not store p at sx− and y = nx holds, this routine is
finished at s�.

DS calls OS immediately after time τ when DS does not
store any packet in its buffer. Note that OS does not return
a packet by the definition of Scheduling Routine, but can
transmit all 1-packets which OS stores but DS does not at
τ . (This property is used in the proof of Lemma 3.10 and
Corollary 3.11. )

Note that although OS simulates some buffer manage-
ment algorithms as its subroutine, and OS itself is a sub-
routine of DS, OS can be viewed as an online algorithm for
the unit-value buffer management problem. So, when work-
ing on an input sequence, we can consider buffers which

OS uses, and hence naturally define h
(i)
OS(t), the number of

packets OS holds in Q(i) at time t.

3.2 Competitive Analysis of DS

3.2.1 Overview of the Analysis
For an input σr for Mr, let TB,1(σr) (TB,α(σr), respec-

tively) be the number of 1-packets (α-packets, respectively)
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p such that (i) p arrives at Q(i) at time t where g
(i)
DS(t−) = B,

(ii) DS drops p (namely, p is rejected at t since DS greedily
accepts arriving packets), and (iii) OPTr accepts p, which is
eventually transmitted since OPTr never preempts. For an
input σr for Mr, let TB̄,1(σr) (TB̄,α(σr), respectively) be the
number of 1-packets (α-packets, respectively) p such that

(i) p arrives at Q(i) at time t where g
(i)
DS(t−) < B, (ii) DS

drops p, and (iii) OPTr accepts p. Since DS accepts ar-

riving packets greedily, if an α-packet is dropped from Q(i)

at t, then g
(i)
DS(t−) = B. Therefore, TB̄,α(σr) = 0 holds.

We will prove in Lemma 3.2, that for any online algorithm
Ar for Mr and for any input σ′

r for which the above de-
fined TB,1(σ

′
r) > 0, there exists another input σ′′

r for which
TB,1(σ

′′
r ) = 0 and the competitive ratio of Ar is equal to

or larger than that for σ′
r. Therefore, it suffices to consider

only inputs σr for which TB,1(σr) = 0. Hence the numbers
of 1-packets and α-packets, respectively, OPTr accepts but
DS drops are TB̄,1(σr) and TB,α(σr). Then, VOPTr (σr) ≤
VDS(σr) + TB̄,1(σr) + αTB,α(σr) holds. Let RA(σr) (A =
{AS, OS}) be the number of packets returned by A for an
input σr for Mr. Note that DS transmits a packet returned
by AS or OS. Then VDS(σr) = ROS(σr) + αRAS(σr) by
definition. Let a D-event be a scheduling event where DS
transmits an α-packet and OPTr transmits a 1-packet. Let
K be the number of D-events. Suppose that the competi-
tive ratio of A1, a subroutine of DS, is at most c (in M1).
In Sec. 3.2.2, we show that min{(c − 1)RAS(σr), RAS(σr)−
K} ≥ TB,α(σr), and in Sec. 3.2.3, we prove that RAS(σr) +
min{(c − 1)(RAS(σr) + ROS(σr)), ROS(σr)} ≥ TB,α(σr) +
TB̄,1(σr). Therefore, VOPTr (σr) ≤ ROS(σr) + αRAS(σr) +

TB̄,1(σr)+αTB,α(σr) ≤ αc(2−c)+c2−2c+2
α(2−c)+c−1

VDS(σr). Hence, we

have the following theorem:

Theorem 3.1. If the competitive ratio of A1 for M1 is
at most c, then the competitive ratio of DS(A1) is at most
αc(2−c)+c2−2c+2

α(2−c)+c−1
.

3.2.2 Analysis of AS

Because of the space restriction, we omit the proofs of the
following lemmas and corollaries. The complete proofs are
included in the full version [23]. First, we show that it is
sufficient to consider only inputs σr such that TB,1(σr) = 0.

Lemma 3.2. Let σr for Mr be an input for which TB,1(σr) >
0. Then, there exists an input σ′

r for Mr such that TB,1(σ
′
r) =

0 and
VOP Tr (σ′

r)

VDS(σ′
r)

≥ VOP Tr (σr)

VDS (σr)
.

For analysis, we give some definitions. For an online algo-
rithm A1 for M1, an input σ1 for M1, and a time t when no
event occurs, we call the number of cells in a buffer such that
A1 holds a packet but OPT1 does not hold a packet a gap
for A1, OPT1 and σ1. Namely, the gap at Q(i) at t for A1,

OPT1 and σ1 is h
(i)
A1

(t)−h
(i)
OPT1

(t) if h
(i)
A1

(t)−h
(i)
OPT1

(t) > 0.
In what follows, we estimate the degree of increase and

decrease of the gap at Q(i) at each event, namely, an arrival
event and a scheduling event. Note that, at an arrival event
in M1, a strategy of greedily accepting arriving packets is
the best way.

Arrival event:
A1. Let p be a packet which arrives at Q(i) at t:
A1.1. Both OPT1 and A1 accept p, namely,

h
(i)
OPT1

(t+) = h
(i)
OPT1

(t−) + 1 and h
(i)
A1

(t+) = h
(i)
A1

(t−) + 1:

Since h
(i)
A1

(t+) − h
(i)
OPT1

(t+) = h
(i)
A1

(t−) − h
(i)
OPT1

(t−), the

gap at Q(i) does not change at t.
A1.2. OPT1 accepts p and A1 rejects p, namely,

h
(i)
OPT1

(t+) = h
(i)
OPT1

(t−) + 1 and h
(i)
A1

(t+) = h
(i)
A1

(t−) = B:

Since h
(i)
A1

(t+)−h
(i)
OPT1

(t+) = h
(i)
A1

(t−)−h
(i)
OPT1

(t−)−1 ≥
0, the gap at Q(i) decreases at t.
A1.3. OPT1 rejects p, A1 accepts or rejects p, namely,

h
(i)
OPT1

(t+) = h
(i)
OPT1

(t−) = B, and h
(i)
A1

(t+) ≤ h
(i)
A1

(t−) + 1:

Since h
(i)
A1

(t+) − h
(i)
OPT1

(t+) ≤ 0, there does not exist the

gap at Q(i) at t− at Q(i), and the gap at Q(i) does not
change at t .
A2. Let p be a packet which arrives at Q(j) (j 	= i) at t.

h
(i)
OPT1

(t+) = h
(i)
OPT1

(t−), and h
(i)
A1

(t+) = h
(i)
A1

(t−):

Since h
(i)
A1

(t+) − h
(i)
OPT1

(t+) = h
(i)
A1

(t−) − h
(i)
OPT1

(t−), the

gap at Q(i) at t does not change.
Scheduling event:

S1. Both OPT1 and A1 transmit from Q(i), namely, h
(i)
OPT1

(t+) =

h
(i)
OPT1

(t−) − 1, and h
(i)
A1

(t+) = h
(i)
A1

(t−) − 1:

Since h
(i)
A1

(t+)−h
(i)
OPT1

(t+) = h
(i)
A1

(t−)−h
(i)
OPT1

(t−), the gap

at Q(i) at t does not change.
S2. OPT1 transmits from Q(i) and A1 transmits from Q(j) (j 	=
i), namely, h

(i)
OPT1

(t+) = h
(i)
OPT1

(t−)−1, h
(i)
A1

(t+) = h
(i)
A1

(t−):

S2.1. h
(i)
A1

(t−) ≥ h
(i)
OPT1

(t−):

Since h
(i)
A1

(t+)−h
(i)
OPT1

(t+) = h
(i)
A1

(t−)−h
(i)
OPT1

(t−)+1 ≥
0, the gap at Q(i) increases at t.

S2.2. h
(i)
A1

(t−) < h
(i)
OPT1

(t−):

Since h
(i)
A1

(t+)−h
(i)
OPT1

(t+) = h
(i)
A1

(t−)−h
(i)
OPT1

(t−)+1 <

1, there does not exist the gap at Q(i) at t− at Q(i), and the
gap at Q(i) does not change at t.
S3. OPT1 transmits from Q(j) (j 	= i), and A1 transmits

from Q(i), namely, h
(i)
OPT1

(t+) = h
(i)
OPT1

(t−),

h
(i)
A1

(t+) = h
(i)
A1

(t−) − 1:

S3.1. The gap at Q(i) is at least one at t− namely, h
(i)
A1

(t−) >

h
(i)
OPT1

(t−):

Since h
(i)
A1

(t+)− h
(i)
OPT1

(t+) = h
(i)
A1

(t−)− h
(i)
OPT1

(t−)− 1,

the gap at Q(i) decreases at t.
S3.2. There does not exist the gap at Q(i) at t−, namely,

h
(i)
A1

(t−) ≤ h
(i)
OPT1

(t−):

Since h
(i)
A1

(t+)−h
(i)
OPT1

(t+) = h
(i)
A1

(t−)−h
(i)
OPT1

(t−)+1 ≤
−1, there does not exist the gap at Q(i) at t− at Q(i), and
the gap at Q(i) does not change at t.
S4. OPT1 transmits from Q(j), and A1 transmits from

Q(k), namely, h
(i)
OPT1

(t+) = h
(i)
OPT1

(t−), and h
(i)
A1

(t+) =

h
(i)
A1

(t−) − 1:

Since h
(i)
A1

(t+) − h
(i)
OPT1

(t+) = h
(i)
A1

(t−) − h
(i)
OPT1

(t−), the

gap at Q(i) does not change at t.

By the above estimation of the gap at Q(i), A1 drops
a packet from Q(i) at t if and only if the gap at Q(i) de-
creases in A1.2. Then, we call this arrival event a p-event
(profit-event) for A1, OPT1 and an input σ1 at M1 at t.

So, since h
(i)
OPT1

(0) = h
(i)
OPT1

(0) = 0 holds, the event satis-
fying S2.1., namely, increasing the gap, certainly happens
at Q(i) at t′(< t) if an event satisfying A1.2. happens at
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Q(i) at t. Then, for a p-event for A1, OPT1 and an in-
put σ1 at Q(i) at time t, the corresponding g-event (gap-
event) for A1, OPT1 and an input σ1 is a scheduling event

that happens at Q(i) at t′ satisfying the following three in-

equalities: h
(i)
A1

(t′′) − h
(i)
OPT1

(t′′) ≥ h
(i)
A1

(t−) − h
(i)
OPT1

(t−) =

B − h
(i)
OPT1

(t−) (∀t′′ ∈ [t′+, t−]), h
(i)
A1

(t′−) = h
(i)
A1

(t′+),

and h
(i)
OPT1

(t′−) = h
(i)
OPT1

(t′+) + 1.
Here, we explain a p-event and a g-event using an example

in Fig. 1. We consider the case B = 4. The input and action
by OPT1 and an online algorithm ON for M1 are described
in the column denoted by “event”. Each column denoted by
“OPT” and “ON” represent the number of packets OPT1

and ON hold in Q(i), respectively. The rightmost column
represents the gap at each timeslot. The right figure shows
p-events and corresponding g-events.

For example, at each time 1,2,3 and 4, a packet arrives at
Q(i), and both OPT1 and ON accept it. Then, at time 5, a
scheduling event happens and only ON transmits a packet
from Q(i). On the other hand, at time 6 and 7, only OPT1

transmits a packet from Q(i). An arrival event at time 16 is
a p-event for OPT1 and ON , and an event at time 7 is the
corresponding g-event.

An online algorithm A1, an optimal offline algorithm OPT1

and an input σ1 for σr decide whether an event is a p-event
(g-event, respectively) or not. Hence, if an event e is a
p-event (g-event, respectively), we write e is a p-event for
(A1, OPT1, σ1) (g-event for (A1, OPT1, σ1), respectively).
We may omit a 3-tuple (A1, OPT1, σ1) when it is clear.

Here, we give some definitions on the number of p-events
and g-events. For an input σ1 at M1, an optimal algo-
rithm OPT1 and an online algorithm A1 for M1, let PA1(σ1)
(GA1(σ1), respectively) denote the number of p-events for
(A1, OPT1, σ1) (g-events for (A1, OPT1, σ1), respectively).
(Note that OPT1 is not important for PA1(σ1) and GA1(σ1)
since a value of PA1(σ1) does not change due to an optimal
offline algorithm.) Note that AS and OS can be regarded
as A1 since they convert an input σr for Mr into σ1 for M1,
and decide a packet to be transmitted by DS.

Lemma 3.3. Let A1 be an online algorithm for M1 and
σ1 be an input for M1. Then, PA1(σ1) = GA1(σ1).

Here, we give some definitions. For an input σr for Mr

and a time t when no event happens, let TB,α(σr, t) be the

number of α-packets p such that (i) p arrives at Q(i) at time

t′ where g
(i)
DS(t′−) = B, (ii) DS drops p at t′′(∈ [t′, t]), and

(iii) OPTr accepts p at t′. For an input σ1 for M1, and
an online algorithm A1 for M1, let PA1(σ1, t) denote the
number of p-events for (A1, OPT1, σ1) which happen before
t. Note that A1 can be AS or OS, which can be regarded as
an online algorithm for M1. For any model M1, or Mr, let
σ be an input and A be an algorithm. Then define TA(σ)
to be the number of transmitted packets by A for an input
σ. When A1 is simulated on σ(t) where an event happens
at time t by OS(A1), A1 transmits some packets. Then, for
better understanding, we say that OS transmits packets.

As we have done previously for M1, we define a gap for
AS and OS. For an input σr for Mr, we call the number
of cells in a buffer such that AS holds a packet but OPTr

does not hold a packet a gap for AS, OPTr and σr. Notice
that the number of packets AS stores at time t is equal to
that of α-packets DS holds at t. A gap for OS is defined
similarly. Namely, the gap at Q(i) at t for AS, OPTr and

σr is g
(i)
DS(t)− h

(i)
OPTr

(t) if g
(i)
DS(t)− h

(i)
OPTr

(t) > 0. Then, we

call an arrival event where DS drops an α-packet from Q(i)

a p-event for AS, OPTr and σr at Q(i) at t. (We call an

arrival event where OS drops a packet from Q(i) a p-event
for OS, OPTr and σr at Q(i) at t, respectively.) Also, for a

p-event at Q(i) at time t, the corresponding g-event for AS,
OPTr and σr is a scheduling event that happens at t′ satis-

fying the following three conditions: g
(i)
DS(t′′)−h

(i)
OPTr

(t′′) ≥
g
(i)
DS(t−) − h

(i)
OPTr

(t−) = B − h
(i)
OPTr

(t−) (∀t′′ ∈ [t′+, t−]),

g
(i)
DS(t′−) = g

(i)
DS(t′+), and h

(i)
OPTr

(t′−) = h
(i)
OPTr

(t′+) + 1.

(For a p-event at Q(i) at time t, the corresponding g-event
for OS, OPTr and σr is a scheduling event that happens at
t′ satisfying the following three conditions:

h
(i)
OS(t′′) − h

(i)
OPTr

(t′′) ≥ h
(i)
OS(t−) − h

(i)
OPTr

(t−)

= B − h
(i)
OPTr

(t−) (∀t′′ ∈ [t′+, t−]), h
(i)
OS(t′−) = h

(i)
OS(t′+),

and h
(i)
OPTr

(t′−) = h
(i)
OPTr

(t′+)+1, respectively.) If an event
e is a p-event (g-event, respectively), we write e is a p-
event for (A, OPTr, σr) where A is AS or OS (g-event for
(A, OPTr, σr), respectively). In this section, for an input σr

for Mr, we show a relation between the number of α-packets
which are not accepted by DS, namely TB,α(σr), and the
number of p-events for (AS, OPTr, σr), namely, PAS(σr). In
addition, for an input σr for Mr, we show an upper bound of
the number on g-events for (AS,OPTr, σr), namely, GAS(σr).

Lemma 3.4. Let t be a time when no event happens, and
σr be an input for Mr. Then, PAS(σr, t) ≥ TB,α(σr, t).

Recall that a D-event is a scheduling event at which OPTr

transmits a 1-packet and AS transmits an α-packet. In or-
der to evaluate the number of g-events when K D-events
happen, we consider a modification of M1, which we call
the sleep model (denoted by Ms). An input for Ms is a
sequence of events. An event is an arrival event, an N-
scheduling event (normal scheduling event) or an SOPT -
scheduling event (OPT scheduling sleep event). An arrival
event for Ms is the same as M1, and an N-scheduling event is
the same as a scheduling event for M1. An SOPT -scheduling
event is an event in which an online algorithm A can trans-
mit a packet from a queue, but OPT cannot. Furthermore,
A for Ms cannot distinguish between an N-scheduling event
and an SOPT -scheduling event. For simplicity, we denote
OPTs an optimal offline algorithm for Ms. Then, we say
that OPTs sleeps for As if As transmits a packet at an SOPT -
scheduling event. Note that an online algorithm A1 for M1

can be used for Ms. We define p-events and g-events for A1,
OPTs and an inpit σs at Ms in the same way as M1. For
an online algorithm A1 at Ms, OPTs and an inpit σs at Ms,
if an event e is a p-event (g-event, respectively), we write e
is a p-event for (A1, OPTs, σs) (g-event for (A1, OPTs, σs),
respectively).

Lemma 3.5. Let A1 be an online algorithm for M1 whose
competitive ratio is at most c. Let σs be any input for Ms

in which OPTs sleeps for A1 exactly k times, and let σ1 be
an input for M1 obtained from σs by replacing all SOPT -
scheduling events by N-scheduling events. Then, min{(c −
1)TA1(σ1), TA1(σ1) − k} ≥ GA1(σs).

Lemma 3.6. Let σr be an input for Mr. Then, min{(c −
1)RAS(σr), RAS(σr) −K} ≥ GAS(σr).

Now, we are ready to show the main lemma in this section.
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Figure 1: Example of gaps

Lemma 3.7. Let σr be an input for Mr. Then, min{(c −
1)RAS(σr), RAS(σr) −K} ≥ TB,α(σr).

Proof. By Lemma 3.4, PAS(σr) ≥ TB,α(σr). By this in-
equality and Lemmas 3.3 and 3.6, min{(c−1)RAS(σr), RAS(σr)−
K} ≥ TB,α(σr), which completes the proof.

3.2.3 Analysis of OS

In this section, we analyze OS to evaluate the number of
packets which OPTr transmits but OS cannot return (Note
that the sum of packets returned by OS is different from the
sum of packets transmitted by OS). First, we show lemmas
about properties of packets which OS and DS store at the
same time.

Lemma 3.8. Let t be a time when no event occurs. If DS
stores a 1-packet p at Q(i) at t, OS also stores p at Q(i) at
t.

Lemma 3.9. Let t be a time when no event happens. Then,

∀i h
(i)
OS(t) ≥ h

(i)
DS(t).

We give some definitions. For an input σ for Mr, A =
{AS, OS}, and a time t when an event does not happen,
RA(σ, t) denotes the number of packets returned by A before
t, and TOS(σ, t) denotes the number of packets transmitted
by OS before t.

Lemma 3.10. Let t be a time when no event occurs, and
σr be an input for Mr. Then, ∀t RAS(σr, t) + ROS(σr, t) +
Pm

i=1 h
(i)
DS(t) ≥ TOS(σr, t) +

Pm
i=1 h

(i)
OS(t).

Corollary 3.11. Let σr be an input for Mr. Then,
RAS(σr) + ROS(σr) ≥ TOS(σr).

We give a definition for the following lemma. Let t be a
time when no event happens, and σr be an input for Mr.
TB̄,1(σr, t) denotes the number of 1-packets p such that (i) p

arrives at Q(i) at time t′ where g
(i)
DS(t′−) < B and DS drops

p at t′′(∈ [t′, t]), and (ii) OPTr accepts p at t′. Also, we
define a p-event and a g-event for an online algorithm OS,
OPTr and an input σr for Mr in the same way as M1.

Lemma 3.12. Let t be a time when no event happens, and
σr be an input for Mr. Then, POS(σr, t) ≥ TB,α(σr, t) +
TB̄,1(σr, t).

In order to evaluate an upper bound on the number of
g-events for (OS, OPTr, σr) for an input σr at Mr, we con-
sider an extension of Ms (say, Ms′). For simplicity, we de-
note OPTs′ an optimal offline algorithm for Ms′ . An in-
put for Ms′ is a sequence of events. An event is an arrival
event, an N-scheduling event, an SOPT -scheduling event or
an SON -scheduling event (online algorithm sleep scheduling
event). An arrival event, an N-scheduling event, and an
SOPT -scheduling event are the same to those for Ms, re-
spectively. An SON -scheduling event is a counterpart to an
SOPT -scheduling event. Namely, an SON -scheduling event is
an event where OPTs′ can transmit a packet, but an online
algorithm As′ for Ms′ cannot. Further, As′ cannot know
the presence of any SON -scheduling events. Hence, an on-
line algorithm A1 for M1 can be applied for Ms′ without
modification. Then, we say that an online algorithm A1 for
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Ms′ sleeps for OPTs′ if A1 holds a packet at t−, a schedul-
ing event happens at t, and OPTs′ transmits a packet at
an SON -scheduling event. We define p-events and g-events
for an online algorithm A1, OPTs′ and an input σs′ at Ms′
in the same way as M1. For an online algorithm A1 at
Ms′ , OPTs′ and an input σs at Ms′ , if an event e is a
p-event (g-event, respectively), we write e is a p-event for
(A1, OPTs′ , σs′) (g-event for (A1, OPTs′ , σs′), respectively).

Now, for an online algorithm A1 at Ms′ , OPTs′ and an
input σs at Ms′ , we are ready to show an upper bound on
the number of g-events for (A1, OPTs′ , σs′) in the following
lemma.

Lemma 3.13. Let A1 be an online algorithm for M1 whose
competitive ratio is at most c. Let σs′ be any input for Ms′
in which OPTs′ sleeps for A1 exactly k times, and A1 sleeps
for OPTs′ exactly k′ times, and let σ1 be an input for M1

obtained from σs′ by replacing all SOPT -scheduling events
by N-scheduling events (Note that we do not change SON-
scheduling events). Then, k′+min{(c−1)TA1(σ1), TA1(σ1)−
k} ≥ GA1(σs′).

Now we are ready to show the lemma which evaluates the
number of g-events for (OS, OPTr, σr) for an input σr for
Mr.

Lemma 3.14. Let σr be an input for Mr. Then, RAS(σr)+
min{(c − 1)(RAS(σr) + ROS(σr)), ROS(σr)} ≥ GOS(σr).

Lemma 3.15. Let σr an input for Mr. Then, RAS(σr) +
min{(c − 1)(RAS(σr) + ROS(σr)), ROS(σr)} ≥ TB,α(σr) +
TB̄,1(σr).

Proof. By Lemmas 3.3, 3.12, and 3.14, RAS(σr)+min{(c−
1)(RAS(σr) + ROS(σr)),ROS(σr)} ≥ TB,α(σr) + TB̄,1(σr),
which completes the proof.

4. ALGORITHM SS(A1)

In this section, we first give the definition of Simple Schedul-
ing Algorithm(SS) for Mr, which works for the case of small
enough α. Then, we evaluate its competitive ratio.

4.1 Simple Scheduling Algorithm(SS)
We give the definition of Simple Scheduling Algorithm

(SS). Let A1 be an online algorithm for M1. SS uses A1

as a subroutine, and hence it is written as SS(A1), but as
before, we write “SS” instead of “SS(A1)” when A1 is clear.

Buffer Management: The definition of the buffer
management of SS is exactly the same as that of DS,
namely SS accepts packets greedily.
Scheduling: SS(A1) uses A1 as a subroutine. SS
first considers the input σ(t) it has received so far.
SS transforms σ(t) into σ′′′(t) by setting a value of
all arriving packets to one. It then simulates A1 on
σ′′′(t), regarding σ′′′(t) as an input for M1. Let p be
the packet that A1 decides to transmit at the cur-
rent scheduling event (namely, at the end of σ′′′(t)).
Then, SS returns p.

4.2 Analysis of SS

Theorem 4.1. If the competitive ratio of A1 for M1 is at
most c, then the competitive ratio of SS(A1) is at most αc.

Proof. Let a (b, respectively) be the number of 1-packets
(α-packets, respectively) returned by SS. Let a′ (b′, respec-
tively) be the number of 1-packets (α-packets, respectively)
transmitted by OPTr. Also, let σSS be an input σ′′′(tF )
which is converted from σr for Mr (Recall that tF is a time
after the last event happens). Then, RSS(σSS) = a + b,
VSS(σr) = a + αb, TOPTr(σr) = a′ + b′, and VOPTr (σr) =
a′ + αb′. Since all packets in an input converted by SS

have the same value,
TOP Tr (σr)

RSS(σSS)
= a′+b′

a+b
≤ c. Using this

inequality, we have that
VOP Tr (σr)

VSS(σr)
= a′+αb′

a+αb
≤ α(a′+b′)

a+αb
≤

αc(a+b)
a+b

= αc.

5. COMPETITIVE RATIOS FOR THE
MULTI-QUEUE SWITCH MODEL

In this section, we give upper bounds on several variants
of M2, using Theorems 3.1 and 4.1.

Corollary 5.1. There is an online deterministic algo-
rithm for the non-preemptive M2 whose competitive ratio is
at most 3.177 for large enough B.

Corollary 5.2. There is an online deterministic algo-
rithm for the non-preemptive M2 whose competitive ratio is
at most 3.778 for B ≥ 2.

Corollary 5.3. There is an online deterministic algo-
rithm for the preemptive M2 whose competitive ratio is at
most 2.465 for large enough B.

Corollary 5.4. There is an online deterministic algo-
rithm for the preemptive M2 whose competitive ratio is at
most 2.577 for B ≥ 2.

Corollary 5.5. There is an online randomized algorithm
for the preemptive M2 whose competitive ratio is at most
2.214 for large enough B.

Corollary 5.6. There is an online randomized algorithm
for the preemptive M2 whose competitive ratio is at most
2.297 for any B.

Corollary 5.7. There is an online randomized algorithm
for the non-preemptive M2 whose competitive ratio is at most
3.174 for any B.
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