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Problem Definition

Buffer management policies are online algorithms that control a limited buffer of packets with
homogeneous or heterogeneous characteristics, deciding whether to accept new packets when
they arrive, which packets to process and transmit, and possibly whether to push out packets
already residing in the buffer. Although settings differ, the problem is always to achieve the best
possible competitive ratio, i.e., find a policy with good worst-case guarantees in comparison with
an optimal offline clairvoyant algorithm. The policies themselves are often simple, simplicity being
an important advantage for implementation in switches; the hard problem is to find proofs of lower
and especially upper bounds for their competitive ratios. Thus, this problem is more theoretical in
nature, although the resulting throughput guarantees are important tools in the design of network
elements. Comprehensive surveys of this field have been given in the past by Goldwasser [9] and
Epstein and van Stee [7].

General Model Description
We assume discrete slotted time. A packet is fully processed if the processing unit has scheduled
the packet for processing for at least its required number of cycles. Each packet may have the
following characteristics: (i) required processing, i.e., how many processing cycles the packet has
to go through before it can be transmitted; (ii) value, i.e., how much the packet contributes to
the objective function when it is transmitted; (iii) output port, i.e., where the packet is headed (in
settings with multiple output ports, it is usually assumed that processing occurs independently at
each port, so it becomes advantageous to have more busy output ports at a time); and (iv) size,
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i.e., how many slots (bytes) a packet occupies in the buffer. The objective of a buffer management
policy is to maximize the total value of transmitted packets. Different settings may assume that
some characteristics are uniform.

Competitive Analysis
Competitive analysis provides a uniform throughput guarantee for online algorithms across all
traffic patterns. An online algorithm ALG is said to be ˛-competitive with respect to some objective
function f (for some ˛ � 1 which is called the competitive ratio) if for any arrival sequence � the
objective function value on the result of ALG is at least 1=˛ times the objective function value on
the solution obtained by an offline clairvoyant algorithm, denoted OPT.

Problem 1 (Competitive Ratio). For a given switch architecture, packet characteristics, and an
online algorithm ALG in a given setting, prove lower and upper bounds on its competitive ratio
with respect to weighted throughput (total value of packets transmitted by an algorithm).

Key Results

Policies and lower and upper bounds on their competitive ratios are outlined according to problem
settings; the latter differ in which packet characteristics they assume to be uniform and which
are allowed to vary, and additional restrictions may be imposed on admission, processing and/or
transmission order, and admissible packet characteristics.

Uniform Processing, Uniform Value, Shared Memory Switch
Since all packets are identical, the problem for a single queue with one output port is trivial. We
consider an M � N shared memory switch that can hold B packets, with a separate processor on
each output port. All packets require a single processing cycle and have equal value; the goal is to
maximize the number of transmitted packets. Each packet is labeled with an output port where it
has to be processed and transmitted.

Non-Push-Out Policies

Kesselman and Mansour [14] show an adversarial logarithmic lower bound: no non-push-out
policy can achieve competitive ratio better than d=2 for d D logd N . On the positive side, they
present the Harmonic policy that allocates approximately 1=i of the buffer to the i th largest queue
and, for its variant, the Parametric Harmonic policy, show an upper bound of c logc N C 1.

Push-Out Policies

The best known policy is Longest Queue Drop (LQD): accept packets greedily if the buffer is not
full; if it is, accept the new packet and then drop a packet from the longest queue (destined to the
output port with the most packets assigned to it). Aiello et al. [1, 10] show that the competitive
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ratio of LQD is between
p

2 and 2; they also provide nonconstant lower bounds for other popular
policies and a general adversarial lower bound of 4

3
on the competitive ratio of any online algorithm.

Uniform Processing, Uniform Value, Multiple Separated Queues
In an N � 1 switch where each of N input queues has a separate independent buffer of size
B , a policy must select which input queue to take a packet from and set admission policies for
input queues. For uniform values, the problem was closed by Azar and Litichevskey [3] with a
deterministic policy with competitive ratio converging to e

e�1
� 1:582 for arbitrary B; a matching

lower bound was shown by Azar and Richter [4].

Uniform Processing, Variable Values, Single Queue
Here, there is only one output port (a single queue), and each packet is fully processed in one cycle;
however, packets have different values, making it desirable to drop packets with smaller value and
process packets of larger value. It is easy to show that the Priority Queue (PQ) policy that sorts
packets with respect to values and pushes out smaller values for larger ones is optimal. Research
has concentrated on models with additional constraints: non-push-out policies that are not allowed
to push admitted packets out and the FIFO model where packets have to be transmitted in order of
arrival. Another important special case considers two possible values: 1 and V > 1.

Non-Push-Out Policies

Aiello et al. [2] consider five online policies for the two-valued case, considering the specific
cases of V D 1, V D 2, and V D 1. Andelman, Mansour, and Zhu provide a deterministic
policy (Ratio Partition) that achieves optimal

�
2 � 1

V

�
-competitiveness [26]. In the case of arbitrary

values between 1 and V > 1, they show that the optimal competitive ratio is ln V , proving tightly
matching bounds of 1 C ln V and 2 C ln V C O.ln2 V=B/ [2, 26].

Push-Out Policies

In the FIFO model, there has been a line of adversarial lower bounds culminating in the lower
bound of 1:419 shown by Kesselman, Mansour, and van Stee [18] that applies to all algorithms,
with a stronger bound of 1:434 for B D 2 [2, 26]. As for upper bounds, in this simple model the
FIFO greedy push-out policy (accept every packet to end of queue, then push out the packet with
smallest value if buffer has overflown) has been shown by Kesselman et al. to be 2-competitive
[17]; in the two-valued case, they provide an adversarial lower bound of 1:282, and a long line
of improvements for the upper bound has led to the optimal Account Strategy policy of Englert
and Westermann [6]. They show an adversarial lower bound of r D 1

2
.
p

13 � 1/ � 1:303 for any

B � 2 and r1 D p
2 � 1

2
.
p

5 C 4
p

2 � 3/ � 1:282 for B ! 1 and show that Account Strategy
achieves competitive ratio r for arbitrary B and r1 for B ! 1. Thus, in the push-out two-valued
case, the gap between lower and upper bounds has been closed completely.
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Uniform Processing, Variable Values, Multiple Separated Queues
Kawahara et al. [11] consider an N � 1 switch with N separated queues, each of which has a
distinct buffer of size B and has a value ˛j associated with it, 1 D ˛1 � : : : � ˛N D ˛.
A policy selects one of N queues, maximizing total transmitted value; [11] provides matching

lower and upper bounds for the PQ policy as 1 C
Pn0

j D1 ˛j
Pn0

C1
j D1 ˛j

, where n0 D arg maxn

Pn
j D1 ˛j

PnC1
j D1 ˛j

, and an

adversarial lower bound 1 C ˛3C˛2C˛
˛4C4˛3C3˛2C4˛C1

for any online algorithm. Azar and Richter [4] show
that any r-competitive policy for a FIFO queue with variable values yields a 2r-competitive policy
for multiple queues. Kobayashi et al. [21] show that an r-competitive policy for unit values and

multiple queues yields a min
n
V r; V r.2�r/Cr2�2rC2

V.2�r/Cr�1

o
-competitive policy for the two-valued case.

Uniform Processing, Variable Values, Shared Memory Switch
Several output queues, each with a processor, share a buffer of size B , and each unit-sized packet
is labeled with an output port and an intrinsic value from 1 to V . Eugster, Kogan, Nikolenko, and
Sirotkin [8] show a .

3
p

V � o.
3

p
V // lower bound for the LQD (Longest Queue Drop) policy, an

1
2
.minfV; Bg � 1/ lower bound for the MVD (Minimal Value Drop) policy, and a 4

3
lower bound

for the MRD (Maximal Ratio Drop) policy.

Uniform Processing, CIOQ Switches
In CIOQ (Combined Input–Output Queued) switches, one maintains at each input a separate
queue for each output (also called Virtual Output Queuing, VOQ). To get delay guarantees of an
input queuing (IQ) switch closer to those of an output queuing switch (OQ), one usually assumes
increased speedup S : the switching fabric runs S times faster than each of the input or the output
ports. Hence, an OQ switch has a speedup of N (where N is the number of input/output ports),
whereas an IQ switch has a speedup of 1; for 1 < S < N , packets need to be buffered at the
inputs before switching as well as at the outputs after switching. This architecture is called a CIOQ
switch.

Uniform Values

Consider an N � N CIOQ switch with speedup S . Packets of equal size arrive at input ports, each
labeled with the output port where it has to leave the switch. Each packet is placed in the input
queue corresponding to its output port; when it crosses the switch fabric, it is placed in the output
queue and resides there until it is sent on the output link. For unit-valued packets, Kesselman and
Rosén [15] proposed a non-push-out policy which is 3-competitive for any S and 2-competitive
for S D 1. Kesselman, Kogan, and Segal [13] show an upper bound of 4 on the competitiveness
of a simple greedy policy.

Variable Values

For up to m packet values in Œ1; V �, Kesselman and Rosén [15] show two push-out policies to
be 4S- and 8 minfm; 2 log V g-competitive. Azar and Richter [5] propose a push-out policy ˇ-PG
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with parameter ˇ; Kesselman et al. [20] show that the competitive ratio of ˇ-PG is at most 7:5 for
ˇ D 3 and at most 7:47 for ˇ D 2:8. Kesselman and Rosén [16] consider CIOQ switches with PQ
buffers (transmit the highest value packet) and show that this policy is 6-competitive for any S .

Uniform Processing, Crossbar Switches
In the buffered crossbar switch architecture, a small buffer is placed on each crosspoint in addition
to input and output queues, which greatly simplifies the scheduling process. For packets with
unit length and value, Kesselman et al. [20] introduce a greedy switch policy with competitive
ratio between 3

2
and 4 and show a general lower bound of 3

2
for unit-size buffers. For variable

values and PQ buffers, they propose a push-out greedy switch policy with preemption factor ˇ

with competitive ratio between .2ˇ � 1/=.ˇ � 1/ (3:87 for ˇ D 1:53) and .ˇ C 2/2 C 2=.ˇ � 1/

(16:24 for ˇ D 1:53). For variable values and FIFO buffers, they propose a ˇ-push-out greedy
switching policy with competitive ratio 6 C 4ˇ C ˇ2 C 3=.ˇ � 1/ (19:95 for ˇ D 1:67) [19].

Uniform Values, Variable Processing, Single Queue
In this setting, each packet contributes one unit to the objective function, but different packets have
different processing requirements, i.e., they spend a different number of time slots at the processor.
We denote maximal possible required processing by k.

Non-Push-Out Policies

For a single queue and packets with heterogeneous processing, non-push-out policies have not
been considered in any detail. Kogan, López-Ortiz, Nikolenko, and Sirotkin [23] have shown that
any greedy non-push-out policy is at least 1

2
.k C 1/-competitive. It remains an open problem to

find non-push-out policies with sublinear competitive ratios or show that none exists.

Push-Out Policies

Keslassy et al. [12] showed that again, for a single queue, PQ (Priority Queue) that sorts packets
with respect to required processing (smallest first) is optimal; research has concentrated on the
FIFO case, where packets have to be transmitted in order of arrival. Kogan et al. [24] introduced
lazy policies that process packets down to a single cycle but then delay their transmission until
the entire queue consists of such packets; then all packets are transmitted out in as many time
slots as there are packets in the queue. In [24], LPO (Lazy Push-Out) was proven to be at most
.maxf1; ln kgC2Co.1//-competitive; [24] also provides a lower bound of blogB kcC1�O.1=B/

for both PO (push-out FIFO) and LPO; for large k this bound matches the upper bound up to a
factor of log B . Proving a matching upper bound for the PO policy remains an important open
problem. In the two-valued case, when packets may have required processing only 1 or k, LPO
has a lower bound of 2 � 1

k
and a matching upper bound of 2 C 1

B
[24]. Kogan, López-Ortiz,

Nikolenko, and Sirotkin [23] introduce semi-FIFO policies, separating processing order from
transmission order so that transmission can conform to FIFO constraints while processing order
remains arbitrary. Lazy policies thus become a special case of semi-FIFO policies. The authors
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show a general upper bound of 1
B

log B
B�1

k C 3 on the competitive ratio of any lazy policy and

a matching lower bound of 1
B

log B
B�1

k C 1 for several processing orders. In the two-valued case,

when processing is only 1 or k, this upper bound improves to 2C 1
B

, so any lazy policy has constant
competitiveness. LPQ (Lazy Priority Queue) also falls in the semi-FIFO class; its competitiveness
is between

�
2 � 1

B

˙
B
k

��
and 2 even for arbitrary processing requirements. Kogan et al. [22]

consider a generalization with packets of varying size, considering several natural policies and
showing an upper bound of 4L for one of PO policies, where L is the maximal packet size.

Copying Cost

An important generalization of the heterogeneous processing model was introduced by Keslassy
et al. [12]. They attach a penalty ˛ called copying cost to admitting a packet in the queue; thus,
the objective function is now T � ˛A, where T is the number of transmitted packets and A is
the number of accepted ones, and it becomes less advantageous to push packets out. To deal with
copying cost, the authors propose to use ˇ-push-out policies that push a packet out only if its
required processing is at least ˇ > 1 times less than the required processing of a packet which is
being pushed out. Keslassy et al. [12] consider the PQˇ policy (Priority Queue with ˇ-push-out)

and show that it is at most 1
1�˛ logˇ k

�
1 C log ˇ

ˇ�1

k
2

C 2 logˇ k
�

.1 � ˛/-competitive. Kogan, López-

Ortiz, Nikolenko, and Sirotkin [23] show that for any processing order, a ˇ-push-out lazy policy

LAˇ has competitive ratio at most
�
3 C 1

B
log ˇB

ˇB�1
k

�
1�˛

1�˛ logˇ k
. They show a lower bound 1�˛

1�˛ logˇ k

on the competitive ratio of any ˇ-push-out policy, which matches the additional factor in the upper
bound. In the two-valued case, the upper bound becomes

�
2 C 1

B

�
1�˛
1�2˛

, and the authors also show
a matching lower bound of .2B�2/.1�˛/

.B�1/.1�2˛/C.1�˛/
.

Uniform Values, Variable Processing, Multiple Separated Queues
Consider k separate queues of size B each; packets with required processing i fall into the i th
queue, and the processor chooses which queue to process on a given time slot. Push-out is irrelevant
since queues are independent and packets in a queue are identical. Kogan, López-Ortiz, Nikolenko,
and Sirotkin [25] show linear lower bounds for several seemingly attractive policies: 1

2
minfk; Bg

for LQF (Longest Queue First), k for SQF (Shortest Queue First), 3k.kC2/

4kC16
for PRR (Packet Round

Robin), and an almost linear lower bound of k
H.k/

, where H.k/ D Pk

iD1
1
i

� ln k C � , for CRR
(Cycle Round Robin). They introduce a policy called MQF (Minimal Queue First) that processes
packets from a nonempty queue with minimal processing requirement. They show that MQF is at
least

�
1 C k�1

2k

�
-competitive and prove a constant upper bound of 2. For the two-valued case with

two queues, 1 and k, Kogan et al. [25] show exactly matching lower and upper bounds for MQF
of 1 C �

1 C �
aB�1

b

˘�
=

�
B C ˙

1
a

�
b

�
aB�1

b

˘ C 1
���

.

Uniform Values, Variable Processing, Shared Memory Switch
In this setting, multiple queues with shared memory are implemented in the same way as for
uniform processing and heterogeneous values: there are N output ports, each output port manages
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a single output queue Qi , and each output queue collects packets with the same processing
requirement (so packets in a given queue are identical).

Non-Push-Out Policies

Eugster, Kogan, Nikolenko, and Sirotkin [8] consider non-push-out policies and show that NHST
(Non-Push-Out Harmonic with Static Threshold: jQi j is bounded by B

ri Z
) is .kZ C o.kZ//-

competitive, NEST (Non-Push-Out with Equal Static Threshold: jQi j is bounded by B=n) is
.N C o.N //-competitive, NHDT (Non-Push-Out with Harmonic Dynamic Threshold: accept into
Qi if

Pm
sD1 jQjs

j < B
Hk

�
1 C 1

2
C : : : C 1

m

�
, where j1 : : : jm D i are queues for which jQj j � jQi j)

is .1
2

p
k ln k � o.

p
k ln k//-competitive; finding better non-push-out policies is an open problem.

Push-Out Policies

The work [8] also shows lower bounds on the competitive ratio of well-known policies: .
p

k �
o.

p
k// for LQD (Longest Queue Drop), .ln k C �/ for BQD (Biggest Packet Drop), and

�
4
3

� 6
B

�

for LWD (Largest Work Drop). The main result of [8] is that LWD is at most 2-competitive.

Open Problems

1. Close the gap between competitive ratios 4
3

(lower bound for any policy) and 2 (upper bound
for LQD) in the uniform processing, uniform value case.

2. Do there exist policies with constant competitive ratio in the uniform processing, variable
values, shared memory multiple output queues setting?

3. Do there exist non-push-out policies with sublinear competitive ratio in the case of a single
queue with packets with variable processing and uniform values?

4. Prove an upper bound on the competitiveness of PO (push-out) policy in the single-queue FIFO
model with heterogeneous required processing and uniform values.

5. Do there exist non-push-out policies with logarithmic competitive ratio in the case of multiple
output ports with shared memory that contain packets with variable processing and uniform
values?

6. Design efficient policies for CIOQ and crossbar switches with packets with heterogeneous
processing and uniform values; prove bounds on their competitive ratios.

7. Design efficient policies and prove bounds on their competitive ratios for the case of packets
with both variable values and heterogeneous processing requirements in all of the above
settings.

Cross-References

� Packet Switching in Multi-Queue Switches General
� Packet Switching in Single Buffer
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