
r

trast to
es that
are
tuation
ifferent

sulting
eueing
e the
r

l worst-
mmon
or the
bound
niform
roved
lower

bound.

ur,
Journal of Algorithms 53 (2004) 137–168

www.elsevier.com/locate/jalgo

Analysis of queueing policies in QoS switches✩

An Zhu1

Department of Computer Science, Stanford University, Stanford, CA 94305, USA

Received 13 October 2002

Available online 5 June 2004

Abstract

It is widely accepted that next-generation networks will provide guaranteed services, in con
the “best effort” approach today. We study and analyze queueing policies for network switch
support the QoS (Quality of Service) feature. One realization of the QoS feature is that packets
not necessarily all equal, with some having higher priorities than the others. We model this si
by assigning an intrinsic value to each packet. In this paper we are concerned with three d
queueing policies: thenonpreemptivemodel, theFIFO preemptivemodel, and thebounded delay
model. We concentrate on the situation where the incoming traffic overloads the queue, re
in packet loss. The objective is to maximize the total value of packets transmitted by the qu
policy. The difficulty lies in the unpredictable nature of the future packet arrivals. We analyz
performance of the online queueing policies via competitive analysis, providing upper and lowe
bounds for the competitive ratios. We develop practical yet sophisticated online algorithms (queueing
policies) for the three queueing models. The algorithms in many cases have provably optima
case bounds. For the nonpreemptive model, we devise an optimal online algorithm for the co
2-value model. We provide a tight logarithmic bound for the general nonpreemptive model. F
FIFO preemptive model, we improve the general lower bound to 1.414, while showing a tight
of 1.434 for the special case of queue size 2. We prove that the bounded delay model with u
delay 2 is equivalent to a modified FIFO preemptive model with queue size 2. We then give imp
upper and lower bounds on the 2-uniform bounded delay model. We also show an improved
bound of 1.618 for the 2-variable bounded delay model, matching the previously known upper
 2004 Elsevier Inc. All rights reserved.

✩ A preliminary version of this paper was merged withanother paper by Nir Andelman and Yishay Manso
which appeared in 14th Annual SIAM–ACM Symposium on Discrete Algorithms (SODA), 2003.

E-mail address:anzhu@cs.stanford.edu.
1 Supported by a GRPW fellowship from Bell Labs, Lucent Technologies.
0196-6774/$ – see front matter 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgor.2004.04.007

138 A. Zhu / Journal of Algorithms 53 (2004) 137–168

ms,
is not
works
ent

0].
ports a
oviding
ther
le
tract
rmance

ncide
the

ion is
us
ght not
nizing
g the
st
nce of

oS
ervice
h less
the
med

h each
.

ets

ms of
online
as a
d is
unds

an
s

1. Introduction

Currently, the internet infrastructure employs “best effort” policy for all traffic strea
providing no guarantee on packet delivery. The uncertainty of its performance
satisfactory for many network applications. The widely foreseen next-generation net
will provide guaranteed services to meet various user demands. This gives rise to the rec
interest in the Quality of Service (QoS) feature.

This vision has been around the networking community for more than a decade [1
For instance, ATM networks serve as an example of a unified architecture that sup
diverse set of service classes. Of late, there has been tremendous interest in IP in pr
differentiated servicesvia QoS guarantees. The basic methodology of QoS is ra
intuitive—committing resources to each admitted connection. Thus, the network is capab
of providing different users with different classes of service. In particular, a con
between users and service providers ensures that the network maintains the perfo
guarantees provided the users stick to their commitments about traffic generation.

However, due to a variety of reasons, the incoming traffic patterns may not coi
with that specified in the service contract. A typical situation is that the traffic from
user does not conform to the patterns defined in the contract. The difficult situat
when the traffic exceeds the allocated bandwidth at some point. Another equally serio
problem is that by guaranteeing the worst-case performance, the QoS network mi
be efficient due to its conservative policy, as network traffic tends to be bursty. Recog
this phenomenon, most modern QoS networks allow some “overbooking,” employin
policy popularly known asstatistical multiplexing[4]. In either case, QoS networks mu
resolve the unavoidable issue of overloading. This paper analyzes the performa
queueing policies under overloading situations using competitive analysis.

In the past few years the networking community has had an increasing interest in Q
networks [3,7–9]. A major new paradigm suggested is the assured service [2]. This s
has a loose guarantee in which traffic conforming to the specified pattern is muc
likely to be interrupted in the network. This approach leads to two types of packets in
system: those of high priority (conformed traffic) and those of low priority (unconfor
traffic). High priority packets stands less chance of being dropped by the network.

We abstract the above problem as follows: We assume a value associated wit
packet: value 1 for the low priority packets, and valueα > 1 for the high priority packets
This is called the 2-value model. For differing network requirements, we can adjustα to
achieve the desired performance guarantee. Wealso consider the extension where pack
take on arbitrary values in the range[1, α]. We assume that the queue can hold up toB

packets. The goal is to maximize the total value of the packets transmitted. In ter
competitive analysis, we compare the total value of the packets transmitted by an
algorithm to that of the optimal offline algorithm. We say that an online algorithm h
competitive ratio ofβ , if for any packet arrival sequence, the total value transmitte
at least 1/β fraction of that of the optimal. This paper provides upper and lower bo
for the competitive ratios on three different queueing policies. Thenonpreemptive policy
transmits all packets admitted into the queue; observe, under this policy, the queue c
easily maintain a FIFO order. TheFIFO preemptive policyis allowed to drop packet

A. Zhu / Journal of Algorithms 53 (2004) 137–168 139

ts

l. [1],
etitive
l

acket

as
ds for
wer
[6]. In

t upper
s,

cy as
ize 2
be
and
1.25,

ackets
el, we
nd of

or the
esents

ueue)
upy
fit
ecide
are
cket per
ted,
assume
ber of
rive at
s

already admitted to the queue. Thebounded delay policy, on the other hand, transmi
packets in any order, but each packet must be transmitted before a fixed deadline.

The nonpreemptive policy for the 2-value model was first proposed by Aiello et a
who studied four different queueing policies. Each of these four policies has comp
ratio strictly worse than the known lower bound of(2α − 1)/α. We present a practica
online algorithm and prove that its competitive ratio is precisely(2α − 1)/α, thereby
completely solving the problem for this case. For the general model, where the p
values lie in the range[1, α], we establish matching upper and lower bounds ofΘ(logα).

The FIFO preemptive policy has been studied extensively. The 2-value model w
considered by Kesselman and Mansour [5], who provided approximately tight boun
large values ofα andB. We concentrate on the general model, of which previous lo
and upper bounds were developed by Kesselman et al. [4] and Kesselman et al.
particular, the lower bound is 1.281, and the upper bound is 1.983. We establish tigh
and lower bounds of(5 + √

13)/6 ≈ 1.434 forB = 2. As a byproduct of our technique
we improve the lower bound for general queue sizes to

√
2 ≈ 1.414.

Our techniques for the FIFO preemptive policy apply to the bounded delay poli
well. In particular, we show that the modified FIFO preemptive model with queue s
is equivalent to the 2-uniform bounded delaymodel, where each arriving packet must
transmitted within the next 2time units. We establish upper and lower bounds of 1.414
1.366, respectively. This is an improvement upon the previous bounds of 1.434 and
respectively, due to Kesselman et al. [4]. For the model where some of the arriving p
must be sent out within one time unit, namely, the 2-variable bounded delay mod
establish a lower bound of 1.618. This is an improvement of the previous lower bou
1.414 and matches the upper bound due to Kesselman et al. [4].

The rest of the paper is organized as follows, Section 2 gives a tight analysis f
nonpreemptive model, Section 3 deals with the FIFO preemptive model, Section 4 pr
results for the bounded delay model, finallySection 5 concludes with open problems.

2. Nonpreemptive queueing policy

We first consider the 2-value nonpreemptive model. Consider a switch buffer (q
with enough memory to holdB packets (orB slots). Packets have identical size and occ
one slot each. A low priority packet has benefit 1, while a high priority packet has bene
α > 1. Upon the arrival of a packet, the queueing policy (online algorithm) has to d
immediately whether to accept the packet in the queue, or reject it. Rejected packets
lost forever. Accepted packets stay in the queue, and get transmitted at a rate of 1 pa
time unit. When a queue is full (i.e., containsB packets), no more packets can be accep
until some packets are transmitted to free up the queue space. For convenience, we
that packets are transmitted at integral times, i.e., at each integral time, the num
packets in the queue (if nonzero) goes down by one. In addition, no two packets ar
the same time and no packet arrives at integral times.2 The aim of the queueing policy i

2 These constrains are only added to make the analysis simpler to present and follow.

140 A. Zhu / Journal of Algorithms 53 (2004) 137–168

ience,

or
below.
ce,

t

er,
ets
se

e
e,

e

[1],

ts
.P.
ue. We
ets, or
ket is
the
ets
f the

slots in
is

.
old

hat

.P.
to maximize the sum of the benefits of all packets that get transmitted. For conven
time starts at 0. We usej and its related formsj ′ etc. to denote integral times, uset and its
related formst ′ etc. to denote nonspecific times.

Aiello et al. [1] showed that for a particular value ofα, there is a general lower bound f
any type of online algorithms. For the sake of completeness, we provide the proof
From now on, we useOPT to denote the optimal offline algorithm. And for convenien
we use H.P. to denote “high priority,” and L.P. to denote “low priority.”

Theorem 1. Any online policy(deterministic or randomized) has a competitive ratio of a
least(2α − 1)/α.

Proof. At time t (where 0< t < 1), supposeB L.P. packets arrive one after anoth
infinitesimally apart from each other.3 Let x denote the expected number of L.P. pack
the online algorithm accepts. Ifx � (α/(2α − 1))B, then the adversary does not relea
any new packets.OPT would have accepted and transmitted allB packets. And so th
online algorithm transmits no more thanα/(2α − 1) fraction of the packets. Otherwis
x > (α/(2α − 1))B, and the adversary will releaseB H.P. packets at timet ′ (where
t < t ′ < 1). OPT then would have rejected all the L.P. packets, and accepted allB H.P.
packets. The online algorithm at best can accept an additionalB − x H.P. packets befor
the queue becomes full. It follows that the competitive ratio is at least

Bα

x + (B − x)α
� (2α − 1)α

α + (α − 1)α
= 2α − 1

α
. �

We now present the Ratio Partition policy, which builds on early policies given in
and show that it’s competitive ratio is indeed(2α − 1)/α.

We useRP to denote the Ratio Partition algorithm.RP always accepts H.P. packe
as long as the queue is not full (i.e., there is free slot), and conditionally accepts L
packets, guaranteeing that there is a good mix of H.P. and L.P. packets in the que
introduce the concept of “matching.” L.P. packets are either matched with H.P. pack
unmatched. Initially,RPaccepts a L.P. packets as unmatched. An accepted H.P. pac
matched up toα/(α − 1) unmatched L.P. packets currently in the queue, starting with
earliest. In the case ofα/(α − 1) not integral, we allow the number of matched L.P. pack
to be fractional, since matching is only conceptual. We define the “threshold ratio” o
queue as the total number of unmatched L.P. packets vs. the total number of free
the queue. When a L.P. packet arrives,RPaccepts only if afterwards the threshold ratio
at mostγ = α/(α − 1).4 We callγ the threshold parameter.

We illustrate the algorithm using a concrete example. Let’s supposeB = 12,α = 2, and
initially the queue is empty. The threshold parameterγ is thenα/(α − 1) = 2 in this case
Now 6 L.P. packets arrive,RPwill be able to accept all 6 of them, because the thresh

3 For the rest of the paper, we will simply state “B numbers of packets arrive,” with the understanding t
they arrive one after another, infinitesimally apart.

4 Notice that inevitably, we will encounter some roundoff errors due to the inability to accept partially an L
packet, but this is minor, and not considered here.

A. Zhu / Journal of Algorithms 53 (2004) 137–168 141

free
hed
ed L.P.

lly
,
P.
ackets,

time,

matter
value
d. Thus
ver

e
kwards
ue
r
e time,
at the

o
ber
he
line

at
in
ally
otal

epts,
ratio afterwards is 6/6 = 1 < 2 (the queue contains 6 unmatched L.P. packets and 6
slots). Then two H.P. packets arrive,RP accepts both. Now each H.P. packet is matc
up to 2 unmatched L.P. packets in the queue. So the queue content is now 4 match
packets, followed by 2 unmatched L.P. packets, followed by 2 H.P. packets, and fina
4 free slots. Then suppose 4 more L.P. packets arrive,RP will only accept the first two
because afterwards the threshold value is 4/2 = 2. Any additional acceptance of the L.
packet will raise the threshold ratio above 2. But after the queue transmits some p
more free slots are introduced, or someunmatched L.P. packets have departed,RPwill be
able to accept more L.P. packets.

We now turn to the competitive analysis ofRP. Before analyzingRP, we first bring
more structure toOPT without changing its optimality.

Lemma 1. We can freely exchange any two packets’ positions in OPT’s queue at any
without changing the total value of the packets transmitted by OPT.

Proof. Since every packet accepted to the queue is always transmitted, it doesn’t
in which order they are sent in terms of total value transmitted. In fact, the total
of the packets transmitted is the same as the total value of the packets accepte
in the analysis below, we sometimes argue in terms of packets accepted, whene
convenient. �
Lemma 2. If OPT is idle at timej , then any online algorithm must also be idle at timej .

Proof. Suppose the contrary situation occurs, we look at the first such timej whenOPT is
idle and the online algorithm is not. That means at timej , OPT’s queue is empty, and th
online algorithm’s queue contains at least one packet to be sent. We now look bac
in time, and find the last timet ′ < j whenOPT has fewer number of packets in its que
compared to that of the online algorithm, i.e., during time[t ′, j] OPT always has fewe
number of packets in its queue. Since no two packets can arrive at exactly the sam
that means the number of packets in a queue changes only in unity. Also notice th
number of packets decreases synchronously for bothOPT and the online algorithm. S
at a time infinitesimally beforet ′, OPT and the online algorithm have the same num
of packets in their queues. Such timet ′ exists since initially both queues are empty. T
only event that can occur at timet ′ to have caused this sudden change is that the on
algorithm accepted a packet whileOPT rejected the same packet. We then modifyOPT to
accept such a packet. Now during time[t ′, j], the number of packets inOPT’s queue is still
upper bounded by that of the online algorithm. SoOPT never has to reject any packets th
it originally accepted during this time period. At timej , OPT has at most one packet
its queue to be transmitted. ClearlyOPT can accept whatever packets accepted origin
after timej as well. We have argued thatOPT can accept one more packet, thus the t
value of accepted packets has increased, a contradiction to the optimality ofOPT. �
Lemma 3. We can modify OPT so that it accepts all the H.P. packets that RP acc
without changing its optimality.

142 A. Zhu / Journal of Algorithms 53 (2004) 137–168

truct a
just
accept

im

e
ets in
e
t
cket
t
ed. If a
ust
re
ible.
pletes

n

s that
me

ll,
ets

change
.

Proof. Because nonpreemptive queueing has a matroid structure, we can cons
particular optimal offline solution as follows [1]: first ignore all L.P. packets, and
greedily accept the H.P. packets as long as the queue is not full. In addition, we
the L.P. packets that won’t interfere with the H.P. packets accepted. LetOPTH denote the
algorithm that only accepts H.P. packets greedily and ignores the L.P. packets. We cla
that the set of packetsOPTH accepted is a superset of the H.P. packets thatRP accepts.
Since all the packets accepted byOPTH are included in the optimal offline solution w
are constructing, we will prove this lemma. We first show that the number of pack
OPTH ’s queue is always no more than that ofRP. We prove this by induction. Assum
during time[0, t) the hypothesis is true, now consider timet . If a L.P. packet arrives a
time t , sinceOPTH won’t accept any L.P. packet, the hypothesis is true. If a H.P. pa
arrives,RPalways greedily accepts, unless its queue is full, in which caseRPhas the mos
number of packets possible in its queue. So afterwards the hypothesis is maintain
packet departs fromOPTH ’s queue at timet , by the inductive hypothesis, a packet m
also depart fromRP’s queue. If a packet departs fromRP’s queue and vice versa, we a
again fine. OtherwiseOPTH is idle, which means its queue is empty, the smallest poss
So the hypothesis is maintained after any of the departing situations above. This com
the inductive proof. Thus ifRPaccepts a H.P. packet, sinceOPTH has more free slots tha
RP, OPTH will accept that packet for sure.�
Lemma 4. We can restrict the sequence of packet arrivals to only contain the packet
either OPT or RP accepted. On the new sequence, OPT and RP accept exactly the sa
packets as they would on the original sequence.

Proof. Clearly, OPT can accept exactly the same packets throughout, andmaintain its
optimality by the matroid property. ForRP, it only rejects H.P. packets if the queue is fu
and rejects the L.P. packets if the restriction on the threshold ratio is met. So the pack
accepted on the new sequence is going to be the same as well.�

We letS denote this restricted sequence and our analysis will only concentrate onOPT
andRP’s behaviors onS. In particular, from Lemma 3, we know the following.

Corollary 1. The H.P. packets inS are exactly the ones that OPT accepted.

We further restrictOPT’s behavior as follows.

Lemma 5. If at time t , RP accepts a L.P. packetp while OPT rejects, and later OPT
accepts another L.P. packetp′ before its queue is full, then we modify OPT to acceptp

instead and rejectp′ later, maintaining the optimality.

Proof. We look into the futuret ′ � t , whereOPT’s queue is full for the first time sincet .
OPT exchanges the two packetsp andp′. Since the queue was never full beforet ′, the
exchange will guarantee that the modifiedOPT’s queue is never overflown tillt ′, when it
contains the same number of packets as the original one. Obviously, this does not
the value of the optimal solution. Note that if during time(t, t ′], OPT only accepts H.P

A. Zhu / Journal of Algorithms 53 (2004) 137–168 143

n

an
e

ead of

ferring

es

oth

e

e

ere

et
f

a tape
k

packets and no L.P. packet, acceptingp at timet will interfere with the H.P. packets, the
OPT must rejectp. �

We now are ready for the analysis ofRP. We imagine the packets transmitted by
algorithm being placed on a one-way infinite tapeT . We useT [i] to denote the tap
position with indexi, for i � 0. T [j] holds the packet transmitted at timej + 1. We
can conceptually think an algorithm as simply placing packets onto the tape, inst
accepting packets into the queue. Thus, a packetp arrived between time(j, j +1) can only
be placed at a tape position anywhere fromT [j] to T [j +B−1]. An algorithm would place
p in the first such empty tape position, corresponding to acceptingp into the queue. We
often refer to packetp by its tape position, i.e.,p = T [q] for somej � q � j + B − 1. We
useI (p) to denote the index of packetp on the tape, i.e.,I (p) = q . The total value of the
packets transmitted is then the total value of the packets placed on the tape. When re
to eitherOPT or RP’s tape, we use the superscriptsT OPT, T RP, IOPT, IRP, and omit these
superscripts wherever the context is clear. We useT OPT[i, j] (T RP[i, j], respectively) to
denote the total value of packets fromT [i] to T [j] on OPT’s (RP’s, respectively) tape.

Lemma 6. At any time, packets that appear at the same positions in OPT and RP’s queu
occupy the same tape positions, and vice versa.

Proof. At any time t , if p is the ith packet inOPT’s queue, andq is the ith packet
in RP’s queue (1� i � B), then bothp andq will be transmitted at time�t� + i − 1.
So I (p) = �t� + i − 2 andI (q) = �t� + i − 2. Similarly, packets with indexj on the
tapes,T OPT[j] andT RP[j], always appear at the same positions together inOPT andRP’s
queues. It could happen that only one of the packets is present in the queue, but when b
packets are present, the positions they occupy in the queues are the same.�

We now present some high level ideas of the analysis. Lett be the first timeRP and
OPT disagree with each other. We’ll pick a suitable future timet ′ > t , and argue that th
total value of packetsRP accepted during time[0, t ′] is at least aα/(2α − 1) fraction
of that of OPT. The analysis then continues after timet ′, finds the next time instanc
where the two algorithms disagree witheach other, find another suitable timet ′′ further
in the future, compare values of packets accepted between time(t ′, t ′′], and so on. In
the tape world, letT OPT[u] (T RP[v], respectively) andT OPT[u′] (T RP[v′], respectively)
denote the corresponding starting and ending positions of packets accepted byOPT (RP,
respectively) during time[0, t ′]. Since there may be idle times, we simply require that th
are no packets accepted byOPT (RP, respectively) outside of[0, t ′] in between positions
T OPT[u] andT OPT[u′] (T RP[v] andT RP[v′], respectively). Initially at time 0, we may s
u = v = 0. The timet ′ we pick will guarantee thatu′ = v′, i.e., at timet ′ the numbers o
packets inOPTandRP’s queue are the same again. Thus such relations (u = v andu′ = v′)
can be maintained for all future analysis as well. Conceptually, our analysis breaks
into pieces, and compares the tape contents ofOPTandRPbetween two consecutive brea
points.

144 A. Zhu / Journal of Algorithms 53 (2004) 137–168

ts
e by

are

he

d

3.

s

Theorem 2. We can break down a tape at some selected positions bp1 = 0 < bp2 < bp3 <

· · ·, at timest1 = 0 < t2 < t3 < · · ·, such that

T OPT[bpi ,bpi+1 − 1]
T RP[bpi ,bpi+1 − 1] � C, whereC = 2α − 1

α
.

Proof. We use induction on the following inductive hypothesis: at timeti , the following
conditions hold:

(a) The numbers of packets inOPT andRP’s queue are the same.
(b) The queue contents for packets with indicesbpi or higher are identical forOPT and

RP.
(c) All the unmatched L.P. packets in the queues are of indexbpi or higher.

Note that such hypothesis is true fort1 = 0 andbp1 = 0. At time 0, there are no packe
in eitherOPT or RP’s queue. The requirement for the unmatched L.P. packets is tru
default.

We examine the packets admitted to the queue by bothOPT andRP from time ti on.
Assume at timet ′′ > ti , OPT andRPdisagree with each other for the first time. There
only four general situations:

(1) OPT accepted a H.P. packets, whileRP rejected the packet. This is impossible. T
numbers of packets in both queues are the same at timeti , by condition (a) of the
inductive hypothesis. PlusOPT andRPagree with each other between time(ti , t

′′), so
the number of packets in both queues are the same just before timet ′′. If OPTaccepted
a H.P. packet at timet ′′, that meansOPT’s queue was not full prior to timet ′′, neither
wasRP’s queue.RPemploys greedy strategy for H.P packets.RPshould have accepte
the H.P. packet as well.

(2) RPaccepted a H.P. packet, whileOPT rejected. This cannot happen due to Lemma
(3) OPT rejected a L.P. packet, whileRPaccepted.
(4) RPrejected a L.P. packet, whileOPT accepted.

In either of the last two cases, we’ll find a breaking pointbpi+1 > bpi at a time
ti+1 > t ′′ > ti . We then show that

T OPT[bpi ,bpi+1 − 1]
T RP[bpi ,bpi+1 − 1] � C. �

Let’s consider situation (3). At timet ′′, OPT rejected a L.P. packetsp, while RP
accepted. Then by Lemma 5, there is a timet ′ > t ′′, such thatOPT’s queue is full at
time t ′ andOPT only accepts H.P. packets between time(t ′′, t ′]. The last packet inOPT’s
queue at timet ′ has index�t ′� + B − 1. We then setbpi+1 = �t ′� + B, andti+1 = t ′. The
reader can verify thatbpi+1 > bpi andti+1 > ti .

Lemma 7. Both OPT’s and RP’s queues are full at timet ′. And neither OPT nor RP wa
idle during time(t ′′, t ′].

A. Zhu / Journal of Algorithms 53 (2004) 137–168 145

.
ue

f

ber of
ce,

slots

rts,
oes not

e

ets in

ts
sitions

s for
is

.
2,
Proof. OPT cannot be idle during time(t ′′, t ′]. Otherwise, we modifyOPT to accept
the additional packetsp instead, contradicting the optimality ofOPT. At time t ′′, RPhas
one more packetsp in its queue compared to that ofOPT. RP is greedy in terms of H.P
packets, so unlessRP’s queue is full (in which caseRPhas as many packets in its que
as possible), it will always accept a H.P. packet thatOPT accepts during time(t ′′, t ′]. RP
may even accept some L.P. packet during that time, too. SoRP’s queue will always have
equal or more number of packets compared to that ofOPT until time t ′. This implies that
RP’s queue is full at timet ′ and never idle during time(t ′′, t ′]. �
Lemma 8. At any time we have thatl × (α − 1) � f × α, where l is the number o
unmatched L.P. packets andf is the number of free slots in RP’s queue.

Proof. This is true at time 0. When a L.P. packet is accepted, by definition, the num
unmatched L.P. packet is not more thanα/(α − 1) times the total number of the free spa
so the bound trivially holds. When a H.P. packet is accepted, the number of free
decreases by 1, but the number of unmatched L.P. packets is decreased byα/(α − 1), or
there is no unmatched L.P. packet. In either case, the claim is true. When a packet depa
the number of free slots increases by 1, the number of unmatched L.P. packets d
increase, hence the bound still holds.�
Corollary 2. When RP’s queue is full, all the L.P. packets are matched in the queue.

Lemma 9. At time ti+1 = t ′ and bpi+1 = �t ′� + B, all three conditions in the inductiv
hypothesis in Theorem2 are satisfied.

Proof. By Lemma 7, both queues are full, hence condition (a) is satisfied. The pack
OPT andRP’s queue have indices at most�t ′� + B − 1 < bpi+1, so condition (b) holds by
default. By Corollary 2, condition (c) holds as well.�

We now compareT RP[bpi ,bpi+1 − 1] with T OPT[bpi ,bpi+1 − 1]. In particular, we’ll
show that

T OPT[IRP(sp),bpi+1 − 1
]
/T RP[IRP(sp),bpi+1 − 1

]
� C. (�)

Recall thatIRP(sp) is the index of packetsp on RP’s tape. By Lemma 5 and 7,OPT has
all H.P. packets fromT [IRP(sp)] to T [bpi+1 − 1], while RPhas either L.P. or H.P. packe
at these positions. We will prove that the total fraction of the L.P. packets at these po
is at mostα/(2α − 1), immediately implying(�).

We introduce the following conceptual marking of H.P. packets to L.P. packet
packets from positions[IRP(sp)] to T [bpi+1 − 1]. Initially, each accepted L.P. packet
unmarked. We mark packets as follows: each accepted H.P. packet with indexIRP(sp) or
higher would mark up toα/(α − 1) unmarked L.P. packets with indicesIRP(sp) or higher.
The marking is almost the same as the actual matching used inRP, except that only the L.P
packets with indicesIRP(sp) or higher are marked. Similar to Lemma 8 and Corollary
we conclude the following.

146 A. Zhu / Journal of Algorithms 53 (2004) 137–168

arked
t
at

nt

.P.

s
cket

.

L.P.

hen a

L.P.
d

P.

ts from

4). At
e

Corollary 3. When RP’s queue is full during any time between(t ′′, t ′], all L.P. packets
from positionsIRP(sp) on are marked in the queue.

Lemma 10. At most α/(2α − 1) fraction of the packets betweenT RP[IRP(sp)] and
T RP[bpi+1 − 1] are L.P. packets.

Proof. From now on we completely ignore the packets with indices lower thanIRP(sp)
in both queues. We use the word “relevant” to refer to packets “with indicesIRP(sp) or
higher.” We consider the longest prefix of consecutive packets that consists of only m
L.P. and H.P. packets inRP’s queue. The prefix has to start from eithersp, or the first packe
in RP’s queue ifsphas departed. We useL(t) to denote the length of such longest prefix
any timet ∈ [t ′′, t ′]. We prove the following claim:L(t) is at least the number of releva
H.P. packets inOPT’s queue at timet .

The base case is at timet ′′ whenRP acceptedsp andOPT rejectedsp. OPT has no
relevant H.P. packets yet in its queue. ForRP, initially sp is unmarked, soL(t ′′) = 0.
The hypothesis is true. Now consider the inductive step. When a H.P. packethp arrives,
if RPacceptshp, thenOPT acceptshp as well by Lemma 3. The number of relevant H
packets inOPT’s queue increases by 1. Consider the previous valid longest prefixP in
RP’s queue, ifhp immediately followsP , then we appendhp to P and the hypothesis i
maintained. Ifhpcould not extendP , that means there is at least one unmarked L.P. pa
ulp immediately followingP , i.e., all relevant L.P. packets prior toulp in the queue are
marked already. By our marking scheme, the arrival ofhp changesulp to a marked L.P
packet, thus extendingP by at least one, maintaining the hypothesis. IfRP rejectshp,
that meansRP’s queue is full. By Corollary 3, all relevant L.P. packets inRP’s queue are
marked, soRP has the longest possible prefix, maintaining the hypothesis. When a
packet is accepted intoRP’s queue, the number of relevant H.P. packets inOPT doesn’t
change, neither does the length of the prefix. The hypothesis is also maintained w
packet departs from both queues, by Lemma 7 (neither machine is idle).

The hypothesis implies thatRP always sends a relevant L.P. packet as a marked
packet, during time(t ′′, t ′]. Otherwise consider the timet∗ just before an unmarke
relevant L.P. packetulp2 was sent byRP, and a H.P. packet was sent byOPT. L(t∗) = 0,
since ulp2 was the first packet in the queue, butOPT has at least one relevant H.
packet in the queue to be sent, contradicting our claim. At timet ′, RP’s queue is full,
andT RP[bpi+1 − 1] corresponds to the last packet inRP’s queue. By Corollary 3, all the
relevant L.P. packets in the queue are marked. We have proved that all L.P. packe
T [I (sp)] to T [bpi+1 −1] are marked. Since each H.P. packet marks at mostα/(α − 1) L.P.
packets, at mostα/(2α − 1) fraction of the these packets are L.P. packets.�

This concludes the discussion about situation (3), now let’s consider situation (
time t ′′, OPT accepted a L.P. packettp, while RP rejected it, soOPT’s queue has mor
packets than that ofRPat timet ′′. Then we look at the first timet ′ > t ′′ whenRP’s queue
contains the same number of packets as that ofOPT.

A. Zhu / Journal of Algorithms 53 (2004) 137–168 147

f

of

e is a

ets in

2,

ge

, by

ts from

s,

ts

y at

ok
Lemma 11. We can rearrange OPT’s queue content during time[t ′′, t ′], so that the prefix o
its queue matches the entire RP’s queue content. To be more specific, at any timet ∈ [t ′′, t ′],
the following conditions hold:

(1) OPT always has more packets in its queue than RP fort < t ′, and the same number
packets at timet ′.

(2) The H.P. packets in OPT’s queue are synchronized with that of RP, i.e., if ther
H.P. packet at positioni in OPT’s queue, then there is a H.P. packet at positioni in
RP’s queue, and vice versa. In particular, that means the numbers of H.P. pack
both queues are the same.

Proof. Notice that condition (1) is always true by the definition oft ′. We use induction to
prove condition (2). The base case is at timet ′′. By conditions (a) and (b) in Theorem
OPT only has one extra L.P. packettp at the end of its queue compared to that ofRP, the
hypothesis is true. When a H.P. packethparrives, by Corollary 1,OPT always acceptshp.
SinceRPalways has no more packets in its queue thanOPT, RPmust greedily accepthp.
Let P(hp) denote the position ofhp in RP’s queue.OPT then placeshpat positionP(hp),
and places whatever packet was originally atP(hp) at the end of its queue. Such exchan
is valid by Lemma 1. Thus the hypothesis is maintained. When a L.P. packetlp arrives,
the only interesting case is whenRP acceptslp while OPT rejectslp. Let P(lp) denote
the position oflp in RP’s queue. Since all the H.P. packets are still synchronized
condition (1),OPT must have a L.P. packet at positionP(lp) already (otherwiseOPT has
less number of packets, impossible), maintaining the hypothesis. If a packet depar
RP, then the same packet must depart fromOPT as well. If a packet departs fromOPT,
either the same packet departs fromRP, or RP is idle. In any of the departing scenario
the hypothesis is maintained.�
Corollary 4. At timet ′, OPT and RP has exactly the same queue contents.

Proof. By the previous lemma, at timet ′, we have rearrangedOPT’s queue so that its
prefix matches the entire queue content ofRP. SinceOPT has the same number of packe
asRPat timet ′, OPT’s queue content is exactly that ofRP. �

During time [t ′′, t ′), if RP was never idle, then we should ignore the discrepanc
time t ′′. Here is the reasoning. SinceRP was never idle, by Lemma 2,OPT was never
idle either. That means all packets transmitted during time[ti , t ′) (with indicesbpi or
higher) are the same forRP andOPT, due to Lemma 11. By Corollary 4, at timet ′ we
can conceptually thinkOPT andRPagree with each other during time[ti , t ′], even though
OPT andRP made different decisions about accepting the packets. We should then lo
for the next timet ′′ whereOPT andRPdisagree with each other again.

The interesting case is whenRP was at least idle once during time[t ′′, t ′). The first
packet (or the first position, if there is no packet) inRP or OPT’s queue at timet ′ has
index�t ′	. We then setbpi+1 = �t ′	, andti+1 = t ′. The reader can verify thatti+1 > ti and
bpi+1 > bpi .

148 A. Zhu / Journal of Algorithms 53 (2004) 137–168

e

is

L.P.

itted.”
al
nary
orever.
e, its

ts also
he

of

r
acket
is

l
r

han

t

e

st
Lemma 12. At time ti+1 = t ′ and bpi+1 = �t ′	, all three conditions in the inductiv
hypothesis in Theorem2 are satisfied.

Proof. By the definition oft ′, condition (a) is satisfied. By Corollary 4, condition (b)
satisfied. The first packet in the queue at timet ′ has indexbpi+1 = �t ′	, so condition (c) is
satisfied as well. �

We now show that

T OPT[bpi ,bpi+1 − 1]/T RP[bpi ,bpi+1 − 1] � C. (∗)

Notice that by condition (2) in Lemma 11, the numbers of H.P. packets forOPT and
RP from T [bpi] to T [bpi+1 − 1] are the same. It’s sufficient then to argue that the
packets fromT RP[bpi] to T RP[bpi+1 − 1] is at leastα/(2α − 1) fraction of that ofOPT.
We use the following counting scheme. Every time a L.P. packet is accepted intoRP’s
queue, it contributes another imaginary(α − 1)/α L.P. packet toRP’s queue. We allow the
imaginary packets to overflow the queue. The imaginary packets can also be “transm
RP always transmits real packets as in the original schedule, but when it’s empty of re
packets, we letRP transmit a whole imaginary packet if there is any. Once an imagi
packet is transmitted, it’s removed from the queue, otherwise it stays in the queue f
In particular, we have the property that if the L.P. packet is currently in the queu
corresponding imaginary packet is alsoin the current queue. This is becauseRP always
transmits real L.P. packets first rather than imaginary ones. The imaginary packe
form a separate queue, which is appended toRP’s queue of normal packets. We use t
word “relevant” here to refer to packets “with indices betweenbpi andbpi+1 − 1.”

Lemma 13. The total number of relevant packets in RP’s queue(including the imaginary
packets generated by the relevant packets), is always no less than the total number
relevant packets in OPT’s queue during time[ti , ti+1).

Proof. The claim is true during time[ti , t ′′), sinceOPT and RP agree with each othe
till time t ′′. Let’s consider different scenarios for the inductive step. When a H.P. p
arrives, by the exact argument in Lemma 11, bothOPT andRP accepts. The hypothes
is maintained. When a L.P. packetlp arrives, the interesting case is ifOPT acceptslp
as a relevant L.P. packet whileRP rejects. The reason forRP’s rejection is that the tota
number of unmatched L.P. packets inRP’s queue is at leastα/(α − 1) times the numbe
of free slots. By condition (3) in Theorem 2, all unmatched L.P. packets inRP’s queue
have indicesbpi or higher. By condition (1) in Lemma 11, they all have indices lower t
that of lp, which is no more thanbpi+1 − 1. So all the unmatched L.P. packets inRP’s
queue are relevant and their corresponding imaginary packets must be inRP’s queue as
well. That means that the number of imaginary L.P. packets inRP’s queue currently mus
be at least the number of free slots. So the total number of packets inRP’s queue isB,
definitely match that ofOPT. When a packet departs fromOPT’s queue, by the inductiv
hypothesis, a packet, maybe imaginary, must also depart fromRP’s queue (sinceRP has
no less packets thanOPT). When a packet departs fromRP’s queue, either a packet mu

A. Zhu / Journal of Algorithms 53 (2004) 137–168 149

ket

n

es,
ary
d,

an
e,

m will
al

than

ckets
o

ue
also depart fromOPT’s queue, orOPT is idle (which could happen if the departing pac
of RP is imaginary). So the hypothesis is maintained for all departing cases.�

From the above lemma we conclude that the total number of relevant L.P. packetsRPhas
is at leastα/(2α − 1) fraction of that ofOPT, realizing(∗). This concludes the discussio
of situation (4) in Theorem 2. We thus obtain the following theorem.

Theorem 3. RP is(2α − 1)/α-competitive.

2.1. Generalization of the nonpreemptive queue model

We now generalize the 2-value model to allow packets take on arbitrary values in[1, α].
We proveΘ(logα) upper and lower bounds for this model.

2.1.1. Lower bound of(logα + 2)/2
We assume thatα is a power of 2. We use packets of value 2i , for i = 0, . . . , logα.

All the packets arrive during time(0,1). Packets arrive in increasing order of valu
with B packets for each value, i.e., firstB packets of value 1 arrives, then if necess
B packets of value 2 arrive, and so on. We letLB denote the inverse of the lower boun
LB= 2/(logα + 2).

At first B packets of value 1 arrive. To stay(1/LB)-competitive, the online algorithm
must accept packets with total value at leastLB × B. For otherwise the adversary c
choose to stop the sequence immediately and accept allB value 1 packets to the queu
while the online algorithm accepted packets with total value less thanLB× B. So to stay
at least(1/LB)-competitive, the online algorithm has to occupy at leastLB fraction of the
total queue space with value 1 packets. In general, we have the following lemma.

Lemma 14. After B packets with value2i arrive, in order to remain at least(1/LB)-
competitive, any online algorithm must accept packets with total value at least LB×2i ×B.
And the longest prefix of the packets in the queue with total value no more than LB×2i ×B

occupy at least(i/2+ 1) × LB× B slots.

Proof. We have argued that the base case is true fori = 0. Assume this is true fori = k−1,
now consider whenB packets of value 2k arrives. To stay(1/LB)-competitive, the online
algorithm must accept packets with total value at leastLB × 2k × B, for otherwise the
adversary will stop the packet sequence immediately and the optimal offline algorith
accept allB packets with value 2k, while the online algorithm accepted packets with tot
value less thanLB× 2k × B.

Let Pk−1 denote the last packet in the longest prefix with total value no more
LB × 2k−1 × B andNk−1 denote the number of packets in the queue afterPk−1, before
B packets of value 2k arrived. We need to accept packets so that the total value of pa
afterPk−1 adds up to at leastLB× 2k−1 × B. Every one of theNk−1 packets has value n
more than 2k−1. So the total value of theseNk−1 packets is no more than 2k × �Nk−1/2�.
Consider the first(LB× B)/2− �Nk−1/2� value 2k packets accepted. Now the total val
of these value 2k packets plus theNk−1 packets before is no more thanLB × 2k−1 × B.

150 A. Zhu / Journal of Algorithms 53 (2004) 137–168

th

ongest

l

e

und.
s
to

alue
st

ound

ch

e
teeing
have

hod

ethod
bin
Together with the previous prefix ending withPk−1, we then have a prefix of packets wi
total value no more thanLB× 2k × B, and has at least

Nk−1 + LB× B

2
−

⌈
Nk−1

2

⌉
� LB× B

2

more packets than the previous one. By the inductive hypothesis, the length of the l
prefix is at least(k/2+ 1) × LB× B. �

In particular, this lemma applies toi = logα. After B packets with valueα arrive, the
length of the longest prefix is at least(logα/2 + 1) × LB × B = B. That means the tota
value of packets in the queue is no more thanLB × 2logα × B = α × LB × B. On the
other hand, the optimal offline algorithm will accept allB α-valued packets. So the onlin
algorithm cannot be better than(1/LB)-competitive.

Theorem 4. No online algorithm(deterministic or randomized) has a competitive ratio
better than(logα + 2)/2.

2.1.2. Upper bound of2 logα + 2
We now present a deterministic algorithm, which is factor 4 away from our lower bo

First we discretize the packet values. We restrict ourselves to instances where packet value
are of powers of 2. Given any unrestricted instanceI, we round down the packet values
the nearest powers of 2 to create a restricted instanceI ′.

Lemma 15. The optimal offline value forI ′ is at least half of that ofI.

Proof. Just consider the packets accepted by the optimal offline algorithm forI. The same
set of packets is a valid solution forI ′. For each accepted packet, the rounded down v
is at least half the original value. So we have a solution forI ′, whose total value is at lea
half the optimal solution forI. �

From now on we only consider the restricted instances. We first introduce a R
Robin method, and then adapt the method into a valid online algorithm.

We divide the queue into�logα	 + 1 equal portions, with theith portion dedicated
to packets of value 2i , for i = 0,1, . . . , �logα	. Upon the arrival of a value 2i packet, the
Round Robin method greedily accepts if theith portion has more than one free slot. At ea
integral time unit, we transmit 1/l fractional packet each from the currentl non-empty
portions. In the case of some portions has less than 1/l fractional packet, we divide th
extra transmission power evenly among the rest of the non-empty portions, guaran
that we transmit one packet per time unit, unless all portions are empty. From [1], we
the following lemma (Corollary 3 in [1]).

Lemma 16. The total value of the value2i packets accepted by the Round Robin met
is at least1/(�logα	 + 1) fraction of that of the optimal offline algorithm.

We can simulate the Round Robin method as follows. We run the Round Robin m
in the background, and make acceptance/rejection decisions based on the Round Ro

A. Zhu / Journal of Algorithms 53 (2004) 137–168 151

d
e, the
Robin

ccept,

Robin
od.
ce
by

op) a
can
queue,
om
e non-
s in the

now

s

m

o-
e

hich
order

lues)
d into
method. Our online algorithm accepts a packet if and only if it’s accepted in the Roun
Robin method. Since the Round Robin method transmits one packet per unit tim
total number of packets in the online algorithm’s queue equals to that of the Round
method. So we can indeed accept every packet the Round Robin method accepts.

Theorem 5. Using the Round Robin method as a guide to decide which packet to a
the online algorithm is(2 logα + 2)-competitive.

Proof. Since the online algorithm accepts exactly the same packets as the Round
method, the online algorithm has the same competitive ratio as the Round Robin meth
The Round Robin method is(logα + 1)-competitive with respect to the restricted instan
by Lemma 16, hence(2 logα + 2)-competitive with respect to the original instance
Lemma 15. �

3. Preemptive queueing policy

Preemptive queueing policies give online algorithms the ability to preempt (dr
packet accepted to the queue before its transmission, hence better performance ratios
be derived. To maintain the FIFO order, packets are always added to the end of the
and transmitted from the beginning of thequeue. In addition, a packet can be dropped fr
any position in the current queue. The rest of the model setup is identical to that of th
preemptive model. We concentrate on the model where packets can take on value
range[1, α]. We first consider the caseB = 2. We show the(5 + √

13)/6 ≈ 1.434 upper
and lower bounds in terms of competitive ratio for deterministic algorithms.

3.1. Lower bound construction

We start with some intuition via simple constructions that give loose bounds. From
on, when the context is clear, we may refer to apacket by its value; for instance, “packetp”
or “p” refers to the packet with valuep. We use the following notations:p ≡ q meansp
andq are the same packet;p = q means packetp andq has the same value. All inequalitie
refer to the values of packets only.

The basic intuition behind the lower boundis as follows: Suppose the online algorith
currently has two packets in the queue, with valuesp andq respectively. Supposep < q

andp has to be transmitted beforeq . Without knowing future arrivals, the online alg
rithm faces a dilemma: either to transmitp and letq remain in the queue, which puts th
online algorithm in danger of discardingq later; or discardp and transmitq , which puts
the online algorithm in danger of being idle the next time unit. Thus the adversary, w
determines the “difficult” packet sequences, will try to balance these two situations in
to maximize the lower bound.

We introduce the following notation for the packet arrival sequence: packets (va
are listed in their arrival order, with packets arrived within the same time unit groupe
parentheses. For instance,(a, b)(c, d) means packets valueda andb arrived during time

152 A. Zhu / Journal of Algorithms 53 (2004) 137–168

ed

nce
m
e ratio

ction
es

e
s a

t
mit
f

t
at

wing

s,
(0,1), with a ahead ofb. And packets valuedc andd arrived during time(1,2), with c

ahead ofd .
Consider the following initial sequence:(1, α) with α > 1 a parameter to be determin

later. If the online algorithm transmitsα at time 1, then the sequence ends.OPT transmits
both 1 andα in two time units. The competitive ratio is then(1 + α)/α. Otherwise the
online algorithm can transmit 1 and putα in the queue at time 1, then the whole seque
becomes(1, α)(α,α). OPT transmits all threeα-valued packets, while the online algorith
has to discard one such packet during the second time unit. So the competitiv
becomes 3α/(2α + 1). Balancing the two ratios(1+ α)/α = 3α/(2α + 1), we haveα =
(3+ √

13)/2, and the lower bound is approximately 1.303. This lower bound constru
takes advantage of the online algorithm’s inability to distinguish between two sequenc
(1, α) and(1, α)(α,α).

Now we try to improve the bound via extending the whole sequences to(1, α1),
or (1, α1)(α1, α2), or (1, α1)(α1, α2)(α2, α2). In the future, we’ll just write one singl
sequence(1, α1)(α1, α2)(α2, α2), with the understanding that each prefix serves a
possible sequence of packet arrivals. If at time 1 the online algorithm transmitsα1, then the
sequence becomes(1, α1). OPT would have transmitted packet 1 at time 1 and packeα1

at time 2, so the ratio is(1+ α1)/α1. Otherwise, the online algorithm can at best trans
packet 1 at time 1. Now between time(1,2), α1 andα2 arrive. Let’s consider time 2. I
the online algorithm transmitsα2, then the sequence becomes(1, α1)(α1, α2). OPT would
have transmitted the firstα1 at time 1, the secondα1 at time 2, andα2 at time 3, for a
total of α1 + α1 + α2. The online algorithm transmits packet 1 at time 1 and packeα2
at time 2, so the ratio is(α1 + α1 + α2)/(1+ α2). Otherwise, the online algorithm can
best transmitα1 at time 2. The sequence then becomes(1, α1)(α1, α2)(α2, α2). OPTwould
have transmittedα1 at time 1, the firstα2 at time 2, the secondα2 at time 3, and the thirdα2
at time 4, for a total ofα1 +α2 +α2 +α2. The online algorithm transmits 1 at time 1,α1 at
time 2, andα2’s at times 3 and 4, so the ratio is(α1 + α2 + α2 + α2)/(1+ α1 + α2 + α2).
Setting the three ratios equal, we haveα1 = (3+ √

5)/2,α2 = (9+ 4
√

5)/2, and the lower
bound is approximately 1.382.

Thus if we continue the trend, we can improve the bound further. Consider the follo
general sequence(α0 = 1, α1)(α1, α2) . . . (αk−1, αk)(αk,αk). We useLk to denote the
lower bound derived from the sequence ending withαk . We have the following equation
derived from various scenarios similar to the two previous constructions:

Lk = α0 + α1

α1
= α1 + α1 + α2

α0 + α2
= α1 + α2 + α2 + α3

α0 + α1 + α3
= · · ·

= α1 + α2 + · · · + αk−1 + αk−1 + αk

α0 + α1 + · · · + αk−2 + αk

= α1 + α2 + · · · + αk−1 + αk + αk + αk

α0 + α1 + · · · + αk−2 + αk−1 + αk + αk

.

Solving the above equations, we have

αi = 1
(√

13+ 5
)i

+ 2
(√

13− 1
)i
3 2 3 2

A. Zhu / Journal of Algorithms 53 (2004) 137–168 153

e

than

e
than

the
ric
is

ce

series
pt for

er
tee

ne
ring
n

e

n
n

and ask → ∞, Lk → (
√

13 + 5)/6 ≈ 1.434. Appendix A provides the details of th
calculation. From now on letAPXdenote the constant(

√
13+ 5)/6.

Theorem 6. No deterministic online algorithm can achieve a competitive ratio better
APX− ε, for any constantε > 0.

Proof. For anyε > 0, we can find a particular valuej , such thatLj > APX− ε. By
applying the sequence(1, α1)(α1, α2) . . . (αj−1, αj)(αj ,αj) and the analysis above, w
can conclude that any deterministic algorithm has a competitive ratio no better
APX− ε. �
3.2. The Ratio algorithm

The αi series provides much insight on designing an online algorithm with
matching upper bound. We see that theαi series is a combination of two geomet
series of powers(

√
13+ 5)/2 and(

√
13− 1)/2, respectively. The dominating factor

(
√

13 + 5)/2, sinceαi/(αi−1) increases and converges to this value asi → ∞. Let
r denote the constant(

√
13 + 5)/2. For anyk, consider the packet arrival sequen

(1, r)(r, r2) . . . (rk−1, rk)(rk, rk), we have the following observations:

r + r2 + · · · + rk−1 + rk−1 + rk

1+ r + · · · + rk−2 + rk
=

∑k−1
i=1 ri + rk−1 + rk∑k−2

i=1
∑

ri + rk

<
rk−1 · r

r−1 + rk−1 + rk

rk−2 · r
r−1 + rk

= APX, (1)

r + r2 + · · · + rk−1 + rk + rk + rk

1+ r + · · · + rk−1 + rk + rk
<

rk · r
r−1 + rk + rk

rk · r
r−1 + rk

= APX. (2)

Further, ask → ∞, (1) and (2) approach equality. So in some sense, the geometric
1, r, r2, . . . alone can almost provide the lower bound on the competitive ratio, exce
smallk’s. The other factor(

√
13− 1)/2 is only used by the adversary to make the low

bound high for smallk’s as well. The online algorithm, however, only has to guaran
the competitive ratio stays below (not necessarily equal) toAPX for all k. Thus the online
algorithm has relatively less work to do.

We will discuss aboutOPT’s behavior first, motivating the design of the onli
algorithm later. We useAj andBj to denote the two most valuable packets arrived du
time (j − 1, j), with Aj arriving ahead ofBj . We call a packet being “buffered” by a
algorithm if it arrived during time(j − 1, j), and still remains in the queue after timej .
We useTRj to denote the packet transmitted at timej , BFj the packet buffered at timej ,
MVj the most valuable packet arrived afterTRj during time(j − 1, j). Superscripts ar
used to denote the algorithms and omitted when the context is clear. For instance,TROPT

j

is the packet transmitted byOPT at timej . We also introduce the following notation: if a
algorithm transmits packetp and buffered packetq at timej , p[q] denotes such an actio
([0] or [] means no packet is buffered).

154 A. Zhu / Journal of Algorithms 53 (2004) 137–168

ed by
acket

r
is the

s

r
ts
m

ll

. If
g

. We
ll

et

.

Lemma 17. Without loss of generality, we assume that if a packet is not to be transmitt
OPT, OPT will not accept that packet into the queue. Similarly, if OPT buffered a p
at timej , we would assume OPT transmits that packet at timej + 1, i.e., BFj > 0 implies
BFj ≡ TRj+1.

Lemma 18. Without loss of generality, either TRj ≡ BFj−1 ≡ MVj−1 > min(Aj ,Bj), or
TRj ≡ Aj , or TRj ≡ Bj .

Proof. It’s clear thatBFj−1 has to arrive during time(j − 2, j − 1), and has to arrive afte
TRj−1 by the FIFO ordering. The most valuable packet satisfying these criterions
only choice forBFj−1, soBFj−1 ≡ MVj−1.

By the previous lemma, ifBFj−1 > 0, then it must be transmitted at timej . If MVj−1 �
min(Aj ,Bj), then consider the following modification toOPT. If OPTexecutedMVj−1[r]
at timej for some packetr > 0, then modifyOPT to executeAj [Bj] instead. The packet
transmitted byOPT at time j and j + 1 originally wereMVj−1 and r, vs. Aj andBj

after the modification. It is clear thatMVj−1 + r � Aj +Bj , sincer � max(Aj ,Bj). Thus
doing so would not violate the optimality ofOPT. If OPT executedMVj−1[] at timej ,
then modifyOPT to execute max(Aj ,Bj)[] instead. Clearly, max(Aj ,Bj) � MVj−1,
maintaining the optimality ofOPT.

Otherwise,BFj−1 = 0. The packet transmitted at timej must arrive during time(j −
1, j). Assume thatOPT transmitted a third packetp at timej , wherep < min(Aj ,Bj).
If OPT executedp[] at timej , then we modifyOPT to execute max(Aj ,Bj)[] instead,
increasing the optimal value. Clearly, this cannot happen. IfOPT executedp[r > 0] at
time j , then we modifyOPT to executeAj [Bj] instead. Againp + r < Aj + Bj , a con-
tradiction to the optimality ofOPT. �

From the previous lemma, it’s clear that forOPT’s decision to transmit and buffe
packets at timej , the only packets worth considering are the two most valuable packe
out of the following packets:MVj−1, Aj , andBj . We now introduce the Ratio algorith
(denoted byRA). RAwill also keep track of the three packetsMVRA

j−1 ≡ BFRA
j−1, Aj , and

Bj . Notice thatRAwill always buffer the packetMVRA
j−1, regardless whether or not it wi

be transmitted at timej . Of these three packets, the two most valuable packetsFj and
Sj (with Fj arriving ahead ofSj) will be considered and possibly put in the queue
Sj � Fj × r, thenFj will be dropped andSj ≡ TRj , the most valuable packet arrivin
afterSj will becomeBFj . We callFj being “preempted” bySj . OtherwiseSj < Fj × r,
thenFj ≡ TRj andSj ≡ BFj . Figure 1 shows the pseudo-code for the Ratio algorithm
useBt

1 to denote the first packet in the queue at timet , andBt
2 the second packet. Reca

thatBt
1 andBt

2 also refers to the values of these packets,Bt
i = 0 means there is no pack

in theith slot. Obviously,Bt
1 = 0 impliesBt

2 = 0.

Theorem 7. The Ratio algorithm is((5+ √
13)/6)-competitive.

The full proof is a detailed case analysis. We first prove the following simple case

Lemma 19. If at each transmission timej , Fj � Sj , then RA is optimal.

A. Zhu / Journal of Algorithms 53 (2004) 137–168 155

gs

e.,
RATIO
1 For the arrival of a new packetp at timet

2 IF Bt
1 = 0

3 ACCEPTp into the queue, so nowBt
1 = p

4 ELSE
5 IF p � Bt

1 andp � Bt
2

6 DROPp

7 ELSE
8 DROP the smaller ofBt

1 andBt
2, so nowBt

2 = 0
9 ACCEPTp into the queue, so nowBt

2 = p

10 IF Bt
2/Bt

1 � r

11 DROPBt
1, so nowBt

1 = p, andBt
2 = 0

12 At transmission timej
13 IF queue is not empty
14 Transmit the first packet in the queue, so nowB

j
2 = 0

Fig. 1. Pseudo-code for the Ratio algorithm.

Proof. SinceFj � Sj , by the definition ofRA, there are two possibilities for the orderin
of BFRA

j−1, Aj , andBj below.

(1) BFRA
j−1 > max(Aj ,Bj), in which caseFj ≡ BFRA

j−1 andSj ≡ max(Aj ,Bj).

(2) Aj � Bj � BFRA
j−1, in which caseFj ≡ Aj andSj ≡ Bj .

We are going to proveTRRA
j ≡ TROPT

j andBFRA
j ≡ MVOPT

j , by induction onj . Clearly,
when j = 0, the hypothesis is true by default. We now look at timej , assuming the
hypothesis is true up to timej − 1. In case (1) above,MVOPT

j−1 ≡ BFRA
j−1 > max(Aj ,Bj) �

min(Aj ,Bj). By Lemma 18,

TROPT
j ≡ BFOPT

j−1 ≡ MVOPT
j−1 .

By the definition ofRA, TRRA
j ≡ BFRA

j−1 ≡ TROPT
j , implying

BFRA
j ≡ MVRA

j ≡ MVOPT
j .

In case (2),BFRA
j−1 ≡ MVOPT

j−1 � min(Aj ,Bj). By Lemma 18,OPTmust transmit one ofAj

andBj . If TROPT
j ≡ Bj , we modifyOPT so thatTROPT

j ≡ Aj . It’s clear such modification

wouldn’t hurt OPT becauseAj � Bj . By the definition ofRA, TRRA
j ≡ Aj ≡ TROPT

j ,
implying

Bj ≡ BFRA
j ≡ MVRA

j ≡ MVOPT
j .

ThusRA transmits the same packets asOPT at all times. �
Lemma 20. Consider the first timej where OPT and RA differ from each other, i.
TROPT ≡ TRRA, then either TROPT ≡ Fj and TRRA≡ Sj , or TROPT ≡ Sj and TRRA≡ Fj .
j j j j j j

156 A. Zhu / Journal of Algorithms 53 (2004) 137–168

t

ets
e
,

This
ich

ves
.

from
ime

e
e

time
Proof. SinceTROPT
j−1 ≡ TRRA

j−1, soMVOPT
j−1 ≡ BFRA

j−1. ThusFj andSj are also the two mos
valuable packets to consider forOPTat timej , by Lemma 18,TROPT

j ≡ Fj or TROPT
j ≡ Sj .

By the definition ofRA, eitherTRRA
j ≡ Fj , or TRRA

j ≡ Sj . �
The proof of the following lemma is trivial by the definition ofRA.

Lemma 21. Either TRRA
j = max(Aj ,Bj), or BFRA

j = max(Aj ,Bj), for all j .

We use OPT[i, j] (RA[i, j], respectively) to denote the total values of pack
transmitted byOPT (RA, respectively) during time[i, j]. As in the nonpreemptiv
situation, we start from the first timej0 whereOPT andRA transmits different packets
and we’ll find a future timej ′, whereOPT[j0, j

′]/RA[j0, j
′] � APX, etc. For simplicity,

assumej0 = 0. From Lemmas 19 and 20, we knowF0 < S0 and there are two cases.
The first (simple) case isTRRA

0 ≡ S0 and TROPT
0 ≡ F0. ThenBFOPT

0 ≡ TROPT
1 ≡ S0,

sinceF0 < S0. Thus
OPT[0,1]

RA[0] = F0 + S0

S0
� 1+ r

r
� APX.

Notice that we didn’t countTRRA
1 in the comparison. IfBFOPT

1 = 0, then we can totally
ignoreTRRA

1 , and start from after the transmission at time 1 as the beginning of time.
is becauseOPT will only have packets arrived after time 1 to consider after time 1, wh
are all available toRAas well.RAmight have buffered a packet at time 1, but this only gi
RAmore choices on packets, Lemmas 19 and 20should still apply from time 1 onwards
ElseBFOPT

1 > 0, sinceTROPT
1 = S0, BFOPT

1 must be max(A1,B1). By Lemma 21, we have
the following two situations:

• BFOPT
1 ≡ BFRA

1 . This is the ideal case, Lemmas 19 and 20 should be applicable
time 1 on sinceOPT andRAbuffered the same packet. We thus look for the next t
OPT andRAdisagree on transmission, and so on.

• BFOPT
1 ≡ TRRA

1 . Let k > 1 be the first such time thatOPT didn’t buffer a packet
transmitted byRAat timek, i.e., during timej ∈ [1, k), TRRA

j ≡ BFOPT
j . Or let k > 1

be the first such time thatTRRA
k = 0, whichever appears first. Then

OPT[2, k]
RA[1, k] = 1,

sinceTROPT
l ≡ BFOPT

l−1 ≡ TRRA
l−1, for l ∈ [2, k]. We then want to claim that from tim

k onward,OPT and RA are synchronized again. IfTRRA
k = 0, then it has to be th

case that no packet arrived during time(k − 1, k). Thus BFOPT
k = BFRA

k = 0, so
Lemmas 19 and 20 apply from timek onwards. Otherwise, consider timek − 1,
we knowBFOPT

k−1 ≡ TRRA
k−1 = 0, so eitherBFOPT

k = 0, or BFOPT
k ≡ max(Ak,Bk). If

BFOPT
k = 0, then by the same argument before, Lemmas 19 and 20 applies from

k again. IfBFOPT
k ≡ max(Ak,Bk) ≡ TRRA

k , then it has to be thatBFRA
k ≡ max(Ak,Bk)

due to Lemma 21. So Lemmas 19 and 20 again applies from timek onwards.

This completes the argument for the first case whereTRRA
0 = S0 andTROPT

0 = F0. We
concluded that there exists a timek, such thatOPT[0, k]/RA[0, k] � APX, plusOPT and

A. Zhu / Journal of Algorithms 53 (2004) 137–168 157

hat

be

or
a the

,

m-
RAare synchronized once more at timek, enabling Lemmas 19 and 20 again. Notice t
the synchronize step is needed for a particular timei, whereTRRA

i−1 ≡ TROPT
i . The analysis

above is fori = 1, but the same analysis applies for all such timei. In the remaining
analysis, we won’t explicitly bring up this situation, with the understanding that it can
dealt with.

The second case is more involved, whereTRRA
0 ≡ F0 andTROPT

0 ≡ S0 (thusBFRA
0 = S0).

We keep the inequalities (1) and (2) in mind, these are the worst case situations fRA,
whereSj = r × Fj . We shall transform all other situations to this standard case, vi
following two mathematical lemmas.

Lemma 22. LetY , Z, Ui , Vi (i = 1, . . . , n), Wj,Xj (j = 1, . . . ,m) be positive real values
for somen andm. If

Y

Z
= U1 + U2 + · · · + Un − W1 − W2 − · · · − Wm

V1 + V2 + · · · + Vn − X1 − X2 − · · · − Xm

and max
i

Ui

Vi

� min
j

Wj

Xj

,

thenY/Z � maxi{Ui/Vi} � minj {Wj/Xj }.

Proof. We repeatedly use the following fact about 4 positive real valuesA, B, C, andD

that satisfy

A

B
� C

D
: A − C

B − D
� A

B
� A + C

B + D
� C

D
. �

Lemma 23. The following is true for allM > 0:
M×r
r−1 + 2M

M
r−1 + 2M

= APX and
M×r
r−1 + M + M × r

M
r−1 + M × r

= APX.

Proof.
M×r
r−1 + 2M

M
r−1 + 2M

=
r

r−1 + 2
1

r−1 + 2
= 3r − 2

2r − 1
= APX,

M×r
r−1 + M + M × r

M
r−1 + M × r

=
r

r−1 + 1+ r

1
r−1 + r

= r2 + r − 1

r2 − r + 1
= APX. �

Lemma 24. We claim the following inductive hypothesis for any timej > 0:

• Either OPT[0, j]/RA[0, j] � APX, or OPT[0, j + 1]/RA[0, j] � APX, or
OPT[0, j + 2]/RA[0, j + 1] � APX, or OPT[0, j + 1]/RA[0, j + 1] � APX. And
there is an appropriate timej ′ such that OPT and RA are synchronized and Le
mas19and20apply.

• Or BFOPT
j = 0 and

OPT[0, j]
RA[0, j] =

BFRA
j ×r

r−1 + Ui − Wj

BFRA
j + V − X

,

r−1 i j

158 A. Zhu / Journal of Algorithms 53 (2004) 137–168

no

e

whereUi/Vi � APX� Wj/Xj . Thus by Lemma22, we can ignore theUi,Vi,Wj ,Xj

terms while trying to prove the ratio APX, and only conceptually think

OPT[0, j]
RA[0, j] =

BFj ×r

r−1
BFj

r−1

.

Proof. The base case is forj = 0: if BFOPT
0 = 0, thenTROPT

1 ≡ BFOPT
0 � F0 by the

definition ofF0 andS0. Then eitherTRRA
1 = S0, in which case

OPT[0,1]
RA[0,1] � S0 + F0

F0 + S0
� 1.

And after time 1 OPT and RA are synchronized again sinceMVOPT
1 = BFRA

1 =
max(A1,B1). Or TRRA

1 ≡ S0, that meansS0 was thrown away. By the definition ofRA,
it must be thatTRRA

1 � r × S0. ThenTROPT
2 ≡ TRRA

1 , sinceTROPT
1 ≡ BFOPT

0 � F0 < S0.
Thus

OPT[0,2]
RA[0,1] = S0 + TROPT

1 + TROPT
2

F0 + TRRA
1

<
S0 + F0 + TRRA

1

F0 + S0 + TRRA
1 · r−1

r

<
r

r − 1
� APX.

The other case isBFOPT
0 = 0. Also we knowF0 > S0/r and BFRA

0 = S0 from the
definition ofRA:

OPT[0,0]
RA[0,0] = S0

F0
=

S0×r
r−1 − S0

r−1 + 0
S0

r−1 − S0
r(r−1)

+ (
F0 − S0

r

) ,

where

S0
r−1
S0

r(r−1)

= r > APX>
0

F0 − S0
r

,

satisfying the inductive hypothesis. This completes the base case analysis.
Assume at timel − 1 the inductive hypothesis is true. If at timel − 1 the first condition

of the inductive hypothesis holds, then we skip to the appropriate time whereOPT and
RA are synchronized once more and apply Lemmas 19 and 20. Otherwise if there is
new packet arriving during time(l − 1, l), thenTRRA

j ≡ BFRA
l−1 while TROPT

j = 0, since

BFOPT
j−1 = 0. Then

OPT[0, l]
RA[0, l] =

BFRA
l−1×r

r−1

BFRA
l−1

r−1 + BFRA
l−1

� APX

andOPT andRAare synchronized again after timel.
So the only case left is that the second condition of the inductive hypothesis held at tim

l − 1 and at least one new packet arrived during time(l − 1, l), and so bothFl = 0 and
Sl = 0. Here are the possibilities:

A. Zhu / Journal of Algorithms 53 (2004) 137–168 159

g

(1) If TRRA
l ≡ Sl . ThenSl/Fl � r, andFl � BFRA

l−1. Then eitherTROPT
l ≡ Sl , or TROPT

l �
Fl and TROPT

l+1 ≡ Sl . ThusOPT[0, l]/RA[0, l] or OPT[0, l + 1]/RA[0, l] is no more
than:

BFRA
l−1×r

r−1 + Fl + Sl

BFRA
l−1

r−1 + Sl

=
Fl×r
r−1 + Fl + Fl × r + (Sl − Fl × r) − (Fl−BFRA

l−1)×r

r−1

Fl

r−1 + Fl × r + (Sl − Fl × r) − Fl−BFRA
l−1

r−1

� APX.

The last inequality is due to Lemmas 22 and 23.
(2) Else thenTRRA

l ≡ Fl andBFRA
l ≡ Sl . If BFOPT

l = 0. We consider then the followin
two subcases.
The first subcase isTRRA

l+1 ≡ BFRA
l ≡ Sl . Then we will show below thatOPT[0, l + 1]/

RA[0, l + 1] � APX, via another case analysis.
If Fl, Sl � BFRA

l−1, we knowOPT transmits no more than a combinedFl + Sl at times
l andl + 1. Then

OPT[0, l + 1]
RA[0, l + 1] �

BFRA
l−1×r

r−1 + Fl + Sl

BFRA
l−1

r−1 + Fl + Sl

=
BFRA

l−1×r

r−1 + 2BFRA
l−1 + (Fl + Sl − 2BFRA

l−1)

BFRA
l−1

r−1 + 2BFRA
l−1 + (Fl + Sl − 2BFRA

l−1)

� 3r − 2

2r − 1

= APX.

Else thenFl = BFRA
l−1 > Sl ,we knowOPT transmits no more than a combined 2Sl at

timesl andl + 1 sinceBFOPT
l−1 = 0. So

OPT[0, l + 1]
RA[0, l + 1] �

BFRA
l−1×r

r−1 + 2Sl

BFRA
l−1

r−1 + BFRA
l−1 + Sl

=
BFRA

l−1×r

r−1 + 2BFRA
l−1 − (2BFRA

l−1 − 2Sl)

BFRA
l−1

r−1 + 2BFRA
l−1 − (BFRA

l−1 − Sl)

� APX.

The second subcase isTRRA
l+1 > BFRA

l ≡ Sl . Then it has to be thatTRRA
l+1 � Sl × r,

and TROPT
l+2 ≡ TRRA

l+1 since TROPT
l+1 ≡ BFOPT

l . CompareOPT[0, l + 2]/RA[0, l + 1]
with the two calculations ofOPT[0, l + 1]/RA[0, l + 1] above,OPT addedTRRA

l+1
to the numerator, whileRA added at leastTRRA

l+1 − Sl to the denominator. And
TRRA

l+1/(TRRA
l+1 − Sl) � r/(r − 1) < APX. This provesOPT[0, l + 2]/RA[0, l + 1] �

APX.
(3) Else thenTRRA≡ Fl , BFRA≡ Sl , andBFOPT = 0.
l l l

160 A. Zhu / Journal of Algorithms 53 (2004) 137–168

. This

show

itrary
ce

y

If Fl � Sl � BFl−1, thenTROPT
l ≡ Fl .

OPT[0, l]
RA[0, l] =

BFRA
l−1×r

r−1 + Fl

BFRA
l−1

r−1 + Fl

=
Sl×r
r−1 + Fl − (Sl−BFRA

l−1)×r

r−1

Sl

r−1 + Fl − Sl−BFRA
l−1

r−1

.

Else if BFl−1 � Fl < Sl < Fl × r, thenTROPT
l ≡ Sl .

OPT[0, l]
RA[0, l] =

BFRA
l−1×r

r−1 + Sl

BFRA
l−1

r−1 + Fl

=
Fl×r
r−1 + Sl − (Fl−BFRA

l−1)×r

r−1

Fl

r−1 + Fl − Fl−BFRA
l−1

r−1

=
Fl×r
r−1 + Sl − (Fl−BFRA

l−1)×r

r−1

Fl×r
r−1 − Fl−BFRA

l−1
r−1

=
Sl×r
r−1 − (Fl−BFRA

l−1)×r

r−1 + Fl×r−Sl

r−1

Sl

r−1 − Fl−BFRA
l−1

r−1 + Fl×r−Sl

r−1

.

Else thenBFRA
l−1 ≡ Fl > Sl , andTROPT

l ≡ Sl .

OPT[0, l]
RA[0, l] =

BFRA
l−1×r

r−1 + Sl

BFRA
l−1

r−1 + BFRA
l−1

=
Sl×r
r−1 + BFRA

l−1×r−Sl

r−1

Sl

r−1 + BFRA
l−1

r−1 + BFRA
l−1 − Sl

r−1

=
Sl×r
r−1 + BFRA

l−1×r−Sl

r−1

Sl

r−1 + BFRA
l−1×r−Sl

r−1

.

These three equalities all satisfy the second case of the inductive hypothesis
completes the inductive analysis.�

Using Lemmas 19, 20, and 24, we can partition the time into subintervals, and
thatOPT[i, j]/RA[i.j] � APX for each such subinterval[i, j], proving Theorem 7.

3.3. Lower bound for the general model

We now briefly discuss the generalization of our lower bound construction to arb
queue sizes. In particular, for a queue of sizeB, consider the following general sequen
(whereZ < B is some constant to be determined later):

(1,1, . . . ,1, α1︸ ︷︷ ︸
B

) (α1)(α1) . . . (α1)︸ ︷︷ ︸
Z−1

(α1, α1, . . . , α1, α2︸ ︷︷ ︸
B

) (α2)(α2) . . . (α2)︸ ︷︷ ︸
Z−1

(α2, α2, . . . , α2, α3︸ ︷︷ ︸
B

) . . . (αk−1, αk−1, . . . , αk−1, αk︸ ︷︷ ︸
B

) (αk)(αk) . . . (αk)︸ ︷︷ ︸
Z−1

(αk,αk, . . . , αk︸ ︷︷ ︸
B

)

If the online algorithm decides to transmitα1 at any timej ∈ [1,Z], then the adversar
will stop the sequence at timeZ, i.e., the sequence ends withZ − 1 packets with valueα1.
The online algorithm transmits no more than(j − 1) + Zα1 � (Z − 1) + Zα1, while OPT
transmits all of the packets. Thus the ratio is no less than(B − 1+ Zα1)/(Z − 1+ Zα1).

A. Zhu / Journal of Algorithms 53 (2004) 137–168 161

e
r
r
ring
ets,

s, with

packet
smitted
integers.

FIFO
FIFO
from

ckets

ost
e is

n the
ppen at
Otherwise, the online algorithm at best transmittedZ packets of value 1 during tim
[1,Z]. OPT instead would transmitZ packets of valueα1, while discarding the earlie
packets with value 1. The adversary then makeB − 1 packets of valueα1 and anothe
packet of valueα2 to arrive during time(Z,Z +1), and repeats the same strategy as du
times 1 throughZ. If the online algorithm kept on transmitting relatively low value pack
the adversary will end the sequence withB packets with valueαk .

To maximize the lower bound, we need to balance the ratios produced in all case
a valueZ that maximizes the overall ratio. We have the following final result:5

Z =
⌊

B

2

⌋
,

αi = 1

1+ B

(
2B + 1+ √

2B2 + 2B + 1

B

)i

+ B

1+ B

(−1+ √
2B2 + 2B + 1

B

)i

,

and the final bound is

5+ √
2B2 + 2B + 1

B + 4
>

5+
√

(
√

2B + 1/
√

2)2

B + 4
>

√
2.

Appendix B provides detailed calculations and so we obtain the following.

Theorem 8. With Z = �B/2	, the lower bound ratio approaches
√

2.

4. Bounded delay queueing policy

In the bounded delay model, each arriving packet is also assigned a deadline. A
must be transmitted before its deadline or else is lost. However packets can be tran
out of order, and we assume unlimited queue sizes. We also assume deadlines are
Theδ-uniform bounded delay model requires every packet to be transmitted withinδ time
units after its arrival, or otherwise it is lost. We first discuss the connection of the
preemptive model to the uniform bounded delay model. In particular, we consider the
preemptive model proposed in [4]. The model to be discussed in this section differs
our previous section only in that the new FIFO order permits the reordering of pa
arriving at the same time unit(j, j + 1), for j ∈ Z.

Clearly, any FIFO preemptive policy withqueue size B delays each packet by at m
δ = B time unit, hence also aB-uniform bounded delay policy. However, the convers
not always true. We show here that the converse is true forB = δ = 2. Here we useANY to
denote any online 2-uniform bounded delay policy. For convenience, we round dow
admitted transmission deadline to the nearest integer since transmissions only ha
integral times, i.e., a packet arriving at timet has a deadline of�t + 1�.

Theorem 9. For B = δ = 2, ANY can be modified to operate on a queue with size2 and
can serve packets in FIFO order, without degrading its performance.

5 These expressions are for evenB. We omit the expressions for oddB for simplicity.

162 A. Zhu / Journal of Algorithms 53 (2004) 137–168

et

e
soning
t two
re than
kets
in the
O

ith

e
the

lent to
e new
duced

that
e unit,

atio

e

Proof. We modifyANY as follows: at any timet , first if ANY has more than one pack
with deadline�t�, then only keep the most valuable packet. Afterwards ifANY still has
more than two packets in its queue then we shall simply discard the packet with th
least value. In case of a tie, the packet with earlier deadline is discarded. The rea
is thatANY needs to transmit all the packets currently in the queue within the nex
transmission times. Since only one packet can be transmitted per time unit, no mo
one packet with deadline�t� can be transmitted and in total no more than two pac
can be transmitted eventually. By preserving only the two most valuable packets
queue, we are guaranteed not to degradeANY’s performance. With regard to the new FIF
ordering, at timet , the packets inANY’s queue should have deadline�t� or �t + 1� only,
since they all arrived before or at timet . This forcesANY to transmit the packet with
deadline�t� at time�t�, before any of the packets with later deadline�t + 1�, respecting
the FIFO order. Notice that the FIFO order property only holds forδ = 2. Forδ � 3, at any
time t , we could have packets with deadlines�t + 1� and�t + 2� in the queue. Then it’s
not clear that packets with deadline�t + 1� has to be transmitted earlier than the ones w
deadline�t + 2�. ANYcan transmit a packet with deadline�t + 2� at time�t�, and still be
able to transmit a packet with deadline�t + 1� at time�t + 1�. In fact, we believe that th
optimal online algorithm forδ-uniform bounded delay will transmit the packets out of
FIFO order forδ � 3. �

The previous theorem indicates that the 2-uniform bounded delay model is equiva
the new FIFO preemptive model with queue size 2. From now on we just focus on th
FIFO preemptive model with queue size 2, as it is closely related to the model intro
in the previous section. We first show a lower bound of 1.366 for this model. Notice
since the online algorithm can reorder the packets that arrived within the same tim
we expect better competitive ratios for the online algorithm.

Consider the following general sequence:

(α0 = 1, α0 = 1)(α1)(α1, α1)(α2)(α2, α2) . . . (αk−1)(αk−1, αk−1)(αk)(αk,αk).

At time 2, if the online algorithm transmitsα1, then the whole sequence ends, and the r
is (α0 + α0 + α1)/(α0 + α1). Otherwise, the online algorithm at best transmitted twoα0

packets at times 1 and 2. Now consider time 4, if the online algorithm transmitsα2, then the
whole sequence ends, and the ratio becomes(α0+α1+α1+α1+α2)/(α0+α0+α1+α2).
Otherwise, the online algorithm at best transmitted twoα2 packets at times 3 and 4. Th
same reasoning continues tillαk . We thus need to solve the following equations:

Lk = α0 + α0 + α1

α0 + α1
= α0 + α1 + α1 + α1 + α2

α0 + α0 + α1 + α2

= α0 + α1 + α1 + α2 + α2 + α2 + α3

α0 + α0 + α1 + α1 + α2 + α3
= · · ·

= α0 + α1 + α1 + · · · + αk−1 + αk−1 + αk−1 + αk

α0 + α0 + α1 + · · · + αk−2 + αk−1 + αk

= α0 + α1 + α1 + · · · + αk−1 + αk−1 + αk + αk + αk
.

α0 + α0 + α1 + · · · + αk−1 + αk−1 + αk + αk

A. Zhu / Journal of Algorithms 53 (2004) 137–168 163

uations,

e,

o
er
etitive

e,

l. The
t
d

f each

st
Using the same techniques developed in this paper, we can solve the above eq
detailed calculations are omitted. For any positiveε:

αi = ε

2+ 2ε

(√
2+ (1+ ε)2 + 2+ ε

)i +
(

1− ε

2+ 2ε

)(√
2+ (1+ ε)2 − ε

)i
and ask → ∞,

Lk → 2+ √
2+ (1+ ε)2

1+ √
2+ (1+ ε)2

>
2+ √

3+ ε

1+ √
3+ ε

>
1+ √

3

2
− ε ≈ 1.366− ε.

Theorem 10. For FIFO queue of size2, or equivalently,2-uniform bounded delay queu
no deterministic online algorithm can achieve a competitive ratio of(1+ √

3)/2 − ε ≈
1.366− ε, for any constantε > 0.

Next, we introduce an online algorithm that is
√

2-competitive. We modify the Rati
algorithm as follows: we set the constant ratior = 2+ √

2 instead, and we always reord
packets arrived in the same time unit in decreasing order. We show that the comp
ratio is bounded by

max

(
1+ r

r
,

r

r − 1
,

3r − 2

2r − 1
,

r2

r2 − r + 1

)
= √

2≈ 1.414

in Appendix C.

Theorem 11. For FIFO queue of size2, or equivalently,2-uniform bounded delay queu
the Ratio algorithm achieves a competitive ratio of

√
2 ≈ 1.414.

Next we present a matching lower bound for the 2-variable bounded delay mode
2-variable bounded delay model allows two types of packets arriving at timet : the ones tha
must be sent the next integral time unit (with deadline�t�, or equivalently, delay 1), an
the ones that can be delayed for 1 extra time unit (with deadline�t + 1�, or equivalently,
delay 2). Consider the following general sequence. We list the associated delay o
packet in brackets after its value.(

1[1], α1[2])(α1[1], α2[2]) . . .
(
αk−1[1], αk[2])(αk[1]).

The reasoning is similar as before. If at time 1, the online algorithm transmittedα1, then the
whole sequence stops, and the ratio is(1+ α1)/α1. Otherwise, the online algorithm at be
transmitted packet 1 at time 1. If at time 2 the online algorithm transmittedα2, then again
the whole sequence stops, and the ratio becomes(α1 + α1 + α2)/(1+ α2). Such reasoning
continues until packetαk . We thus need to solve the following equations:

Lk = 1+ α1

α1
= α1 + α1 + α2

1+ α2
= α1 + α2 + α2 + α3

1+ α1 + α3
= · · ·

= α1 + α2 + · · · + αk−1 + αk−1 + αk

1+ α1 + · · · + αk−2 + αk

= α1 + α2 + · · · + αk−1 + αk + αk
.

1+ α1 + · · · + αk−2 + αk−1 + αk

164 A. Zhu / Journal of Algorithms 53 (2004) 137–168

ive

thm

ios for

del.
ounds

upper
.618

mized
eneral

ds?
The calculation uses the same techniques before and is omitted here. For any positε:

αi = ε

2+ 2ε

(√
4+ (1+ ε)2 + 3+ ε

2

)i

+
(

1− ε

2+ 2ε

)(√
4+ (1+ ε)2 + 1− ε

2

)i

and ask → ∞,

Lk → 1+
√

4+(1+ε)2+1
2√

4+(1+ε)2+1
2

>
3+ √

5+ ε

1+ √
5+ ε

>
1+ √

5

2
− ε ≈ 1.618− ε.

Theorem 12. For the2-variable bounded delay model, no deterministic online algori
can achieve a competitive ratio better than(

√
5+ 1)/2− ε, for any constantε > 0.

5. Conclusion

In this paper we discussed various upper and lower bounds on competitive rat
various queueing policies. Below we provide a summary:

• For the non-preemptive queueing policy, we proved tight(2α − 1)/α upper bound for
the 2-value model, andΘ(logα) upper and lower bounds for the general value mo

• For the preemptive FIFO queueing policy, we proved 1.434 upper and lower b
for queues of size 2, and 1.414 lower bound for general queue sizes.

• For bounded delay queueing policy, we proved 1.414 (1.366, respectively)
(lower, respectively) bounds for the 2-uniform bounded delay model, and tight 1
lower bound for the 2-variable bounded delay model.

Many interesting problems remain open, for instance, are there non-trivial rando
upper and lower bounds for the preemptive and bounded delay model? For the g
preemptive FIFO model, can we reduce the cap between the lower and upper boun

Appendix A. Solving the equations for the lower bound construction for B = 2

We need to solve the following two series of equalities:

α0 + α1

α1
= α0 + α1

α1
,

α0 + α1

α1
= α1 + α1 + α2

α0 + α2
,

α0 + α1

α1
= α1 + α2 + α2 + α3

α0 + α1 + α3
,

α0 + α1

α1
= · · · ,

α0 + α1 = α1 + α2 + · · · + αk−1 + αk−1 + αk
(A.1)
α1 α0 + α1 + · · · + αk−2 + αk

A. Zhu / Journal of Algorithms 53 (2004) 137–168 165

ns

e

al

ard

n

and
α0 + α1

α1
= α1 + α2 + · · · + αk−1 + αk + αk + αk

α0 + α1 + · · · + αk−2 + αk−1 + αk + αk

. (A.2)

We manipulate equalities in (A.1) by applying the following rule: ifA/B = C/D, then
A/B = C/D = (C − A)/(D − B). HereA/B andC/D represent consecutive expressio
on the right hand side of (A.1). We get the following set of new equalities:

α0 + α1

α1
= α2 + α1 − α0

α2 − α1 + α0
,

α0 + α1

α1
= α3 + α2 − α1

α3 − α2 + α1
,

α0 + α1

α1
= · · · ,

α0 + α1

α1
= αk + αk−1 − αk−2

αk − αk−1 + αk−2
. (A.3)

Keep in mind thatα0 = 1. Solve each equation in (A.3) we have the following:αs =
(2α1 + 1) × (αs−1 − αs−2), for 2 � s � k. This is a linear recursion for theαi ’s. The
values ofαi ’s are determined byα1. The series of theαi ’s is a linear combination of th
two geometric series: 1,p1, (p1)

2, . . . , (p1)
k and 1,p2, (p2)

2, . . . , (p2)
k , wherep1 andp2

are the two roots of the quadratic equationx2 = (2α1 + 1)(x − 1). So we have a gener
expression forαi :

αi = γ × (p1)
i + (1− γ) × (p2)

i,

γ = 1

2
− 1

2
√

(2α1 + 1)(2α1 − 3)
,

p1 = 2α1 + 1+ √
(2α1 + 1)(2α1 − 3)

2
,

p2 = 2α1 + 1− √
(2α1 + 1)(2α1 − 3)

2
.

We use equality (A.2) to solve forα1.

α0 + α1

α1
= α1 + α2 + · · · + αk−1 + αk + αk + αk

α0 + α1 + · · · + αk−2 + αk−1 + αk + αk

=
∑k

i=1 αi + 2αk∑k
i=0 αi + αk

→ 3p1 − 2

2p1 − 1
.

The last step is due to the following fact, which can be verified via straight forw
calculation:

lim
k→∞

∑k
i=0 αi

αk × p1
p1−1

= lim
k→∞

∑k
i=1 αi

αk × p1
p1−1

= 1, for γ = 0.

Substitute inp1 and solve the equation, we getα1 = (1+ √
13)/2 and in general

αi = 1

3

(√
13+ 5

2

)i

+ 2

3

(√
13− 1

2

)i

,

with γ = 1/3, p1 = (
√

13+ 5)/2, andp2 = (
√

13− 1)/2. The final lower bound is the
(α1 + 1)/α1 = (

√
13+ 5)/6 ≈ 1.434.

166 A. Zhu / Journal of Algorithms 53 (2004) 137–168

ppen-
Appendix B. Lower bound for general queue size B

We need to solve the following equations (we use the notations introduced in A
dix A):

B − 1+ Zα1

Z − 1+ Zα1
= Zα1 + (B − 1)α1 + Zα2

Z + (Z − 1)α1 + Zα2
,

B − 1+ Zα1

Z − 1+ Zα1
= Zα1 + Zα2 + (B − 1)α2 + Zα3

Z + Zα1 + (Z − 1)α2 + Zα3
,

B − 1+ Zα1

Z − 1+ Zα1
= · · · ,

B − 1+ Zα1

Z − 1+ Zα1
= Zα1 + Zα2 + · · · + Zαk−1 + (B − 1)αk−1 + Zαk

Z + Zα1 + · · · + Zαk−2 + (Z − 1)αk−1 + Zαk

, (B.1)

B − 1+ Zα1

Z − 1+ Zα1
= Zα1 + Zα2 + Zα3 + · · · + Zαk−1 + Zαk + Bαk

Z + Zα1 + Zα2 + · · · + Zαk−2 + Zαk−1 + Bαk

. (B.2)

We again transform the equations in (B.1) to the following:

B − 1+ Zα1

Z − 1+ Zα1
= Zα2 + (B − 1)(α1 − α0)

Zα2 − α1 + α0
,

B − 1+ Zα1

Z − 1+ Zα1
= Zα3 + (B − 1)(α2 − α1)

Zα3 − α2 + α1
,

B − 1+ Zα1

Z − 1+ Zα1
= · · · ,

B − 1+ Zα1

Z − 1+ Zα1
= Zαk + (B − 1)(αk−1 − αk−2)

Zαk − αk−1 + αk−2
. (B.3)

We solve (B.3), and get the following:(B − Z)αs = (B − 1 + Bα1) × (αs−1 − αs−2),
for 2 � s � k. Similar toB = 2, we can solve the sequence ofαi ’s using equation (B.2) in
terms ofZ andB. We select aZ to maximize the bound. SettingZ = �B/2	 gives us the
following:

α1 = 1+ √
2B2 + 2B + 1

B
,

p1 = 2B + 1+ √
2B2 + 2B + 1

B
,

p2 = −1+ √
2B2 + 2B + 1

B
,

γ = 1

1+ B
,

Lk → 5+ √
2B2 + 2B + 1

B + 4
>

5+
√

(
√

2B + 1/
√

2)2

B + 4
>

√
2.

A. Zhu / Journal of Algorithms 53 (2004) 137–168 167

ideas.

it. In
d

e
er

ld
:

Appendix C. The Ratio algorithm is 1.414-competitive with respect to 2-uniform
bounded delay model

The proof is a similar case analysis as in Section 3, here we only outline the main
We inherit the notations introduced in Section 3, hereAPX denote the constant

√
2. First,

we can conclude thatOPT also reorder the packets arriving during the same time un
addition, Lemma 17 through Lemma 23 still apply in this situation. Since packets arrive
during the same time unit can be reordered, we also conclude thatAj � Bj .

We again look for the first time whereOPT andRA transmit different packets. Assum
it’s time 0. By Lemma 19, we knowF0 < S0. There are again two cases, we will consid
them separately.

The first case is thatTRRA
0 ≡ S0, while TROPT

0 ≡ F0. SinceS0 > F0, TROPT
1 ≡ BFOPT

0 ≡
S0. By the definition ofRA, S0 � r × F0. Thus

OPT[0,1]
RA[0,0] = F0 + S0

S0
� F0 + r × F0

r × F0
� 1+ r

r
� APX.

The second case is more involved, whenTRRA
0 ≡ F0 and TROPT

0 ≡ S0. We reproof
Lemma 24 below.

Proof. The base case wherej = 0: if BFOPT
0 = 0, thenBFOPT

0 � F0. Then eitherTRRA
1 ≡

S0, in which case

OPT[0,1]
RA[0,1] � S0 + F0

F0 + S0
= 1 < APX.

Or TRRA
1 ≡ S0, soTRRA

1 � S0 × r andS0 was thrown away. ThenTROPT
2 ≡ BFOPT

1 ≡ TRRA
1 ,

in which case

OPT[0,2]
RA[0,1] �

S0 + F0 + TRRA
1

F0 + TRRA
1

�
S0 + F0 + TRRA

1

F0 + S0 + TRRA
1

r−1
r

<
r

r − 1
� APX.

ElseBFOPT
0 = 0. By the definition ofRA, F0 > S0/r, then:

OPT[0,0]
RA[0,0] = S0

F0
=

S0×r
r−1 − S0

r−1 + 0
S0

r−1 − S0
r(r−1)

+ (
F0 − S0

r

) ,

where

S0
r−1
S0

r(r−1)

= r > APX>
0

F0 − S0
r

.

This satisfies the inductive hypothesis, completing the base case analysis forj = 0.
Assume now at timel − 1 the inductive hypothesis is true, consider timel. As in

Lemma 24, the interesting case is that the second condition of the inductive hypothesis he
at timel −1 and some new packets arrived during time(l −1, l). Here are the possibilities

168 A. Zhu / Journal of Algorithms 53 (2004) 137–168

s

s

es,

from

nd

rflow

–

g, in:

ay

ernet

M

(1) If TRRA
l ≡ Sl . ThenSl/Fl � r, andFl ≡ BFRA

l−1. ThenTROPT
l ≡ Sl , sinceBFOPT

l−1 = 0,
implying:

OPT[0, l]
RA[0, l] �

BFl−1×r

r−1 + Sl

BFl−1
r−1 + Sl

= r2

r2 − r + 1
� APX.

(2) Else thenTRRA
l ≡ Fl and BFRA

l ≡ Sl . If BFOPT
l = 0, the analysis for this part i

identical to that of Lemma 24, where we obtain two bounds:

3r − 2

2r − 1
� APX and

r

r − 1
� APX.

(3) Else thenTRRA
l ≡ Fl and BFRA

l ≡ Sl , andBFOPT
l = 0. The analysis for this part i

again identical to that of Lemma 24.�
This completes the proof for Theorem 11.

References

[1] W.A. Aiello, Y. Mansour, S. Rajagopolan, A. Rosen, Competitive queue policies for differentiated servic
in: Proceedings of the IEEE INFOCOM, 2000, pp. 431–440.

[2] D. Clark, J. Wroclawski, An approach to service allocation in the internet, Internet draft, available
http://diffserv.lcs.mit.edu, 1997.

[3] C. Dovrolis, D. Stiliadis, P. Ramanathan, Proportional differentiated services: delay differentiation a
packet scheduling, in: Proceedings of ACM SIGCOMM, 1999, pp. 109–120.

[4] A. Kesselman, Z. Lotker, Y. Mansour, B. Patt-Shamir, B. Schieber, M. Sviridenko, Buffer ove
management in QoS switches, in: Proceedings of ACM STOC, 2001, pp. 520–529.

[5] A. Kesselman, Y. Mansour, Loss-bounded analysis fordifferentiated services, in: Proceedings of SIAM
ACM SODA, 2001, pp. 591–600.

[6] A. Kesselman, Y. Mansour, R. Van-Stee, Improved competitive guarantees for QoS bufferin
Proceedings of ESA, 2003, pp. 361–372.

[7] T. Nandagopal, N. Venkitaraman, R. Sivakumar, V. Bharghavan, Relative delay differentiation and del
class adaptation in core-stateless networks, in: Proceedings of IEEE INFOCOM, 2000, pp. 421–430.

[8] N. Semret, R.R.-F. Liao, A.T. Campbell, A.A. Lazar, Peering and provisioning of differentiated int
services, in: Proceedings of IEEE INFOCOM, 2000, pp. 414–420.

[9] I. Stoica, H. Zhang, Providing guaranteed services without per flow management, in: Proceedings of AC
SIGCOMM, 1999, pp. 81–94.

[10] J.S. Turner, New directions in communications, IEEE Commun. Magazine 24 (1986) 8–15.

