Available online at www.sciencedirect.com

sctENCE@DlRECT" Journal of
Algorithms

Journal of Algorithms 53 (2004) 137-168 —
www.elsevier.com/locate/jalgor

Analysis of queueing policies in QoS switches

An Zhu?

Department of Computer Science, StadfUniversity, Stanford, CA 94305, USA
Received 13 October 2002
Available online 5 June 2004

Abstract

Itis widely accepted that next-generation networks will provide guaranteed services, in contrast to
the “best effort” approach today. We study and analyze queueing policies for network switches that
support the QoS (Quality of Service) feature. Oaalization of the QoS feature is that packets are
not necessarily all equal, with some having higher priorities than the others. We model this situation
by assigning an intrinsic value to each packet. In this paper we are concerned with three different
queueing policies: theaonpreemptivenodel, theFIFO preemptivemodel, and théounded delay
model. We concentrate on the situation where the incoming traffic overloads the queue, resulting
in packet loss. The objective is to maximize the total value of packets transmitted by the queueing
policy. The difficulty lies in the unpredictable nature of the future packet arrivals. We analyze the
performance of the online queugipolicies via compiitive analysis, providing upper and lower
bounds for the competitive ratios. We develop piadtyet sophisticated onkmalgorithms (queueing
policies) for the three queueing models. The algorithms in many cases have provably optimal worst-
case bounds. For the nonpreemptive model, we devise an optimal online algorithm for the common
2-value model. We provide a tight logarithmic bound for the general nonpreemptive model. For the
FIFO preemptive model, we improve the general lower bound to 1.414, while showing a tight bound
of 1.434 for the special case of queue size 2. We prove that the bounded delay model with uniform
delay 2 is equivalent to a modified FIFO preemptive model with queue size 2. We then give improved
upper and lower bounds on the 2-uniform bounded delay model. We also show an improved lower
bound of 1.618 for the 2-variable bounded delay model, matching the previously known upper bound.
0 2004 Elsevier Inc. All rights reserved.

Y A preliminary version of this paper was merged wéthother paper by Nir Andelman and Yishay Mansour,
which appeared in 14th Annual SIAM—ACM Sympas on Discrete Algorithms (SODA), 2003.
E-mail addressanzhu@cs.stanford.edu.
1 Supported by a GRPW fellowship froBell Labs, Lucent Technologies.

0196-6774/$ — see front mattéi 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgor.2004.04.007

138 A. Zhu / Journal of Algorithms 53 (2004) 137-168

1. Introduction

Currently, the internet infrastructure employs “best effort” policy for all traffic streams,
providing no guarantee on packet delivery. The uncertainty of its performance is not
satisfactory for many network applications. The widely foreseen next-generation networks
will provide guaranteed services to meet vais user demands. This gives rise to the recent
interest in the Quality of Service (QoS) feature.

This vision has been around the networkicommunity for more than a decade [10].

For instance, ATM networks serve as an example of a unified architecture that supports a
diverse set of service classes. Of late, there has been tremendous interest in IP in providing
differentiated servicevia QoS guarantees. The basic methodology of QoS is rather
intuitive—comnitting resources to each admitted connewtiThus, the network is capable

of providing different users with different classes of service. In particular, a contract
between users and service providers ensures that the network maintains the performance
guarantees provided the users stick to their commitments about traffic generation.

However, due to a variety of reasons, the incoming traffic patterns may not coincide
with that specified in the service contract. A typical situation is that the traffic from the
user does not conform to the patterns defined in the contract. The difficult situation is
when the traffic exceeds the allocated baiutilwat some point. Another equally serious
problem is that by guaranteeing the worst-case performance, the QoS network might not
be efficient due to its conservative policy, as network traffic tends to be bursty. Recognizing
this phenomenon, most modern QoS networks allow some “overbooking,” employing the
policy popularly known astatistical multiplexind4]. In either case, QoS networks must
resolve the unavoidable issue of overloading. This paper analyzes the performance of
gueueing policies under overloadinitusitions using competitive analysis.

In the past few years the networking comnity has had an increasing interest in QoS
networks [3,7-9]. A major new paradigm suggested is the assured service [2]. This service
has a loose guarantee in which traffic conforming to the specified pattern is much less
likely to be interrupted in the network. Thiapproach leads to two types of packets in the
system: those of high priority (conformed traffic) and those of low priority (unconformed
traffic). High priority packets stands less chance of being dropped by the network.

We abstract the above problem as follows: We assume a value associated with each
packet: value 1 for the low priority packets, and vadue 1 for the high priority packets.

This is called the Zralue modelFor differing network requirements, we can adjusto
achieve the desired performance guaranteealdfe consider the extension where packets
take on arbitrary values in the ran@k «]. We assume that the queue can hold uBto
packets. The goal is to maximize the total value of the packets transmitted. In terms of
competitive analysis, we compare the total value of the packets transmitted by an online
algorithm to that of the optimal offline algorithm. We say that an online algorithm has a
competitive ratio ofg, if for any packet arrival sequence, the total value transmitted is
at least 18 fraction of that of the optimal. This paper provides upper and lower bounds
for the competitive ratios on three different queueing policies. Adw@preemptive policy
transmits all packets admitted into the queabserve, under this policy, the queue can
easily maintain a FIFO order. THeIFO preemptive policyis allowed to drop packets

A. Zhu / Journal of Algorithms 53 (2004) 137-168 139

already admitted to the queue. Theunded delay poligyon the other hand, transmits
packets in any order, but each packet must be transmitted before a fixed deadline.

The nonpreemptive policy for the 2-value model was first proposed by Aiello et al. [1],
who studied four different queueing policies. Each of these four policies has competitive
ratio strictly worse than the known lower bound @ — 1)/«. We present a practical
online algorithm and prove that its competitive ratio is precis@ly — 1)/«, thereby
completely solving the problem for this case. For the general model, where the packet
values lie in the rangEL, «], we establish matching upper and lower bound®@bgw).

The FIFO preemptive policy has been sediiextensively. The 2-value model was
considered by Kesselman and Mansour [5], who provided approximately tight bounds for
large values ofr and B. We concentrate on the general model, of which previous lower
and upper bounds were developed by Kesselman et al. [4] and Kesselman et al. [6]. In
particular, the lower bound is 1.281, and the upper bound is 1.983. We establish tight upper
and lower bounds of5 + +/13)/6 ~ 1.434 for B = 2. As a byproduct of our techniques,
we improve the lower bound for general queue sizeg2ox 1.414.

Our techniques for the FIFO preemptive policy apply to the bounded delay policy as
well. In particular, we show that the modified FIFO preemptive model with queue size 2
is equivalent to the 2-uniform bounded delapdel, where each arriving packet must be
transmitted within the next @me units. We establish upper and lower bounds of 1.414 and
1.366, respectively. This is an improvement upon the previous bounds of 1.434 and 1.25,
respectively, due to Kesselman et al. [4]. For the model where some of the arriving packets
must be sent out within one time unit, namely, the 2-variable bounded delay model, we
establish a lower bound of 1.618. This is an improvement of the previous lower bound of
1.414 and matches the upper bound due to Kesselman et al. [4].

The rest of the paper is organized as follows, Section 2 gives a tight analysis for the
nonpreemptive model, Section 3 deals with the FIFO preemptive model, Section 4 presents
results for the bounded delay model, fingigction 5 concludes with open problems.

2. Nonpreemptive queueing policy

We first consider the 2-value nonpreemptive model. Consider a switch buffer (queue)
with enough memory to hol# packets (oB slots). Packets have identical size and occupy
one slot each. A low priority packet has benefitvhile a high priority packet has benefit
a > 1. Upon the arrival of a packet, the queueing policy (online algorithm) has to decide
immediately whether to accept the packet ie tiueue, or reject it. Rejected packets are
lost forever. Accepted packets stay in the queue, and get transmitted at a rate of 1 packet per
time unit. When a queue is full (i.e., contaiBgpackets), no more packets can be accepted,
until some packets are transmitted to free up the queue space. For convenience, we assume
that packets are transmitted at integral times, i.e., at each integral time, the number of
packets in the queue (if nonzero) goes down by one. In addition, no two packets arrive at
the same time and no packet arrives at integral tifrielse aim of the queueing policy is

2 These constrains are only added to make the analysis simpler to present and follow.

140 A. Zhu / Journal of Algorithms 53 (2004) 137-168

to maximize the sum of the benefits of all packets that get transmitted. For convenience,
time starts at 0. We usgand its related formg’ etc. to denote integral times, usand its
related formsg’ etc. to denote nonspecific times.

Aiello et al. [1] showed that for a particular valuemfthere is a general lower bound for
any type of online algorithms. For the sake of completeness, we provide the proof below.
From now on, we us®PT to denote the optimal offline algorithm. And for convenience,
we use H.P. to denote “high priority,” and L.P. to denote “low priority.”

Theorem 1. Any online policy(deterministic or randomizgdas a competitive ratio of at
least(2a — 1)/a.

Proof. At time ¢ (where O< ¢ < 1), supposeB L.P. packets arrive one after another,
infinitesimally apart from each othr_et x denote the expected number of L.P. packets
the online algorithm accepts. if < («¢/ (20 — 1)) B, then the adversary does not release
any new packetOPT would have accepted and transmitted Blpackets. And so the
online algorithm transmits no more thani(2« — 1) fraction of the packets. Otherwise,
x > (¢/(2a — 1))B, and the adversary will release H.P. packets at time’ (where

t <t < 1). OPT then would have rejected all the L.P. packets, and acceptel HlP.
packets. The online algorithm at best can accept an addit®rak H.P. packets before
the queue becomes full. It follows that the competitive ratio is at least

Ba S (20 — D _20(—1
x+B—-x)a a+@—-Da «a

O

We now present the Ratio Partition policy, which builds on early policies given in [1],
and show that it's competitive ratio is inde€dy — 1) /«.

We useRP to denote the Ratio Partition algorithRP always accepts H.P. packets
as long as the queue is not full (i.e., thes free slot), and conditionally accepts L.P.
packets, guaranteeing that there is a good mix of H.P. and L.P. packets in the queue. We
introduce the concept of “matching.” L.P. packets are either matched with H.P. packets, or
unmatched. InitiallyRP accepts a L.P. packets as unmatched. An accepted H.P. packet is
matched up ter /(e — 1) unmatched L.P. packets currently in the queue, starting with the
earliest. In the case of/ (¢ — 1) not integral, we allow the number of matched L.P. packets
to be fractional, since matching is only conceptual. We define the “threshold ratio” of the
gueue as the total number of unmatched L.P. packets vs. the total number of free slots in
the queue. When a L.P. packet arrivR®,accepts only if afterwards the threshold ratio is
at mosty = /(e — 1).* We cally the threshold parameter.

We illustrate the algorithm using a concrete example. Let’s suppesd 2,« =2, and
initially the queue is empty. The threshold parametés thena /(o — 1) = 2 in this case.
Now 6 L.P. packets arriveRP will be able to accept all 6 of them, because the threshold

3 For the rest of the paper, we will simply stat8 ‘humbers of packets arrive,” with the understanding that
they arrive one after another, infinitesimally apart.

4 Notice that inevitably, we will encounter someundoff errors due to the inability to accept partially an L.P.
packet, but this is minor, and not considered here.

A. Zhu / Journal of Algorithms 53 (2004) 137-168 141

ratio afterwards is g6 = 1 < 2 (the queue contains 6 unmatched L.P. packets and 6 free
slots). Then two H.P. packets arriveP accepts both. Now each H.P. packet is matched
up to 2 unmatched L.P. packets in the queue. So the queue content is now 4 matched L.P.
packets, followed by 2 unmatched L.P. patsk followed by 2 H.P. packets, and finally
4 free slots. Then suppose 4 more L.P. packets arfwill only accept the first two,
because afterwards the threshold value/i2 4 2. Any additional acceptance of the L.P.
packet will raise the threshold ratio above 2. But after the queue transmits some packets,
more free slots are introduced, or soarematched L.P. packets have depariEwill be
able to accept more L.P. packets.

We now turn to the competitive analysis BP. Before analyzindRP, we first bring
more structure t®PT without changing its optimality.

Lemma 1. We can freely exchange any two packets’ positions in OPT’s queue at any time,
without changing the total value of the packets transmitted by OPT.

Proof. Since every packet accepted to the queue is always transmitted, it doesn’t matter
in which order they are sent in terms of total value transmitted. In fact, the total value
of the packets transmitted is the same as the total value of the packets accepted. Thus
in the analysis below, we sometimesgae in terms of packets accepted, whenever
convenient. O

Lemma 2. If OPT is idle at timej, then any online algorithm must also be idle at tifhe

Proof. Suppose the contrary situation occurs, we look at the first such;tinfenOPT is

idle and the online algorithm is not. That means at tim®PTs queue is empty, and the
online algorithm’s queue contains at least one packet to be sent. We now look backwards
in time, and find the last timg < j whenOPT has fewer number of packets in its queue
compared to that of the online algorithm, i.e., during tiffe j] OPT always has fewer
number of packets in its queue. Since no two packets can arrive at exactly the same time,
that means the number of packets in a queue changes only in unity. Also notice that the
number of packets decreases synchronously for B and the online algorithm. So

at a time infinitesimally before’, OPT and the online algorithm have the same number

of packets in their queues. Such timeexists since initially both queues are empty. The
only event that can occur at timéto have caused this sudden change is that the online
algorithm accepted a packet whildPT rejected the same packet. We then mo@yT to

accept such a packet. Now during tifin€ j], the number of packets @PT's queue is still

upper bounded by that of the online algorithm.@®T never has to reject any packets that

it originally accepted durig this time period. At timej, OPT has at most one packet in

its queue to be transmitted. CleaDPT can accept whatever packets accepted originally
after timej as well. We have argued th@PT can accept one more packet, thus the total
value of accepted packets has increased, a contradiction to the optim&@ig/Tof O

Lemma 3. We can modify OPT so that it accepts all the H.P. packets that RP accepts,
without changing its optimality.

142 A. Zhu / Journal of Algorithms 53 (2004) 137-168

Proof. Because nonpreemptive queueing has a matroid structure, we can construct a
particular optimal offline solution as follows [1]: first ignore all L.P. packets, and just
greedily accept the H.P. packets as long as the queue is not full. In addition, we accept
the L.P. packets that won't interfere with the H.P. packets accepte@R&t’ denote the
algorithm that only accepts H.P. packeteegqily and ignores the L.P. packets. We claim
that the set of packet®PT! accepted is a superset of the H.P. packetsRigaccepts.

Since all the packets accepted ®PT! are included in the optimal offline solution we

are constructing, we will prove this lemma. We first show that the number of packets in
OPT’s queue is always no more than thatRIP. We prove this by induction. Assume
during time[O0, r) the hypothesis is true, now consider timdf a L.P. packet arrives at
time r, sinceOPTH won't accept any L.P. packet, the hypothesis is true. If a H.P. packet
arrives,RPalways greedily accepts, unless its queue is full, in which Bd3kas the most
number of packets possible in its queue. So afterwards the hypothesis is maintained. If a
packet departs fro®PT?’s queue at time, by the inductive hypothesis, a packet must
also depart fronRPs queue. If a packet departs froRPs queue and vice versa, we are
again fine. Otherwis®PT is idle, which means its queue is empty, the smallest possible.
So the hypothesis is maintained after any of the departing situations above. This completes
the inductive proof. Thus iRPaccepts a H.P. packet, sine®T” has more free slots than

RP, OPT will accept that packet for sure.0

Lemma 4. We can restrict the sequence of packet arrivals to only contain the packets that
either OPT or RP accepted. On the new setuee OPT and RP accept exactly the same
packets as they would on the original sequence.

Proof. Clearly, OPT can accept exactly the same patkthroughout, andaintain its
optimality by the matroid property. F&P, it only rejects H.P. packets if the queue is full,
and rejects the L.P. packets if the restrintion the threshold ratio is met. So the packets
accepted on the new sequence is going to be the same as well.

We letS denote this restricted sequence and our analysis will only concentr&@Bon
andRPs behaviors or$. In particular, from Lemma 3, we know the following.

Coroallary 1. The H.P. packets i are exactly the ones that OPT accepted.
We further restricOPT's behavior as follows.

Lemma 5. If at time ¢, RP accepts a L.P. packet while OPT rejects, and later OPT
accepts another L.P. packgt before its queue is full, #n we modify OPT to accept
instead and rejecp’ later, maintaining the optimality.

Proof. We look into the future’ > ¢, whereOPT's queue is full for the first time since

OPT exchanges the two packetsand p’. Since the queue was never full befaftgthe
exchange will guarantee that the modifi@®@Ts queue is never overflown till, when it
contains the same number of packets as the original one. Obviously, this does not change
the value of the optimal solution. Note that if during tirres’], OPT only accepts H.P.

A. Zhu / Journal of Algorithms 53 (2004) 137-168 143

packets and no L.P. packet, acceptingt timer will interfere with the H.P. packets, then
OPT must rejectp. O

We now are ready for the analysis BP. We imagine the packets transmitted by an
algorithm being placed on a one-way infinite tafpe We useT[i] to denote the tape
position with indexi, for i > 0. T[] holds the packet transmitted at timet+ 1. We
can conceptually think an algorithm as simply placing packets onto the tape, instead of
accepting packets into the queue. Thus, a pagleetived between timéj, j + 1) can only
be placed at a tape position anywhere fiBfyi] to 7[j + B — 1]. An algorithm would place
p in the first such empty tape position, corresponding to acceptiimgo the queue. We
often refer to packep by its tape position, i.ep = T[¢] forsomej < ¢ < j+ B—1.We
usel (p) to denote the index of packgton the tape, i.e] (p) = ¢. The total value of the
packets transmitted is then the total value of the packets placed on the tape. When referring
to eitherOPT or RPs tape, we use the superscriit€®T, 7RP JOPT [RP and omit these
superscripts wherever the context is clear. We TiSET[i, j] (TRP[i, j], respectively) to
denote the total value of packets frdnfii] to 7[j] on OPTs (RPs, respectively) tape.

Lemma 6. At any time, packets that appear at ttaree positions in OPT and RP’s queues
occupy the same tape positions, and vice versa.

Proof. At any timez, if p is theith packet inOPTs queue, and; is theith packet

in RPs queue (1< i < B), then bothp andg will be transmitted at timg?] +i — 1.
Sol(p)=1T[t]1+i—2andl(g) =[t] +i — 2. Similarly, packets with index¥ on the
tapesTOFT[j]andTRP(j1, always appear at the same positions togeth&RT andRP's
gueues. It could happen that only one of tlaekets is present in the queue, but when both
packets are present, the positionsytioccupy in the queues are the samel

We now present some high level ideas of the analysis: lbet the first timeRP and
OPT disagree with each other. We'll pick a suitable future tirhe ¢, and argue that the
total value of packet®P accepted during timg0, ¢'] is at least ax/(2a — 1) fraction
of that of OPT. The analysis then continues after time finds the next time instance
where the two algorithms disagree wiglach other, find another suitable tirrefurther
in the future, compare values packets accepted between timé, r”], and so on. In
the tape world, le?°PT[x] (TRP[v], respectively) and P T[] (TRP[v'], respectively)
denote the corresponding starting amdliag positions of packets accepted ®PT (RP,
respectively) during timg0, +']. Since there may be idle times, we simply require that there
are no packets accepted OPT (RP, respectively) outside dD, ¢'] in between positions
TOPT[u] andTOPT[u'] (TRP[v] andTRP[v'], respectively). Initially at time 0, we may set
u =v = 0. The timer’ we pick will guarantee that’ = v/, i.e., at timer’ the numbers of
packets imfOPT andRPs queue are the same again. Thus such relatioasi{ andu’ = v')
can be maintained for all future analysis as well. Conceptually, our analysis breaks a tape
into pieces, and compares the tape conten®RT andRP between two consecutive break
points.

144 A. Zhu / Journal of Algorithms 53 (2004) 137-168

Theorem 2. We can break down a tape at some selected positions=tip< bp, < bp; <
..., attimesry =0< 1 <3 <---, such that
TPTbp;, bp, 1 — 1] 20— 1

<C, hereC =
TRPbp;, bp 1 — 1] W o

Proof. We use induction on the following inductive hypothesis: at tumehe following
conditions hold:

(8) The numbers of packets@PT andRPs queue are the same.

(b) The queue contents for packets with indibgs or higher are identical foOPT and
RP.

(c) Allthe unmatched L.P. packets in the queues are of ifgexnr higher.

Note that such hypothesis is true fer= 0 andbp; = 0. At time 0, there are no packets
in eitherOPT or RPs queue. The requirement for the unmatched L.P. packets is true by
default.

We examine the packets admitted to the queue by B&h andRP from time#; on.
Assume at time” > t;, OPT andRP disagree with each other for the first time. There are
only four general situations:

(1) OPT accepted a H.P. packets, whi®P rejected the packet. This is impossible. The
numbers of packets in both queues are the same atzfinfiy condition (a) of the
inductive hypothesis. PIUSPT andRPagree with each other between tifiag), so
the number of packets in both queues are the same just beforg'tith©PT accepted
a H.P. packet at timg’, that mean©PT's queue was not full prior to time’, neither
wasRPs queueRPemploys greedy strategy for H.P pack&®.should have accepted
the H.P. packet as well.

(2) RPaccepted a H.P. packet, whilPT rejected. This cannot happen due to Lemma 3.

(3) OPT rejected a L.P. packet, whilRP accepted.

(4) RPrejected a L.P. packet, whil@PT accepted.

In either of the last two cases, we'll find a breaking poimt,, > bp, at a time
tiy1 > t” > t;. We then show that

TPTbp;, bp, 1 — 1] cc °
TRPbp, bp — 11

Let’s consider situation (3). At time”, OPT rejected a L.P. packetp, while RP
accepted. Then by Lemma 5, there is a tirhe- ¢, such thatOPTs queue is full at
time+' andOPT only accepts H.P. packets between ti@rig ¢']. The last packet iOPTs
queue at time’ has index(t'] + B — 1. We then sebp, . ; = [t'] + B, ands;.1 =1". The
reader can verify thaip, , ; > bp; andz; 1 > 1.

Lemma 7. Both OPT’s and RP’s queues are full at timieAnd neither OPT nor RP was
idle during time(¢”, ¢'].

A. Zhu / Journal of Algorithms 53 (2004) 137-168 145

Proof. OPT cannot be idle during timeé:”, t']. Otherwise, we modifyOPT to accept
the additional packetpinstead, contradicting the optimality GfPT. At time ¢”, RP has
one more packedpin its queue compared to that @PT. RPis greedy in terms of H.P.
packets, so unle®Ps queue is full (in which cas®P has as many packets in its queue
as possible), it will always accept a H.P. packet BT accepts during timé”, ¢']. RP
may even accept some L.P. packet during that time, todrB® queue will always have
equal or more number of packets compared to th@®T until time ¢’. This implies that
RPs queue is full at time’ and never idle during tim&”,¢']. O

Lemma 8. At any time we have thdtx (¢ — 1) < f x «, wherel is the number of
unmatched L.P. packets arfdis the number of free slots in RP’s queue.

Proof. Thisis true at time 0. When a L.P. packet is accepted, by definition, the number of
unmatched L.P. packet is not more thafie — 1) times the total number of the free space,

so the bound trivially holds. When a H.P. packet is accepted, the number of free slots
decreases by 1, but the number of unmatched L.P. packets is decreasgd by 1), or

there is no unmatched L.P. packet. In eitheecdise claim is true. When a packet departs,

the number of free slots increases by 1, the number of unmatched L.P. packets does not
increase, hence the bound still holdsa

Coroallary 2. When RP’s queue is full, all the L.P. packets are matched in the queue.

Lemma 9. At times; 1 =" and bp,, = '] + B, all three conditions in the inductive
hypothesis in Theorethare satisfied.

Proof. By Lemma 7, both queues are full, hence condition (a) is satisfied. The packets in
OPT andRPs queue have indices at mgst] + B — 1 < bp,, 1, so condition (b) holds by
default. By Corollary 2, condition (c) holds as wellx

We now compard RP[bp;, bp, |, — 1] with 7°PT[bp;, bp, 1 — 1]. In particular, we’'ll
show that

TOPT[1RP(sp), bp, 1 — 1]/ TR 1RP(sp), bp,1 — 1] < C. (%)

Recall that/RP(sp) is the index of packesp on RPs tape. By Lemma 5 and QPT has

all H.P. packets from'[IRP(sp)] to T[bp;,, — 1], while RPhas either L.P. or H.P. packets

at these positions. We will prove that the total fraction of the L.P. packets at these positions
is at mostr/ (2o — 1), immediately implying(*).

We introduce the following conceptual marking of H.P. packets to L.P. packets for
packets from position/RP(sp)] to T[bp;,; — 1]. Initially, each accepted L.P. packet is
unmarked. We mark packets as follows: each accepted H.P. packet with/iRBeyp) or
higher would mark up te/(« — 1) unmarked L.P. packets with indicé8"(sp) or higher.

The marking is almost the same as the actual matching uselg iexcept that only the L.P.
packets with indicegRP(sp) or higher are marked. Similar to Lemma 8 and Corollary 2,
we conclude the following.

146 A. Zhu / Journal of Algorithms 53 (2004) 137-168

Coroallary 3. When RP’s queue is full during any time betwegh '], all L.P. packets
from positions/ RP(sp) on are marked in the queue.

Lemma 10. At mosta/(2¢ — 1) fraction of the packets betweeRRP[IRP(sp)] and
TRPbp 1 — 1] are L.P. packets.

Proof. From now on we completely ignore the packets with indices lower iiisp)

in both queues. We use the word “relevant” to refer to packets “with indi€8¢sp) or
higher.” We consider the longest prefix of consecutive packets that consists of only marked
L.P. and H.P. packets iRPs queue. The prefix has to start from eitlseror the first packet

in RPs queue ifsphas departed. We udegt) to denote the length of such longest prefix at
any timer € [¢”, ']. We prove the following claimL(¢) is at least the number of relevant
H.P. packets ifOPT's queue at time.

The base case is at tim& when RP acceptedsp and OPT rejectedsp. OPT has no

relevant H.P. packets yet in its queue. R, initially spis unmarked, sd.(:") = 0.

The hypothesis is true. Now consider the inductive step. When a H.P. pgaeleetives,

if RPacceptdp, thenOPT acceptdp as well by Lemma 3. The number of relevant H.P.
packets inOPTs queue increases by 1. Consider the previous valid longest [Peiiix

RPs queue, ifhp immediately followsP, then we appentp to P and the hypothesis is
maintained. Ithp could not extend, that means there is at least one unmarked L.P. packet
ulp immediately followingP, i.e., all relevant L.P. packets prior tdp in the queue are
marked already. By our marking scheme, the arrivahpthangesulp to a marked L.P.
packet, thus extendin® by at least one, maintaining the hypothesisRP rejectshp,

that mean®kPs queue is full. By Corollary 3, all relevant L.P. packetsRPs queue are
marked, soRP has the longest possible prefix, maintaining the hypothesis. When a L.P.
packet is accepted intePs queue, the number of relevant H.P. packet©RT doesn't
change, neither does the length of the prefix. The hypothesis is also maintained when a
packet departs from both queues, by Lemma 7 (neither machine is idle).

The hypothesis implies th&®P always sends a relevant L.P. packet as a marked L.P.
packet, during time(r”, t']. Otherwise consider the timg just before an unmarked
relevant L.P. packatlp, was sent byRP, and a H.P. packet was sent ®PT. L(t*) =0,
since ulp, was the first packet in the queue, HOPT has at least one relevant H.P.
packet in the queue to be sent, contradicting our claim. At im&Ps queue is full,
and TRP[bpiH — 1] corresponds to the last packetRiPs queue. By Corollary 3, all the
relevant L.P. packets in the queue are marked. We have proved that all L.P. packets from
T[I(sp]toT[bp;,, — 1] are marked. Since each H.P. packet marks at mst — 1) L.P.
packets, at most/(2e — 1) fraction of the these packets are L.P. packets.

This concludes the discussion about situation (3), now let’s consider situation (4). At
time t”, OPT accepted a L.P. packgt, while RP rejected it, s®OPTs queue has more
packets than that dkP at times”. Then we look at the first timg > ” whenRPs queue
contains the same number of packets as thaifr.

A. Zhu / Journal of Algorithms 53 (2004) 137-168 147

Lemma 11. We can rearrange OPT's queue content during tinfer’], so that the prefix of
its queue matches the entire RP’s queue content. To be more specific, at any firhg '],
the following conditions hold

(1) OPT always has more packets in its queue than RP for’, and the same number of
packets at time'.

(2) The H.P. packets in OPT’s queue are synchronized with that of RP, i.e., if there is a
H.P. packet at position in OPT’s queue, then there is a H.P. packet at position
RP’s queue, and vice versa. In particular, that means the numbers of H.P. packets in
both queues are the same.

Proof. Notice that condition (1) is always true by the definitionfofWe use induction to
prove condition (2). The base case is at tifieBy conditions (a) and (b) in Theorem 2,
OPT only has one extra L.P. packigtat the end of its queue compared to thaR#f the
hypothesis is true. When a H.P. packetarrives, by Corollary 10PT always acceptkp.
SinceRPalways has no more packets in its queue t@&T, RP must greedily acceptp.

Let P(hp) denote the position dfpin RPs queue OPT then places$ip at positionP (hp),

and places whatever packet was originallyghp) at the end of its queue. Such exchange
is valid by Lemma 1. Thus the hypothesis is maintained. When a L.P. phcketives,

the only interesting case is wh&P acceptdp while OPT rejectslp. Let P(Ip) denote

the position oflp in RPs queue. Since all the H.P. packets are still synchronized, by
condition (1),OPT must have a L.P. packet at positi@lp) already (otherwis®©PT has

less number of packets, impossible), maintaining the hypothesis. If a packet departs from
RP, then the same packet must depart frofT as well. If a packet departs fro@PT,
either the same packet departs fr®R, or RPis idle. In any of the departing scenarios,
the hypothesis is maintainedo

Corollary 4. Attimet’, OPT and RP has exactly the same gueue contents.

Proof. By the previous lemma, at timg, we have rearrange@PTs queue so that its
prefix matches the entire queue contenRef SinceOPT has the same number of packets
asRPattimer’, OPTs queue content is exactly thatBP. O

During time [¢”, ¢’), if RP was never idle, then we should ignore the discrepancy at
time ¢”. Here is the reasoning. Sin€ was never idle, by Lemma D)PT was never
idle either. That means all packets transmitted during time’) (with indicesbp; or
higher) are the same f&®P and OPT, due to Lemma 11. By Corollary 4, at timéwe
can conceptually thinlOPT andRP agree with each other during tinig, '], even though
OPT andRP made different decisions about acceptthe packets. We should then look
for the next time” whereOPT andRP disagree with each other again.

The interesting case is whé®P was at least idle once during time’, ¢'). The first
packet (or the first position, if there is no packet)RP or OPTs queue at time’ has
index [#'|. We then sebp;, ; = |#'], andr; 11 =t'. The reader can verify that,; > r; and

bp,, > bp;.

148 A. Zhu / Journal of Algorithms 53 (2004) 137-168

Lemma 12. At time 7,41 = ¢’ and bp,; = [¢'], all three conditions in the inductive
hypothesis in Theorethare satisfied.

Proof. By the definition oft’, condition (a) is satisfied. By Corollary 4, condition (b) is
satisfied. The first packet in the queue at tirhleas indexop;, ; = [#'|, so condition (c) is
satisfied as well. O

We now show that
TTlbp;, bp, 1 — 11/ TR7(bp;, bpq — 11 < C. (%)

Notice that by condition (2) in Lemma 11, the numbers of H.P. packet©ff and

RP from T[bp] to T[bp;,; — 1] are the same. It's sufficient then to argue that the L.P.
packets fron"RP[bp,] to TRP[bp, ., — 1] is at leastr/(2« — 1) fraction of that ofOPT.

We use the following counting scheme. dgy time a L.P. packet is accepted irRi’s
gueue, it contributes another imaginasy— 1) /o L.P. packet tdRPs queue. We allow the
imaginary packets to overflow the queue. The imaginary packets can also be “transmitted.”
RP always transmits real packets as in the iorddj schedule, but when it's empty of real
packets, we leRP transmit a whole imaginary packet if there is any. Once an imaginary
packet is transmitted, it's removed from the queue, otherwise it stays in the queue forever.
In particular, we have the property that if the L.P. packet is currently in the queue, its
corresponding imaginary packet is alsothe current queue. This is becalRE always
transmits real L.P. packets first rather than imaginary ones. The imaginary packets also
form a separate queue, which is appendeBRs queue of normal packets. We use the
word “relevant” here to refer to packets “with indices betwegnandbp, ; — 1.

Lemma 13. The total number of relevant packets in RP’s quéneluding the imaginary
packets generated by the relevant packedts always no less than the total number of
relevant packets in OPT’s queue during tifnet; +1).

Proof. The claim is true during timés;, /), sinceOPT and RP agree with each other
till time ¢”. Let's consider different scenarios for the inductive step. When a H.P. packet
arrives, by the exact argument in Lemma 11, bofAT and RP accepts. The hypothesis
is maintained. When a L.P. packigt arrives, the interesting case is@PT acceptdp

as a relevant L.P. packet whiRP rejects. The reason fd®Ps rejection is that the total
number of unmatched L.P. packetsRiP’s queue is at least/(«¢ — 1) times the number

of free slots. By condition (3) in Theorem 2, all unmatched L.P. packeRHa queue
have indicedp; or higher. By condition (1) in Lemma 11, they all have indices lower than
that of Ip, which is no more thatp,,; — 1. So all the unmatched L.P. packetsRi¥s
gueue are relevant and their corresponding imaginary packets mustRigsiqueue as
well. That means that the number of imaginary L.P. packeRHs queue currently must
be at least the number of free slots. So the total number of pack&Bsnqueue isB,
definitely match that o©OPT. When a packet departs froBPTs queue, by the inductive
hypothesis, a packet, maybe imaginary, must also departRBsiqueue (sincdkP has

no less packets tha@PT). When a packet departs froRPs queue, either a packet must

A. Zhu / Journal of Algorithms 53 (2004) 137-168 149

also depart fronOPT's queue, olOPT is idle (which could happen if the departing packet
of RPis imaginary). So the hypothesis is maintained for all departing cases.

From the above lemma we conclude that the total number of relevant L.P. pREKeds
is at leastr/(2a — 1) fraction of that ofOPT, realizing(x). This concludes the discussion
of situation (4) in Theorem 2. We thus obtain the following theorem.

Theorem 3. RP is(2a — 1) /a-competitive.
2.1. Generalization of the nonpreemptive queue model

We now generalize the 2-value model to allow packets take on arbitrary vallesin
We prove® (logw) upper and lower bounds for this model.

2.1.1. Lower bound ofloga + 2)/2

We assume that is a power of 2. We use packets of valug @r i =0, ..., loga.

All the packets arrive during tim€0, 1). Packets arrive in increasing order of values,
with B packets for each value, i.e., firBt packets of value 1 arrives, then if necessary
B packets of value 2 arrive, and so on. Well& denote the inverse of the lower bound,
LB=2/(logax + 2).

At first B packets of value 1 arrive. To std§/LB)-competitive, the online algorithm
must accept packets with total value at lebBtx B. For otherwise the adversary can
choose to stop the sequence immediately and accept @dllue 1 packets to the queue,
while the online algdthm accepted packets with total value less th8nx B. So to stay
at least(1/LB)-competitive, the online algorithm has to occupy at lé&fraction of the
total queue space with value 1 packets. In general, we have the following lemma.

Lemma 14. After B packets with valu€' arrive, in order to remain at leas¢1/LB)-
competitive, any online algorithm must accept packets with total value at leasPiLB B.
And the longest prefix of the packets in the queue with total value no more tha@’'LBB
occupy at leasti/2+ 1) x LB x B slots.

Proof. We have argued that the base case is truefo0. Assume this is true far=k — 1,
now consider whemB packets of value®Rarrives. To stay(1/LB)-competitive, the online
algorithm must accept packets with total value at léat< 25 x B, for otherwise the
adversary will stop the packet sequence immediately and the optimal offline algorithm will
accept allB packets with value’2 while the online algoritm accepted packets with total
value less thahB x 2¢ x B.

Let P,_1 denote the last packet in the longest prefix with total value no more than
LB x 2¢-1 x B and N;_1 denote the number of packets in the queue afier;, before
B packets of value’2arrived. We need to accept packets so that the total value of packets
after P,_1 adds up to at leastB x 2~ x B. Every one of theV;_; packets has value no
more than 2-1. So the total value of thes¥,_1 packets is no more tharf % [N;_1/2].
Consider the firs(LB x B)/2 — [Ny_1/2] value Z packets accepted. Now the total value
of these value 2packets plus theV; _1 packets before is no more thad x 2¢-1 x B.

150 A. Zhu / Journal of Algorithms 53 (2004) 137-168

Together with the previous prefix ending with_1, we then have a prefix of packets with

total value no more thabB x 2 x B, and has at least

LBx B _ ’VNk]_—‘ S LB x B
2 2 |7 2

more packets than the previous one. By the inductive hypothesis, the length of the longest
prefix is at leastk/2+ 1) x LBx B. O

Ni—1+

In particular, this lemma applies io= logw. After B packets with valuer arrive, the
length of the longest prefix is at leadbga /2 + 1) x LB x B = B. That means the total
value of packets in the queue is no more thahx 2'°9¢ x B = o x LB x B. On the
other hand, the optimal offline algorithm will accept Blkx-valued packets. So the online
algorithm cannot be better thamh/LB)-competitive.

Theorem 4. No online algorithm(deterministic or randomizgchas a competitive ratio
better than(loga + 2)/2.

2.1.2. Upper bound d?logx + 2

We now present a deterministic algorithm, which is factor 4 away from our lower bound.
First we discretize the packet values. We riestiurselves to instares where packet values
are of powers of 2. Given any unrestricted instaficeve round down the packet values to
the nearest powers of 2 to create a restricted inst@hce

Lemma 15. The optimal offline value fdf’ is at least half of that of .

Proof. Just consider the packets accepted by the optimal offline algorithin fidre same

set of packets is a valid solution f@t. For each accepted packet, the rounded down value
is at least half the original value. So we have a solutiorZfowhose total value is at least
half the optimal solution fof. O

From now on we only consider the restricted instances. We first introduce a Round
Robin method, and then adapt the method into a valid online algorithm.

We divide the queue int¢ploge | + 1 equal portions, with théth portion dedicated
to packets of value2fori =0, 1, ..., [loga|. Upon the arrival of a value’ 2acket, the
Round Robin method greedily accepts if ittle portion has more than one free slot. At each
integral time unit, we transmit/I fractional packet each from the currédnbhon-empty
portions. In the case of some portions has less thdrfractional packet, we divide the
extra transmission power evenly among the rest of the non-empty portions, guaranteeing
that we transmit one packet per time unit, unless all portions are empty. From [1], we have
the following lemma (Corollary 3 in [1]).

Lemma 16. The total value of the valu® packets accepted by the Round Robin method
is at leastl/(|loge] + 1) fraction of that of the optimal offline algorithm.

We can simulate the Round Robin method as follows. We run the Round Robin method
in the background, and make acceptancefitspn decisions based on the Round Robin

A. Zhu / Journal of Algorithms 53 (2004) 137-168 151

method. Our online algorithm accepts a petck and only if it's accepted in the Round
Robin method. Since the Round Robin method transmits one packet per unit time, the
total number of packets in the online algorithm’s queue equals to that of the Round Robin
method. So we can indeed accept every packet the Round Robin method accepts.

Theorem 5. Using the Round Robin method as a guide to decide which packet to accept,
the online algorithm ig2 loge + 2)-competitive.

Proof. Since the online algorithm accepts exactly the same packets as the Round Robin
method, the online algorithm has the saoompetitive ratio as the Round Robin method.
The Round Robin method i$ogo + 1)-competitive with respect to the restricted instance

by Lemma 16, hencé? loga + 2)-competitive with respect to the original instance by
Lemma 15. O

3. Preemptive queueing policy

Preemptive queueing policies give online algorithms the ability to preempt (drop) a
packet accepted to the queue before its tragsimmn, hence better performance ratios can
be derived. To maintain the FIFO order, packets are always added to the end of the queue,
and transmitted from the beginning of theeue. In addition, a packet can be dropped from
any position in the current queue. The rest of the model setup is identical to that of the non-
preemptive model. We concentrate on the model where packets can take on values in the
range[1, «]. We first consider the case = 2. We show th&5 + +/13)/6 ~ 1.434 upper
and lower bounds in terms of competitiveicefor deterministic algorithms.

3.1. Lower bound construction

We start with some intuition via simple constructions that give loose bounds. From now
on, when the contextis clear, we may refer fuegket by its value; for instance, “packst
or “p” refers to the packet with valug. We use the following notationg: = ¢ meansp
andg are the same packei;= ¢ means packet andg has the same value. All inequalities
refer to the values of packets only.

The basic intuition behind the lower bouizdas follows: Suppose the online algorithm
currently has two packets in the queue, with valpeandg respectively. Suppose < ¢
and p has to be transmitted befoge Without knowing future arrivals, the online algo-
rithm faces a dilemma: either to transmitand letq remain in the queue, which puts the
online algorithm in danger of discardinglater; or discardp and transmit;, which puts
the online algorithm in danger of being idle the next time unit. Thus the adversary, which
determines the “difficult” packet sequences, will try to balance these two situations in order
to maximize the lower bound.

We introduce the following notation for the packet arrival sequence: packets (values)
are listed in their arrival order, with packets arrived within the same time unit grouped into
parentheses. For instange, b)(c, d) means packets valuedandd arrived during time

152 A. Zhu / Journal of Algorithms 53 (2004) 137-168

(0, 1), with a ahead ofb. And packets valued andd arrived during time(1, 2), with ¢
ahead ofi.

Consider the following initial sequencél, o) with « > 1 a parameter to be determined
later. If the online algorithm transmits at time 1, then the sequence en@&T transmits
both 1 andw in two time units. The competitive ratio is théft + «)/«. Otherwise the
online algorithm can transmit 1 and putn the queue at time 1, then the whole sequence
becomesl, o) (v, o). OPT transmits all three-valued packets, while the online algorithm
has to discard one such packet during the second time unit. So the competitive ratio
becomes @/(2« + 1). Balancing the two ratiogl + «) /o = 3a/ (2 + 1), we havex =
(3++/13)/2, and the lower bound is approximately 1.303. This lower bound construction
takes advantage of the online algorithmigbility to distinguish between two sequences
(1, o) and(1, @) (o, o).

Now we try to improve the bound via extending the whole sequenced,i®,),
or (1, a1)(a1, 2), or (1, a1) (a1, a2) (a2, a2). In the future, we'll just write one single
sequencel, a1) (a1, a2) (a2, a2), with the understanding that each prefix serves as a
possible sequence of packet arrivals. If at time 1 the online algorithm trangmtten the
sequence becomégs, o1). OPT would have transmitted packet 1 at time 1 and paaket
at time 2, so the ratio i€l + «1) /1. Otherwise, the online algorithm can at best transmit
packet 1 at time 1. Now between tingg, 2), @1 anday arrive. Let's consider time 2. If
the online algorithm transmitg,, then the sequence beconfésw1) (a1, a2). OPT would
have transmitted the first; at time 1, the second; at time 2, andxy at time 3, for a
total of 1 + a1 + a2. The online algorithm transmits packet 1 at time 1 and paeket
at time 2, so the ratio i1 + a1 + a2) /(1 + a2). Otherwise, the online algorithm can at
best transmii; at time 2. The sequence then becorflesi1) (a1, @2) (a2, a2). OPTwould
have transmitted; at time 1, the firstez at time 2, the secong, at time 3, and the third;
at time 4, for a total of1 + a2 + a2 + a2. The online algorithm transmits 1 at timed, at
time 2, andxz’s at times 3 and 4, so the ratio (@1 + a2 + a2 + @2) /(1 + a1 + a2 + a).
Setting the three ratios equal, we haye= (3 + +/5)/2, a2 = (9+ 4+/5)/2, and the lower
bound is approximately 1.382.

Thus if we continue the trend, we can improve the bound further. Consider the following
general sequencery = 1, a1) (a1, @2) ... (ax—1, ax) (o, o). We useL; to denote the
lower bound derived from the sequence ending wjthWe have the following equations,
derived from various scenarios similar to the two previous constructions:

_aotor artartoe2 artoaxtoa2toz

a a1 a oo + o2 o oo + o1+ a3 -
_oato2t o1+ op-1+ 0

T aptardFop ot

o oatapt - o1t og o o
Caotarte a2 toertop o

Ly

Solving the above equations, we have

SR TR RS)

3 2 3 2

A. Zhu / Journal of Algorithms 53 (2004) 137-168 153

and ask — oo, Ly — (~/13+ 5)/6 ~ 1.434. Appendix A provides the details of the
calculation. From now on leaPX denote the constat/13+ 5)/6.

Theorem 6. No deterministic online algorithm can achieve a competitive ratio better than
APX— ¢, for any constant > 0.

Proof. For anye > 0, we can find a particular valug, such thatL; > APX— ¢. By
applying the sequencé, a1) (o1, a2) ... (aj—1, ;) («j, ;) and the analysis above, we
can conclude that any deterministic algorithm has a competitive ratio no better than
APX—¢. O

3.2. The Ratio algorithm

The «; series provides much insight on designing an online algorithm with the
matching upper bound. We see that the series is a combination of two geometric
series of powergy/13+ 5)/2 and(+/13— 1)/2, respectively. The dominating factor is
(v/13 + 5)/2, sincew;/(a;_1) increases and converges to this valuei as oco. Let
r denote the constant/13 + 5)/2. For anyk, consider the packet arrival sequence
L, r)(r, rd ... 1, kK, rk), we have the following observations:

PRI SN S R 5SS R _Zif;%ri_i_rk—l_i_rk
T+r4- - frk24rk SR i 4k

A= SR LN)
< =
k—2 k
r . ﬁ +r

e ok T - e

= APX 2
Tfrt Tk Sk Lk @

Further, ask — oo, (1) and (2) approach equality. So in some sense, the geometric series
1,r,r2,... alone can almost provide the lower bound on the competitive ratio, except for
smallk’s. The other factot+/13— 1)/2 is only used by the adversary to make the lower
bound high for smalk’s as well. The online algorithm, however, only has to guarantee
the competitive ratio stays below (not necessarily equaljRX for all k. Thus the online
algorithm has relatively less work to do.

We will discuss aboutOPTs behavior first, motivating the design of the online
algorithm later. We usd ; and B; to denote the two most valuable packets arrived during
time (j — 1, j), with A; arriving ahead ofB;. We call a packet being “buffered” by an
algorithm if it arrived during timgj — 1, j), and still remains in the queue after tinie
We useTR; to denote the packet transmitted at tigheBF; the packet buffered at timg
MV ; the most valuable packet arrived affelR; during time(j — 1, j). Superscripts are
used to denote the algorithms and omitted when the context is clear. For inﬁﬂ?@é,
is the packet transmitted YPT at time j. We also introduce the following notation: if an
algorithm transmits packet and buffered packet at time j, p[g] denotes such an action
([0] or [] means no packet is buffered).

154 A. Zhu / Journal of Algorithms 53 (2004) 137-168

Lemma 17. Without loss of generality, we assume that if a packet is not to be transmitted by
OPT, OPT will not accept that packet into the queue. Similarly, if OPT buffered a packet
attimej, we would assume OPT transmits that packet at timel, i.e., BF; > 0 implies

BF; =TRj41.

Lemma 18. Without loss of generality, either TR=BF;_1 =MV;_; > min(4;, B;), or
TRj EAj, OI’TRj = Bj.

Proof. It’s clear thatBF;_; has to arrive during tim¢j — 2, j — 1), and has to arrive after
TR;_1 by the FIFO ordering. The most valuable packet satisfying these criterions is the
only choice forBF;_1, soBF;_1 =MV, _;.

By the previous lemma, BF;_1 > 0, then it must be transmitted at tinjelf MV ;_1 <
min(A;, B;), then consider the following modification@PT. If OPT executedV ;_1[r]
at timej for some packet > 0, then modifyOPT to executed ;[B;] instead. The packets
transmitted byOPT at time j and j + 1 originally wereMV;_; andr, vs. A; and B;
after the modification. Itis clear thdV;_1 +r < A; + B;, sincer <max(4;, B;). Thus
doing so would not violate the optimality @PT. If OPT executedVV;_4[] at time j,
then modify OPT to execute mad ;, B;)[] instead. Clearly, ma ;, B;) > MV _1,
maintaining the optimality cOPT.

Otherwise BF;_1 = 0. The packet transmitted at tinyemust arrive during time;j —
1, j). Assume thaOPT transmitted a third packet at time j, wherep < min(4;, B;).
If OPT executedp[] at time j, then we modifyOPT to execute magd ;, B;)[] instead,
increasing the optimal value. Clearly, this cannot happeQRfT executedp[r > 0] at
time j, then we modifyOPT to executed ;[B;] instead. Agairp +r < A; + Bj, a con-
tradiction to the optimality oOPT. O

From the previous lemma, it’'s clear that f@PTs decision to transmit and buffer
packets at timegj, the only packets worth consideringeathe two most valuable packets
out of the following packetsMV;_1, A;, andB;. We now introduce the Ratio algorithm
(denoted byRA). RAwill also keep track of the three packeMé/'fA = BFE‘A A;, and
B;. Notice thatRAwill always buffer the packeMV?Al, regardless whether or not it will
be transmitted at timg. Of these three packets, thed most valuable packetg; and
S; (with F; arriving ahead ofS;) will be considered and possibly put in the queue. If
S, F; x r, thenF; will be dropped andS; = TR;, the most valuable packet arriving
afterS, will becomeBF We call F; being “preempted” bys;. OtherwiseS; < F; x r,
thenF; =TR; andS; = BF Flgure 1 shows the pseudo-code for the Ratio algorlthm We
useB’ to denote the first packet in the queue at timand B} the second packet. Recall
that Bi and B}, also refers to the values of these packBl,’s,—_ 0 means there is no packet
in theith slot. ObviouslyB; = 0 implies B, = 0.

Theorem 7. The Ratio algorithm ig(5 + +/13)/6)-competitive.
The full proof is a detailed case analysis. We first prove the following simple case.

Lemma 19. If at each transmission timg, F; > S;, then RA is optimal.

A. Zhu / Journal of Algorithms 53 (2004) 137-168 155

RATIO

1 For the arrival of a new packetat timer

2 IFB{=0

3 ACCEPTp into the queue, so now] = p

4 ELSE

5 IF p<Bjandp<Bj

6 DROPp

7 ELSE

8 DROP the smaller o] and B}, so nowB =0
9 ACCEPTp into the queue, so now} = p
10 IF BS/By >r

11 DROPB], so nowB] = p, andB, =0

12 Attransmission timg
13 IF queue is not empty)
14 Transmit the first packet in the queue, so rmﬁv: 0

Fig. 1. Pseudo-code for the Ratio algorithm.

Proof. SinceF; > S;, by the definition oRA, there are two possibilities for the orderings
of BFfA, A}, andB; below.

(1) BFYA, > max(4;, B)), in which caseF; = BF?A, andS; = max(4;, B)).
(2) Aj > Bj > BF]Rél’ in which caseFj = Aj ande = Bj.

We are going to prov@R* = TROPT andBFRf#= MV?FT, by induction on;. Clearly,
when j = 0, the hypothesis is true by default. We now look at tigheassuming the
hypothesis is true up to timg— 1. In case (1) aboveMV?flT = BF?fl >maxA;, Bj) >
min(A;, B;). By Lemma 18,

PT _ ppEOPT _ OPT
TRPT=BFYF = MVOFT.
By the definition ofRA TR =BF{A, = TR?PT, implying
BFRA= MVRA= MVOPT
J J J)

In case (2)BF?A, = MVOPT <min(4;, B;). By Lemma 180PT must transmitone of ;
andB;. If TROPT = B;, we modifyOPT so thatTRPPT = 4. It's clear such modification
wouldn’t hurt OPT becaused; > B;. By the definition ofRA TR;*AE Aj = TR?PT,
implying '

Bj =BFA=MVRA=MVOPT,

ThusRAtransmits the same packets@BT at all times. O

Lemma 20. Consider the first timgf where OPT and RA differ from each other, i.e.,
TROPT £ TREA, then either TRPT = F; and TR”= 5, or TR?PT = §; and TR = F.

156 A. Zhu / Journal of Algorithms 53 (2004) 137-168

Proof. SinceTROPT = TR, soMVOFT = BFRA, . ThusF; andSJr are also the two most
valuable packets to consider OPT at tlme] by Lemma 18TROP = orTROPT =S;.
By the definition ofRA eitherTR\A= F;, or TR =5;. O

The proof of the following lemmais trivial by the definition BfA
Lemma 21. Either TR*A=max4;, B)), or BFYA=max(4;, B)), for all ;.

We use OPTl[i, j] (RA[, j], respectively) to denote the total values of packets
transmitted byOPT (RA respectively) during timdi, j]. As in the nonpreemptive
situation, we start from the first timg whereOPT and RA transmits different packets,
and we’'ll find a future timej’, whereOPT] jo, j'1/RA jo, j'1 < APX etc. For simplicity,
assumejp = 0. From Lemmas 19 and 20, we kndy < Sp and there are two cases.

The first (simple) case TR = So and TR)PT = Fo. ThenBFSPT = TROPT = o,
sinceFp < So. Thus

OPTIO, l] Fo+ So 1+r

RAO] So r

Notice that we didn’t counTRA in the comparison. IBFPPT = 0, then we can totally
|gnoreTFéfA and start from after the transmission at time 1 as the beginning of time. This
is becaus®PT will only have packets arrived after time 1 to consider after time 1, which
are all available t&RAas well. RAmight have buffered a packet attime 1, but this only gives
RAmore choices on packets, Lemmas 19 andgl28uld still apply from time 1 onwards.
ElseBFPPT > 0, sinceTRPPT = Sp, BFYPT must be magA1, By). By Lemma 21, we have
the following two situations:

< APX

o BFPPT = BFRA This is the ideal case, Lemmas 19 and 20 should be applicable from
time 1 on sinceOPT andRAbuffered the same packet. We thus look for the next time
OPT andRAdisagree on transmission, and so on.

e BFPPT = TRRA Let k > 1 be the first such time th@®PT didn't buffer a packet
transm|tted byRAat timek, i.e., during timej € [1, k), TRQA BF?F’T Orletk > 1
be the first such time tha’tR,'fA 0, whichever appears first. Then

OPT[2, k]
RAL k]
sinceTRPPT = BFORT = TR, for 1 € [2, k]. We then want to claim that from time
k onward,OPT and RA are synchronized again. TRA = 0, then it has to be the
case that no packet arrived during tinde — 1, k). Thus BFOF’T BFRA=0, so
Lemmas 19 and 20 apply from tinve onwards. OtherW|se conS|der time— 1,
we knowBFOPT = TRRA # 0, so eitheBFOPT = 0, or BFOF’T = max(Ag, By). If
BF,?PT 0, then by the same argument before Lemmas 19 and 20 applies from time
k again. IfBFOF’T = max(Ax, Br) # TREA then it has to be th&FRA = max(Ax, By)
due to Lemma 21. So Lemmas 19 and 20 again applies fromktimrmvards.

9

This completes the argument for the first case wiid" = So andTROPT = Fo. We
concluded that there exists a tirhesuch thatOPT[O, k]/RAO, k] < APX, plusOPT and

A. Zhu / Journal of Algorithms 53 (2004) 137-168 157

RAare synchronized once more at tifeenabling Lemmas 19 and 20 again. Notice that
the synchronize step is needed for a particular tinvehereT ._Al = TF{?PT. The analysis
above is fori = 1, but the same analysis applies for all such timén the remaining
analysis, we won't explicitly bring up this sition, with the understanding that it can be
dealt with.

The second case is more involved, wheR§A = Fo andTROPT = Sp (thusBFRA = So).
We keep the inequalities (1) and (2) in mind, these are the worst case situatidR4, for
whereS; =r x F;. We shall transform all other situations to this standard case, via the
following two mathematical lemmas.

Lemma?22. LetY,Z,U;,V; (i=1,...,n), W;, X; (j =1,...,m) be positive real values,
for somen andm. If
Y Ui+Up+---+U, — W1 —Wo—--- =Wy Ui 4
— = and max— < min—=,
Z Vit Vot A Vi—X1—Xo— - — Xp iV X

thenY/Z < max{U;/V;} <min;{W;/X;}.

Proof. We repeatedly use the following fact about 4 positive real valueB, C, and D
that satisfy

A _ C A-C A A+C _C
< : < < < =

e XL, X . d
B D B-D B B+D D

Lemma 23. The following is true for allM > 0:
Mxr 1 2m Mxt + M+ M xr
———=— =APX and 7 =APX
=1 +2M S tMxr

Proof.
M xr r
ST tH2eM g +2 3 -2
M - - _
oM Z+2 -1

=APX

L+ M+Mxr Lo+ler 24,1

= = =APX a
%1+Mxr %+r r2—r+1

Lemma 24. We claim the following inductive hypothesis for any tijne O:

e Either OPTO, j]/RAO, j1 < APX, or OPTO,j+ 1]/RAQO, j1 < APX, or
OPTIO, j + 2]/RAO, j + 1] < APX, or OPTO, j +1]/RAQO, j + 1] < APX. And
there is an appropriate timg’ such that OPT and RA are synchronized and Lem-
masl19and20apply.

e OrBFYPT=0and

RA

OPTIO.j1 —1 +Ui—W,

i1~ BFA
RAO, j] 4 Vi— X

’

158 A. Zhu / Journal of Algorithms 53 (2004) 137-168

whereU; /V; < APX< W;/X ;. Thus by Lemma2, we can ignore thé&/;, V;, W;, X ;
terms while trying to prove the ratio APX, and only conceptually think

OPTIO, jI S
RAO.jT o5

Proof. The base case is fof = 0: if BFSPT # 0, then TROPT = BFSPT < Fy by the
definition of Fo and So. Then eitheTRYA = So, in which case

OPTIO, 1] < So+ Fo

RAO,1] ~ Fo+So

And after time 1OPT and RA are synchronized again sinddV{PT = BFRA =
max(A1, B1). Or TRRA £ Sp, that meansSy was thrown away. By the definition &?A
it must be thafR¥A > r x So. ThenTROPT = TRRA, since TROPT = BFOPT < Fo < So.
Thus

OPT[0,2] S+ TRRPT+ TROPT So+ Fo + TRRA r
= < <
RAQ, 1] F0+TFéfA Fo—i—So—i—TR?A' r:—l r—1

The other case i8FSFT = 0. Also we knowFy > So/r and BFRA = Sy from the
definition of RA

< APX

OPTI0,0] So ¥ —7%+0
T T S S S0\’
RAO, 0] Fo 1 r(rgl) + (FO - To)
where

So

-1 0

rs_ol =r > APX> — 5
=1 Fo— 57

satisfying the inductive hypothesis. This completes the base case analysis.

Assume at timé — 1 the inductive hypothesis is true. If at tirhe- 1 the first condition
of the inductive hypothesis holds, then we skip to the appropriate time videfeand
RA are synchronized once more and applyrireas 19 and 20. Otherwise if there is no
new packet arriving during tim¢ — 1,1), then TRYA = BF[* while TR?PT =0, since
BFYFf =0.Then

OPT[0. 1] BFy xr
A z = r-1 < APX
) — RA
=1 + B

andOPT andRAare synchronized again after tiche

So the only case left is that the second dtind of the inductive hypothesis held at time
[— 1 and at least one new packet arrived during tighe 1,1), and so bothF; = 0 and
S; # 0. Here are the possibilities:

A. Zhu / Journal of Algorithms 53 (2004) 137-168 159

(1) If TRRA=§,. ThenS;/F, > r, andF; > BFR4. Then eithelRPPT = §;, or TRPPT <
F andTRﬁf’lT: S;. ThusOPT[O,/]/RAO, l] or OPT[O, ! + 1]/RA0,] is no more
than:

BERA F—BF
SRS T AR B4 (8= P - %
BFRA —BF
Tl r%ll-q-ler+(Sl Fixr)— ——=

< APX

The last inequality is due to Lemmas 22 and 23.

(2) Else therTR* = F; andBFRA= 5. If BFPPT £ 0. We consider then the following
two subcases.
The first subcase FEF{ﬁrAl = BFRA=§;. Then we will show below tha®PT[O, + 1]/
RAO, [+ 1] < APX via another case analysis.
If F;, S; > BFR4, we knowOPT transmits no more than a combingg+ S; at times
land!/ + 1. Then

FRA1 Xr

B
OP'I'[O,Z+1]< +E+S5

RAO,[+1] BFRA

—F+FE+S

RA
PLELT | 2BFRA 4+ (F + §) — 2BFRA)

BFRA

2L+ 2BFRA + (F + S — 2BFRA)
3r —
2r —

=APX

Else thenF; = BFR4 > §;,we knowOPT transmits no more than a combines} it
times! and! + 1 sinceBFXRT = 0. So

r RA
OPTIO/+1) _ R | o, BFIEXT | 2BFRA — (2BFRA — 25)
= BFR - BF
RAO.I+1] — +BFYA + S; —15L 4+ 2BFRA — (BFRA — 5)
< APX

The second subcase Tﬂcﬁrl > BFRA=§,. Then it has to be th:’;\'rFﬁA1 > 8 xr,
and TR = TR since TR = BFPPT. CompareOPTIO, / + 2]/RAO, [+ 1]
with the two calculations oDPT[O, / + 1]/RA0, [+ 1] above,OPT addedTRY/}
to the numerator, whileRA added at IeasiTFﬁA1 — §; to the denominator. And
TRA/(TRY, — S) < r/(r — 1) < APX. This provesOPT[O,/ + 2]/RA(0, + 1] <
APX

(3) Else theR* = F;, BFRA= 5}, andBFPPT = 0.

160 A. Zhu / Journal of Algorithms 53 (2004) 137-168

If [7>8 >BF_1, thenTR,OPTE F.

BFRA x §—BFR4
OPT0,/] —=%—+F S’f{+ﬂ—%
B BFRA 5—BFRA
RA{07 l] + F % + Fl o r_ll—l

ElseifBFl_1 < F; < S < F; xr, thenTR,OPT— S.

BFRA F (Fi—BFRA Y xr
OPTIO./] _ —= S +S T+ s -
RAO, 1] BF?Al F F—BF
+h it
RA RA
ler (F—BF) xr Sixr (F—BF) xr Fixr—S5;
_ +S B r—1 =1 r—1 + r—1
Fixr _ 7BF}?—A1 S Fl*BF;R—AJ_ + Fixr—>S;
r—1 r—1 r—1 r—1 r—1
Else therBFRA = F; > §;, andTRPP T = 5.
BFRA xr BFRA xr—S,
I 1 Sy xr 1—1 !
OPTIO, /] +85 T N
R - BFRA N BFRA
A{O, l] P 1 + BFRA + 1 l + BFRA ﬂl
S/><r Fe 1><F*SI
_ +
BFRAXr—S8

S — =17 =
r—1 + r—1

These three equalities all satisfy the second case of the inductive hypothesis. This
completes the inductive analysisC

Using Lemmas 19, 20, and 24, we can partition the time into subintervals, and show
thatOPT[i, j]/RA.j] < APXfor each such subintervgl, j], proving Theorem 7.

3.3. Lower bound for the general model
We now briefly discuss the generalization of our lower bound construction to arbitrary

gueue sizes. In particular, for a queue of skzeconsider the following general sequence
(whereZ < B is some constant to be determined later):

(L1,...,1, 1) (e)(@1) ... (@) (@1, o1, - . ., 01, @2) (@2) (2) . . . (@22)
B zZ-1 B zZ-1
(o2, 02, ...,02,03) ... (Qk—1, Ck—1, ..., 0k—1,) (o) (o) . . . (o) (O, Uy v oy OEE)
B B zZ-1 B

If the online algorithm decides to transmait at any timej € [1, Z], then the adversary
will stop the sequence at tin#, i.e., the sequence ends with— 1 packets with value.
The online algorithm transmits no more thgh— 1) + Za1 < (Z — 1) 4+ Zag, while OPT
transmits all of the packets. Thus the ratio is no less tlar 1+ Za1)/(Z — 14 Zag).

A. Zhu / Journal of Algorithms 53 (2004) 137-168 161

Otherwise, the online algorithm at best transmiti&gackets of value 1 during time
[1, Z]. OPT instead would transmif packets of valuer;, while discarding the earlier
packets with value 1. The adversary then make 1 packets of valuer; and another
packet of valuer, to arrive during timg Z, Z + 1), and repeats the same strategy as during
times 1 througl¥. If the online algorithm kept on transmitting relatively low value packets,
the adversary will end the sequence wittpackets with value.

To maximize the lower bound, we need to balance the ratios produced in all cases, with
a valueZ that maximizes the overall ratio. We have the following final regult:

B
Z=|=|,
2]
1 28+1+x/282+28+1i+ B (—1++2B?+2B+1\'
- 1+B B 1+B B ’

and the final bound is

5+ V2B212B+1 5+ (V2B+1/V2)7?
> > V2.
B+4 B+4
Appendix B provides detailed calculations and so we obtain the following.

o

Theorem 8. With Z = | B/2], the lower bound ratio approachag2.

4. Bounded delay queueing policy

In the bounded delay model, each arriving packet is also assigned a deadline. A packet
must be transmitted before its deadline or else is lost. However packets can be transmitted
out of order, and we assume unlimited queue sizes. We also assume deadlines are integers.
The §-uniform bounded delay model requires every packet to be transmitted Withmire
units after its arrival, or otherwise it is lost. We first discuss the connection of the FIFO
preemptive model to the uniform bounded delay model. In particular, we consider the FIFO
preemptive model proposed in [4]. The model to be discussed in this section differs from
our previous section only in that the new FIFO order permits the reordering of packets
arriving at the same time un(y, j + 1), for j € Z.

Clearly, any FIFO preemptive policy witfjueue size B delays each packet by at most
8 = B time unit, hence also &-uniform bounded delay policy. However, the converse is
not always true. We show here that the converse is trug fer§ = 2. Here we us@NY to
denote any online 2-uniform bounded delay policy. For convenience, we round down the
admitted transmission deadline to the nearest integer since transmissions only happen at
integral times, i.e., a packet arriving at timbas a deadline dft + 1].

Theorem 9. For B =§ = 2, ANY can be modified to operate on a queue with 2iaad
can serve packets in FIFO order, without degrading its performance.

5 These expressions are for evBnWe omit the expressions for odgifor simplicity.

162 A. Zhu / Journal of Algorithms 53 (2004) 137-168

Proof. We modify ANY as follows: at any time, first if ANY has more than one packet
with deadline[¢7], then only keep the most valole packet. Afterwards iANY still has

more than two packets in its queue then walkkimply discard the packet with the
least value. In case of a tie, the packet with earlier deadline is discarded. The reasoning
is that ANY needs to transmit all the packets currently in the queue within the next two
transmission times. Since only one packet can be transmitted per time unit, no more than
one packet with deadling] can be transmitted and in total no more than two packets
can be transmitted eventually. By preserving only the two most valuable packets in the
gueue, we are guaranteed not to degra&’s performance. With regard to the new FIFO
ordering, at time, the packets ilANY's queue should have deadlifg or [t + 1] only,

since they all arrived before or at time This forcesANY to transmit the packet with
deadlinefr] at time[r], before any of the packets with later deadlinet+ 1], respecting

the FIFO order. Notice that the FIFO order property only holds$fer2. Foré > 3, at any

time ¢, we could have packets with deadlingst+ 1] and[r + 2] in the queue. Then it's

not clear that packets with deadlifie+ 17 has to be transmitted earlier than the ones with
deadlineft + 2]. ANY can transmit a packet with deadlifie+ 2] at time[¢7], and still be

able to transmit a packet with deadlifre+ 1] at time[z + 1]. In fact, we believe that the
optimal online algorithm fos-uniform bounded delay will transmit the packets out of the
FIFO orderfors > 3. O

The previous theorem indicates that the 2-uniform bounded delay model is equivalent to
the new FIFO preemptive model with queue size 2. From now on we just focus on the new
FIFO preemptive model with queue size 2, as it is closely related to the model introduced
in the previous section. We first show a lower bound of 1.366 for this model. Notice that
since the online algorithm can reorder the packets that arrived within the same time unit,
we expect better competitive ratios for the online algorithm.

Consider the following general sequence:

(o =1, 00 =D (1) (a1, 1) (ax2) (02, a2) . .. (otg—1) (@k—1, g —1) (org) (0t , Ot).

At time 2, if the online algorithm transmitg;, then the whole sequence ends, and the ratio
is (o + ap + 1) /(o + @1). Otherwise, the online algorithm at best transmitted two
packets at times 1 and 2. Now consider time 4, if the online algorithm tranggpitisen the
whole sequence ends, and the ratio beco@es o1 + a1 + a1+ a2) /(0o + oo+ 1+ 2).
Otherwise, the online algorithm at best transmitted tw@ackets at times 3 and 4. The
same reasoning continues til}. We thus need to solve the following equations:

_aptaptar aptartartart+az
 aotar agtoaptortar
oo +o1t+art+axtaxtaztaz

a0+ oo+ a1+ o1 +o2 + a3 -
aot+a1+or+ s F o1+ og—1+ g1+ o
aotoaotor+ -+ o2+ og—1+ ok
aotort+ar+---F k-1t o1+ o ok o
ao+agtoart+ ot tog1 ok ok

Ly

A. Zhu / Journal of Algorithms 53 (2004) 137-168 163

Using the same techniques developed in this paper, we can solve the above equations,
detailed calculations are omitted. For any positive

o= (\/2+(1+8)2+2+8)i + (1— L)(\/Z—i-(l—i-e)z—e)i

24 2¢ 24 2¢
and askc — oo,

24+V2+A+e7 2+3+¢ _ 1++3
1+V2+(1+e)?2 1++3+¢ 2
Theorem 10. For FIFO queue of siz&, or equivalently2-uniform bounded delay queue,

no deterministic online algorithm can achieve a competitive ratiglof /3)/2 — ¢ ~
1.366— ¢, for any constant > 0.

k= — e~ 1.366— ¢.

Next, we introduce an online algorithm thaty&2-competitive. We modify the Ratio
algorithm as follows: we set the constant ratie: 2+ +/2 instead, and we always reorder
packets arrived in the same time unit in decreasing order. We show that the competitive
ratio is bounded by

1+r r 3r-2 r2
max| , , , =+2~1414
(r r=12r-1 r2—r+l) V2

in Appendix C.

Theorem 11. For FIFO queue of siz&, or equivalently2-uniform bounded delay queue,
the Ratio algorithm achieves a competitive rationd® ~ 1.414,

Next we present a matching lower bound for the 2-variable bounded delay model. The
2-variable bounded delay model allows two types of packets arriving at tithe ones that
must be sent the next integral time unit (with deadling or equivalently, delay 1), and
the ones that can be delayed for 1 extra time unit (with deadlirel1], or equivalently,
delay 2). Consider the following general sequence. We list the associated delay of each
packet in brackets after its value.

(111, or1[2]) (eea[1], @2[2]) . . . (otx—1[1], ok [2]) (etxc [1]).

The reasoning is similar as before. If at time 1, the online algorithm transmitteden the
whole sequence stops, and the ratiglis- «1) /«1. Otherwise, the online algorithm at best
transmitted packet 1 at time 1. If at time 2 the online algorithm transmitiethen again
the whole sequence stops, and the ratio becames a1 + «2)/(1+ a2). Such reasoning
continues until packet;. We thus need to solve the following equations:

~l+or ortortoer oartaxtootoz
a o1 o 1+ a2 o 1+o1+ a3 -
a1 tog+ - o1+ ag-1+ o
l1+ar+-tok—2+o
a1 to2+ o1t og o
I+or+- - +op—ptok—1+ox

Ly

164 A. Zhu / Journal of Algorithms 53 (2004) 137-168

The calculation uses the same techniques before and is omitted here. For any positive

€ (\/4+(1+8)2+3+8>i+(€)(\/4+(1+e)2+1—s>"
2 2

L 1—
Y=o 2 2+ 2

and ask — oo,
2
14 YHOOTH _3+VEre 1445
A(Ate)2+1 1++/5+¢ 2
2

L — —e~1618—¢.

Theorem 12. For the 2-variable bounded delay model, no deterministic online algorithm
can achieve a competitive ratio better thawi5 + 1)/2 — ¢, for any constant > 0.

5. Conclusion

In this paper we discussed various upper and lower bounds on competitive ratios for
various queueing policies. Below we provide a summary:

e For the non-preemptive queueing policy, we proved ti@t— 1) /o upper bound for
the 2-value model, an@ (logw) upper and lower bounds for the general value model.

e For the preemptive FIFO queueing policy, we proved 1.434 upper and lower bounds
for queues of size 2, and 1.414 lower bound for general queue sizes.

e For bounded delay queueing policy, we proved 1.414 (1.366, respectively) upper
(lower, respectively) bounds for the 2-uniform bounded delay model, and tight 1.618
lower bound for the 2-variable bounded delay model.

Many interesting problems remain open, for instance, are there non-trivial randomized
upper and lower bounds for the preemptive and bounded delay model? For the general
preemptive FIFO model, can we reduce the cap between the lower and upper bounds?

Appendix A. Solving the equationsfor the lower bound construction for B =2
We need to solve the following two series of equalities:

oot+a1 oapto1

’

o1 o1
ap+a1 a1t+ar+az

o1 oo + a2
ap+a1 a1+az+a2+as

a1 aot+a1tas
g + o1 _

ar

ao+a1 art+oe2+- o1 tag-1+ax (A1)
a1 agtort-to2+ox '

A. Zhu / Journal of Algorithms 53 (2004) 137-168 165

and
e S B A e S e B B SRS
a1 optoarteo okt og1 ok ok
We manipulate equalities in (A.1) by applying the following ruleif B = C/D, then
A/B=C/D=(C—A)/(D— B).HereA/B andC/D represent consecutive expressions
on the right hand side of (A.1). We get the following set of new equalities:

apt+a1 a2+a1—ap

(A.2)

o1 _Oéz—oé1+0507

ao+o1 aztop—a
o1 _063—062+0[1,

ao+o1

7(11 =...,

oo+ o1 _ % +Oék—1—0tk—2_ (A3)
o1 Ok — k-1 + -2

Keep in mind thateg = 1. Solve each equation in (A.3) we have the followiag:=
Qa1 + 1) x (a1 — as_2), for 2< s < k. This is a linear recursion for the;'s. The
values ofy;’s are determined by;. The series of the;’s is a linear combination of the
two geometric series:, b1, (p1)2, ..., (po)¥ and 1 p2, (p2)2, ..., (p2)¥, wherep; andp;
are the two roots of the quadratic equatigh= (21 + 1)(x — 1). So we have a general
expression fow; :

ai=y x (p0)' + 1L —y) x (p2)',
1 1
2 2J/Ro1+D@a1—3)’

201 + 14+ /a1 + 1) 2y — 3)
pP1= 2 ’
2014+ 1- /(21 +1)(201 - 3)
= > .
We use equality (A.2) to solve fory.

)/:

P2

agtor artapt oot o o+ o _Zleai+2ak_)3pl—2
o1 aotor+ - o2t ogp—1+og+ok Z;‘:Oai—i—ak 2p1—1

The last step is due to the following fact, which can be verified via straight forward
calculation:

k k
. o . O
lim Z’;Opllz lim Z’;lpl’zl, for y #0.
k—o00 o) X k—o00 ot X -1

pi—-1
Substitute inp; and solve the equation, we get= (1+ +/13)/2 and in general
1(/13+5 "+2 V13—1Y\'
“=3\72 A

with y = 1/3, p1 = (+v/134 5)/2, andp, = (+v/13— 1)/2. The final lower bound is then
(a1 + 1) /a1 = (v/13+5)/6 ~ 1.434.

166 A. Zhu / Journal of Algorithms 53 (2004) 137-168

Appendix B. Lower bound for general queue size B

We need to solve the following equations (we use the notations introduced in Appen-
dix A):
B—1+Zaz _ Zor+ (B —Dar+ Zas
Z—-14+Zoay Z+(Z—-Dar+Zap '’
B—-1+Za1 _ Zor+Zar+ (B — Doz + Zas
Z—-14+Zan Z+Zor+(Z—-Daz+ Zaz '

B—-1+4+Zuay
Z—-1+Za1
B—-1+4+Zu _ Zar+Zar~+ -+ Zag_1+ (B —Dag_1+ Zay (B.1)
Z—1+Zar Z+4Zar+ -+ Zok2+(Z—Dog_1+ Zoy '
B—-1+4+Zwa _ Za1+Za2+Za3+---+Zock_1+Zock+Bak. (B.2)
Z—-14+Zay Z+Zar+Zoax+---+Zog2+ Zoag_1+ Boy
We again transform the equations in (B.1) to the following:
B—14+Zo1s Zoap+ (B —1)(x1—ap)
Z—1+Za1: Zoy — o1+ ap
B—14+Zo1s Zaz+(B—1D(ap— 1)
Z—1—|—Zot1: Zaz — oo+ a1
B—-1+4+Zu
Z 1tz
B—1+Za _ Zoy+ (B — D(ak-1— 0lk—2). (B.3)
Z—-14+Za1 Zoyg — og—1+ 0g—2

We solve (B.3), and get the followingB — Z)ay; = (B — 1+ Ba1) x (05—1 — o5—2),
for 2 <s < k. Similar to B = 2, we can solve the sequencexp® using equation (B.2) in
terms ofZ and B. We select & to maximize tle bound. Setting = | B/2| gives us the
following:

1++/2B2+2B+1
(Xl: 9
B
2B+1++2B24+2B+1
p1= ,
B
_ —1++/2B2+2B+1
PZ— B E)
1
Y= 15B

5+v2BZ+2B+1 5+ (V2B+1/v2)7?
N > > /2.

L
¢ B+4 B+4

A. Zhu / Journal of Algorithms 53 (2004) 137-168 167

Appendix C. The Ratio algorithm is 1.414-competitivewith respect to 2-uniform
bounded delay model

The proof is a similar case analysis as in Section 3, here we only outline the main ideas.
We inherit the notations introduced in Section 3, h&RX denote the constart2. First,
we can conclude th@PT also reorder the packets arriving during the same time unit. In
addition, Lemma 17 through Lemma 23 still apjph this situation. Since packets arrived
during the same time unit can be reordered, we also concludd thatB;.

We again look for the first time whe@PT andRAtransmit different packets. Assume
it's time 0. By Lemma 19, we knowp < Sp. There are again two cases, we will consider
them separately.

The first case is thatRRA = So, while TRYPT = Fo. SinceSo > Fo, TROPT=BFJPT =
So. By the definition ofRA So > r x Fp. Thus

OPT[0,1] Fo+ So < F0+rXF0< 1+r

= < < APX
RAO, 0] So rx Fp r

The second case is more involved, wheRE” = Fo and TROPT = So. We reproof
Lemma 24 below.

Proof. The base case wheye= 0: if BFSPT # 0, thenBFSPT < Fo. Then eithe TR =
So, in which case
OPTIO, 1] < So+ Fo

< =1<APX
RAQO, 1] Fo+ So

Or TREA So, SOTRRA> So x r andSp was thrown away. ThefROPT = BFOPT = TRRA,
in which case
OPTIO, 2] _ So+ Fo+ TR# __SotFo+ TRRA r

< < < < APX
RAQ, 1] Fo+ TFéfA Fo+ So+ TR?Ar:—l r—1

ElseBFSPT = 0. By the definition oRA Fo > So/r, then:

OPT0,0] So 257 —7%+0
= TS S S0\’
RAO.0] Fo o r(rgl) + (FO - TO)
where
So
r—1
=r > APX> .

S S

oD Fo—

This satisfies the inductive hypothesis, completing the base case analygis tbr
Assume now at timé — 1 the inductive hypothesis is true, consider titeAs in
Lemma 24, the interesting case is that thesekcondition of the inductive hypothesis held
at time/ — 1 and some new packets arrived during titche 1, /). Here are the possibilities:

168 A. Zhu / Journal of Algorithms 53 (2004) 137-168

(1) If TRRA=S,. ThenS;/F, > r, and F; = BFRA . ThenTRPPT = 5, sinceBFPRT = 0,
implying:
OPTIO.I _ 3" +8 12

< = < APX
RAO,] _Br':fll + 5 r2—r+4+1

(2) Else thenTR = F; and BFRA = ;. If BFPPT £ 0, the analysis for this part is
identical to that of Lemma 24, where we obtain two bounds:

72 APX and —— <APX

2r—1" r—1"

(3) Else thenTR = F; andBFRA = §;, andBFPPT = 0. The analysis for this part is
again identical to that of Lemma 240

This completes the proof for Theorem 11.

References

[1] W.A. Aiello, Y. Mansour, S. Rajagopolan, A. Rosemi@petitive queue policies for differentiated services,
in: Proceedings of the IEEE INFOCOM, 2000, pp. 431-440.

[2] D. Clark, J. Wroclawski, An approach to service allocation in the internet, Internet draft, available from
http://diffserv.lcs.mit.edu, 1997.

[3] C. Dovraolis, D. Stiliadis, P. Ramanathan, Proportiodéferentiated services: delay differentiation and
packet scheduling, in: Proceedings of ACM SIGCOMM, 1999, pp. 109-120.

[4] A. Kesselman, Z. Lotker, Y. Mansour, B. Patt-Shamir, B. Schieber, M. Sviridenko, Buffer overflow
management in QoS switches, in: Proceedings of ACM STOC, 2001, pp. 520-529.

[5] A. Kesselman, Y. Mansour, Loss-bounded analysisdifferentiated services, in: Proceedings of SIAM—
ACM SODA, 2001, pp. 591-600.

[6] A. Kesselman, Y. Mansour, R. Van-Stee, Improved competitive guarantees for QoS buffering, in:
Proceedings of ESA, 2003, pp. 361-372.

[7] T. Nandagopal, N. Venkitaraman, R. Sivakumar, V. Bfravan, Relative delay differentiation and delay
class adaptation in core-stateless nekspin: Proceedings of IEEE INFOCOM, 2000, pp. 421-430.

[8] N. Semret, R.R.-F. Liao, A.T. Campbell, A.A. Lazar, Peering and provisioning of differentiated internet
services, in: Proceedings of IEEE INFOCOM, 2000, pp. 414-420.

[9] I. Stoica, H. Zhang, Providing guaranteed seed without per flow management, in: Proceedings of ACM
SIGCOMM, 1999, pp. 81-94.

[10] J.S. Turner, New directions in comumications, IEEE Commun. Magazine 24 (1986) 8-15.

