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Abstract—Cloud computing allows on demand elastic service
scaling. The capability of a service to predict resource require-
ments for the next operational period defines how well it will
exploit the elasticity of cloud computing in order to reduce
operational costs. In this work, we consider a capacity planning
process for service scale-out as an online pricing model. In
particular, we study the impact of buffering service requests
on revenues in various settings with allocation and maintenance
costs. In addition, we analyze the incurred latency implied by
buffering service requests. We believe that our insights will allow
to significantly simplify predictions and mitigate the unknowns
of future demands on resources.

I. INTRODUCTION AND MOTIVATION

One of the biggest advantages of cloud service platforms
such as Amazon EC2, Microsoft Azure, and IBM Smart
Cloud Enterprise is the elastic usage of resources that can
be translated into greater flexibility. This elasticity allows to
reduce operational costs of implemented services. However, to
exploit the elasticity of resource allocation, capacity planning
should be as precise as possible: for instance, in scale-in/out
of implemented services any significant difference between
required and planned resources leads either to extra operational
costs in case of over-provisioning or to missed revenues for
rejected service requests in case of under-provisioning.

Since different types of resources (memory, bandwidth,
processing power etc.) need to be allocated with different
resolutions, we consider virtual resource units. To make oper-
ational settings more real, we assume that every resource unit
has maintenance and allocation costs, there is an upper bound
on the number of simultaneously allocated resources, every
service request requires one virtual resource unit, and service
requests are independent. We do not presume any specific
distribution or pattern in the arriving stream; arrivals can be
adversarial. In this environment, resource capacity planning
for the next operational period becomes very complicated and
interesting problem. Unlike other objectives such as average
response time, latency, etc., where average case analysis is
preferable, worst case guarantees become extremely important
in economic settings: average case guarantees may need a long
run of operation to be actually realized, and negative revenues
may occur in intermediate points of operation, a loss that often
cannot be afforded by service providers.

Our Contributions: In this work, we explore the effect
of delaying service requests on revenues in various settings.
There is a fundamental tradeoff between the ability to delay
service requests in time (giving a better opportunity for capac-
ity planning) and potentially missed opportunities to service
requests if resource units available at a given time are limited.
Delaying service requests may introduce additional latency,
and a resource management policy can heavily depend on
relations between allocation and maintenance costs. We study
these effects in detail and propose efficient online policies with
worst case performance guarantees. In our analytic study, we
use competitive analysis that compares the performance of an
online policy with an optimal clairvoyant offline algorithm [1].
We also supplement our theoretical results with a comprehen-
sive simulation study.

This paper is organized as follows. In Section II, we
summarize related work, covering three different existing
approaches to auto-scaling. Section III introduces two discrete
time models, with and without service requests deadlines,
and the desired objectives. Section IV shows the simplest
policies that do not have a buffer (or, equivalently, deal with
urgent jobs that cannot be delayed). In Section V, we provide
a comprehensive theoretical study of policies with buffers,
showing a general lower bound and introducing two new
online policies. Section VI shows results on the latency (both
maximal and average) of the proposed online policies. In
Section VII we consider an updated model, where latency
constraints are embedded on the model level. The proposed
policies are evaluated in Section VIII. We conclude with
Section IX.

II. RELATED WORK

There is a long prior art that considers buffer management
policies in various settings [2], [3]. For a single queue archi-
tecture, throughput maximization is considered in [4], [5], [6],
[7], [8]. More complex buffering architectures are considered
in [9], [10], [11], [12], [13], [14]. A recent survey [15]
classifies auto-scaling techniques into several major categories:
static policies, threshold-based polices, reinforcement learning,
control theory, and time-series analysis. This classification
can be viewed in terms of three major research lines. The
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first line deals with reactive mechanisms that do not try to
anticipate future needs. A decision to increase or decrease
capacity is based on the arrival patterns during last time slots
(or values of other important variables). There is a long line
of research that deals with benchmarking frameworks that
assist in the evaluation of resources in cloud systems for
service auto-scaling, either micro-architecturally [16], [17],
[18] or at the system level [19], [20], [21], [22], [23].
Second, Amazon AWS AutoScaling and other cloud service
brokers such as RightScale and Enstrautus implement rule-
based auto-scaling. These mechanisms are applicable when
service providers understand their resource demands. In this
case service providers are responsible for defining reasonable
scaling rules, and auto-scaling without explicit user interven-
tion is hard. Naturally, there have been works that attempt to
predict future resource requirements based on historical data
of resource usage; usually, some machine learning model is
trained on historical data and used to predict future loads,
making auto-scaling decisions based on its predictions; to
predict workload, researchers have used both nonparametric
techniques [24], [25] and supervised learning methods such as
neural networks and linear regression [26]. The works [27],
[28], [29] attempt to predict patterns of service requests.
Finally, one can take a hybrid path; for instance, the work [30]
proposed a hybrid scaling technique where scaling up is done
based on reactive rules while a supervised learning is used
to scale down. [28] presented an online resource demand
prediction model that achieves adaptive resource allocation.
Cloud computing economics are considered in [31], [32],
[33]. To represent leasing, the parking permit problem was
introduced in [34], with [35] presenting the leasing model
more generally for many infrastructure problems such as
facility location and set cover. To our best knowledge, no
related work has considered the economic effect of delaying
service requests.

III. MODEL DESCRIPTION

We assume that time is slotted, and deploying a service
for every request requires one unit of allocated resource per
time slot. Note that a unit of virtual resource is defined by
the implemented service (e.g., a service request has specific
bandwidth requirements). Each resource unit has allocation
cost α (including deallocation costs) and maintenance cost β
per time slot. Each request has an intrinsic value gained by
the service if the service request is serviced by an available
allocated resource unit. In most cases, the behavior of an
allocation process can be formulated as a pricing model, when
at the end of every time slot a capacity planning process
allocates resources for the next time slot to maximize revenue,
given α and β costs.

Formally speaking, on every time slot t there arrives a
sequence Jt of service requests. Each request j has an intrinsic
positive value vj , and we scale values so that minj vj = 1.
We assume that each request requires one virtual resource unit;
virtual units can represent processing cores, virtual machines,
or storage resources. Each time slot consists of three phases:

(1) admission: new requests arrive, and the allocation policy
decides whether to drop or admit each request; (2) processing:
admitted requests are assigned to resource units for processing
(at most one to each resource unit); (3) prediction: the allo-
cation policy determines the processing capacity (number of
resource units) allocated for the next time slot.

Changing capacity for time slot t costs ct; we define ct
as a function of additionally allocated resource units and
assume that deallocation cost is also amortized in ct, so it
is always free to decrease capacity for the next time slot.
In most cases, we assume ct = αnt, where nt is the
number of additional resource units. At is the set of requests
admitted at time slot t. The goal is to maximize total revenue∑
t(
∑
j∈At vj − β · Nt − ct), where Nt is the number of

allocated resource units at time slot t. We call this model
Bufferless Heterogeneous values (BLH) and consider it in
Section IV. Fig. 1 shows sample timeslots of an allocation
policy that predicts as many resource units as requests arrived
on this timeslot; dropped requests are shaded in gradient. On
the first timeslot, all requests are dropped since there are no
resource units. On the second, two highest valued requests
are admitted by an allocation policy; then processing capacity
is overestimated, and two extra resource units are allocated
for the last timeslot. Note that the revenue we just defined
can be negative, so it is important to clarify the notion of α-
competitiveness. Specifically, we say that an online algorithm
A is α-competitive, if there is some universal constant c such
that for any sequence of requests σ, A’s revenue A(σ) and
OPT’s revenue OPT(σ) satisfy A(σ) + c ≥ OPT(σ)/α.

In the second model, we assume that a resource allocation
system has a possibility to buffer at most δB requests, δ > 0.
We will see that these properties allow for efficient allocation
policies and at the same time let us simplify predictions
significantly. We call this model Buffered with Heterogeneous
values (BH), with the corresponding uniform version Buffered
with Uniform values (BU), and consider it in Section V.

Finally, in the last model we assume that each incoming
request i in addition to value has a deadline d(i) (d(i) ≥ 1).
A request i that arrived at timeslot t will be automatically
dropped at the end of timeslot t + d(i). In this model the
latency constraints are embedded and not a property of specific
algorithms as before. We call this model Bounded Delay (BD)
and consider it in Section VII.

IV. BUFFERLESS ALLOCATION

In the bufferless model BLH, it is impossible to postpone
servicing, so the maximal number of serviced requests equals
the number of resource units allocated at the end of the
previous time slot. The next theorem demonstrates that in the
BLH model, online algorithms are non-competitive.

Theorem 1. If α < 1 − β, then in the BLH model any
deterministic online allocation policy is non-competitive.

Proof. Consider an arbitrary online deterministic algorithm A.
Assume that A allocates m resource units at the first time slot.
Then km service requests arrive at the first time slot, and A’s



revenue is at most m(1−α−β), while OPT’s is km(1−α−β)
if it allocates km resource units for the first time slot, and the
sequence can be repeated. Thus, the competitive ratio is ≥ k
for an arbitrary k.

To avoid the rather trivial obstacle of Theorem 1, we could
try to impose a natural constraint: suppose that the maximal
number of resource units that can be allocated at a given time
slot is bounded by B, which is also an input to the algorithm.
We call the resulting model Bounded Bufferless with Heteroge-
neous Values (BBLH). Unfortunately, even under the BBLH
constraint a similar adversarial sequence still works.

Theorem 2. If α < 1 − β, then in the BBLH model any
deterministic online allocation policy is non-competitive.

Proof. Consider an arbitrary online deterministic algorithm A.
Let k =

√
Bβ, i.e., B = k2/β. On the first time slot, if

A allocates ≥ k/β resource units and no requests arrive, A
spends ≥ βk/β = k, while OPT allocates nothing and pays
zero. Otherwise, if A allocates less than k/β resource units
and there arrive B requests, its revenue is at most k/β(1 −
α− β), while if OPT allocates B resource units, its revenue
is B(1−α−β), and the competitive ratio is at least k, which
is arbitrary large.

Note that the maximal number of allocated resource units is
expected to be high because higher number of resource units
means, in general, more requests serviced and larger revenue.
Taking B as an input to the algorithm, we are able to provide
guarantees independent of this large number.

V. BUFFERED ALLOCATION

A. General lower bound

In the previous section, we have shown that without a buffer
we get high competitive ratios even with limited number of
allocated resource units. Unfortunately, the BU model still
does not allow us to build optimal online algorithms.

Theorem 3. If α < 1−β, then in the BU model every online
algorithm is at least 1 + 1

δ

(
1− α

1−β

)
-competitive.

Proof. First, note that no competitive deterministic online al-
gorithm A allocates resource units if no requests have arrived,
or at least does so finitely many times, because otherwise
it will process the empty input sequence with an arbitrarily
low (negative) objective function. Let t0 be the first time slot
when A allocates no resource units, with no requests arriving
before t0. Then consider the following sequence: at time slot
t0 there arrive (1 + δ)B unit-valued requests. OPT predicts
B machines at time slot t0 − 1 and thus immediately runs B
requests at time slot t0; the δB requests are stored in the buffer
to service them on the next time slot. Now OPT’s revenue
is at least B(1 + δ)(1 − β) − Bα. On the other hand, A is
able to service at most δB requests, and its revenue is no
more than δB(1− β). Thus, the resulting competitive ratio is
B(1+δ)(1−β)−Bα

δB(1−β) = 1 + 1
δ

(
1− α

1−β

)
, as needed.

Fig. 1. Sample operation of a bufferless policy that predicts as many resources
as there have been requests on the last time slot.

Fig. 2. Sample operation of the NRAP algorithm with buffer size 4.

B. Next round allocation policy

Now we present the first of the two allocation policies that
we study in this work in detail. This policy, NRAP, simply
predicts as many resource units for the next time slot as there
are service requests currently residing in the buffer.

Definition V.1. The Next Round Allocation Policy (NRAP):
• accepts incoming requests are as long as there is room

in the buffer;
• pushes out the lowest valued request in the buffer by a

higher valued arrival;
• predicts k resource units for the next time slot if there

are k requests in the buffer by the end of a time slot;
• services either requests from the previous timeslot or

those that pushed them out.

Fig. 2 shows sample NRAP operation over three time slots
with buffer size 4; gradient shading shows dropped service
requests; gray, requests that will be processed on the current
time slot. Note that while NRAP by definition does not spend
extra resources, it can drop many incoming requests and spend
a lot on (de)allocation. On the other hand, NRAP is simple,
has low memory requirements, and, as the next theorem shows,
has constant competitive ratio for some values of β and α.

Theorem 4. If α < 1 − β, then NRAP is at most
2
(
1 + α

1−α−β

)
-competitive.

Proof. For any incoming sequence, we map every request
serviced by OPT to a request serviced by NRAP in such
a way that the value of the image is no less than the value



of its preimages, and at most two requests accepted by OPT
are mapped to every request serviced by NRAP. OPT never
pushes requests out, so “accepted by OPT” is equivalent to
“serviced by OPT”. To see that this mapping will imply the
necessary bound, note that for each request of value v accepted
(and later serviced) by OPT, OPT gets revenue at most v−β.
By the mapping, there also exists a request with value v′ ≥ v
serviced by NRAP with revenue at least v′−β−α ≥ v−β−α.
Half of this revenue corresponds to j. Hence, for each request
we have the ratio of v−β

2(v−β−α) ≤
(
1 + α

1−β−α

)
/2.

Next we show the mapping itself. It preserves the following
invariant: the preimage of each request in the buffer at the
beginning of a timeslot has size one. Consider the buffer state
after arrival. Due to push-out, the ith highest valued request in
NRAP’s buffer has value no less than the ith highest valued
request admitted by OPT, and we map these requests one
to one. Some requests in NRAP’s buffer that had another
request mapped to them before arrival could be pushed out; in
this case, we map their preimages to those requests that pushed
them out. Requests with preimage of size two are exactly those
that will be processed in the processing phase.

This is an impressive result, given the simplicity of the
policy, but, unfortunately, this upper bound can be arbitrarily
high in case α ≈ 1 and β ≈ 0, because NRAP has to pay
allocation cost for each processed request and thus cannot
profit from it.

Theorem 5. Assume that α < 1− β. Then in the BU model
NRAP is at least

(
2 + α

1−α−β

)
-competitive.

Proof. Consider the following sequence: on the first and
second time slots, there arrive B requests. NRAP drops the
second burst of B requests, with total revenue B(1− β − α).
OPT could predict B resource units for both timeslots with
total revenue 2B(1− β)−Bα, getting the bound.

Although NRAP is nearly optimal when the arrival pattern
is uniform and has acceptable competitiveness when allocation
cost is low, the policy still has a major drawback: it always
allocates a resource unit to service a single request and never
reuses computational resources. This makes NRAP lose its
competitiveness guarantees when allocation cost is high.

C. Amortizing Allocation Policy

Here we propose a different strategy that tries to avoid
NRAP’s limitations by amortizing allocation costs across
several requests, performing well for high allocation costs. We
denote by PreAssigned(v) the subset of requests in the buffer
preassigned to an allocated resource unit v.

Definition V.2. Upon arrival of k requests, the Amortizing
Allocation Policy ρ-AAP with parameter ρ > 1:
• accepts incoming requests as long as the remaining buffer

capacity plus the number of allocated resource units is
more than (B−d ρα1−β e)/(d

ρα
1−β e+1)−d ρα1−β e (we assume

it to be a positive integer for simplicity); only requests
accepted on the current time slot can be pushed out.

Fig. 3. Sample operation of the ρ-AAP algorithm.

• while the total value of non-preassigned requests re-
siding in the buffer (those that do not belong to any
PreAssigned(v)) is at least d ρα1−β e, repeats:
− predict an additional resource unit v′ to be needed for

the next time slot;
− move as few as possible non-preassigned requests with

total value at least d ρα1−β e to PreAssigned(v′);
• then predicts for each resource unit v such that
PreAssigned(v) 6= ∅ ρ-AAP that it will need v for
the next time slot; every allocated resource unit with
PreAssigned(v) = ∅ is deallocated.

Figure 3 shows the sample operation of the ρ-AAP algo-
rithm for buffer size 7 with d ρα1−β e = 2. In all columns except
the first, each row represents either an allocated resource unit
v (shown with its index in the last two columns) together with
its corresponding PreAssigned(v) (second and third columns)
or a set of non-preassigned requests. In the first timeslot, three
requests arrive, two of them get a resource unit, and the last
one remains non-preassigned (since the AAP threshold is 2 in
this example). On the last timeslot, resource unit 1 has pro-
cessed its queue entirely and is deallocated. The next theorem
provides an upper bound for the ρ-AAP competitiveness; note
how α no longer appears in the denominator.

Theorem 6. For α ≥ (1 − β), ρ-AAP with an increased
buffer of size B + d ρα1−β e has competitive ratio at most
ρ
ρ−1

(⌈
ρα
1−β

⌉
+ 1
)

against the optimal algorithm OPT with
a buffer of size B.

Proof. We denote c = d ρα1−β e. Note that requests are preas-
signed to a resource unit in batches, with total value of a batch
at least c. We get at least c − βn − α from servicing those
requests, where n the number of requests in a batch. Note that
n ≤ c, so revenue per value unit is at least ρ−1

ρ (1− β).
Next, assume that the number of preassigned requests is m.

Then the servicing capacity is at least m/c, and there may



be admitted at least B d ρα1−β e
d ρα1−β e+1

−m
(
1− 1

c

)
requests. Since

m ≤ Bd ρα1−β e/(d
ρα
1−β e+1) (by the first step of the algorithm),

we have a lower bound on this value as at least B/(d ρα1−β e+1).
This means that ρ-AAP takes at least 1/(d ρα1−β e+1) fraction of
total value admitted by OPT due to push-outs. Suppose now
that OPT accepts and services L requests in total. Obviously,
its revenue is at most L(1−β). Now we can bound from below
the number of requests serviced by δ-AAP as L/(d ρα1−β e+1),
and the above remark gives us ρ-AAP’s revenue as at least
L(ρ−1)(1−β)
ρ(d ρα1−β e+1) . This results in an upper bound on the competitive

ratio as ρ
ρ−1 (d

ρα
1−β e + 1). Since there may be some “tail”

requests never serviced by ρ-AAP (less than c of them), we
have non-strict competitiveness.

We finish this section with a matching lower bound for the
ρ-AAP (up to a factor of ρ/(ρ− 1)).

Theorem 7. In the BU model the ρ-AAP algorithm with an
increased buffer of size B + d ρα1−β e is at least (d ρα1−β e + 1)-
competitive against OPT with a buffer of size B.

Proof. Consider a long sequence of B requests per time slot,
which OPT services with B resource units. Since ρ-AAP
never predicts more than B/(d ρα1−β e + 1) resource units, the
competitive ratio follows.

VI. LATENCY CONSIDERATIONS

A. Worst-case analysis

For a given service request i accepted at time slot ta and
processed at time slot tp, its latency is lat(i) = tp − ta.
The latency of an algorithm A is defined as lat(A) =
supJ maxi lat(i), where J is an input sequence and i is any
request from J serviced by A. If no requests have arrived we
set maxi lat(i) = 0. The goal is to minimize lat(A) while
keeping the competitive ratio low. First, note that NRAP is
very good when it comes to latency: every accepted request
is immediately processed or pushed out in the next time slot.

Theorem 8. In the BH model lat(NRAP) = 1.

Unfortunately, since ρ-AAP waits to process packets, its
latency becomes arbitrarily high in the general BH model, so
we make an additional assumption that at least one request
arrives on each time slot in the sequence from first to last;
previous theorems obviously hold in this case. Under this
restriction, we modify ρ-AAP to minimize maximal latency.

Definition VI.1. The algorithm ρ-AAPm (modified ρ-AAP)
behaves exactly like ρ-AAPm, but if no requests arrive at
a given time slot then ρ-AAPm immediately drops all non-
preassigned packets from its buffer.

This modification lets us compute the latency of ρ-AAP.

Theorem 9. If at least one request arrives on each time slot,
lat(ρ-AAPm) =

⌈
ρα
1−β

⌉
.

Proof. Assume that before a request arrives there are at least
k non-preassigned requests. Then we need to wait at most

d ρα1−β e−k−1 time slots before enough requests are collected
and a resource unit is allocated (or the request sequence ends).
Next, due to FIFO order, this request waits for k+1 time slots
until it is finally processed. Adding up these delays, we get the
bound. It is easy to check that if exactly one request arrives
per time slot then the bound is realized.

B. Average-case analysis

While it is important to have worst-case guarantees for pro-
cessing latency, the average case is also important, providing
better guarantees for most requests while perhaps tolerating
high latency for a small fraction. For an algorithm A, we define
the average latency as latavg(A) = supJ

∑
i∈J lat(i)

|J | , where
J is an incoming sequence of requests.
NRAP is still straightforward to analyze, and we can also

bound the average latency for ρ-AAPm.

Theorem 10. In the BH model, latavg(NRAP) = 1.

Theorem 11. If at least one request arrives on each time slot,
latavg(ρ-AAPm) ≥ 1

2d
ρα

(1−β)e+
1
2 .

Proof. Consider d ρα1−β e service requests assigned to the same
resource unit. If a request j is the ith to be processed among
them, then lat(j) ≥ i. Summing over i and dividing by d ρα1−β e,
we get average latency

1+2+...+d ρα1−β e
d ρα1−β e

= 1
2

⌈
ρα
1−β

⌉
+ 1

2 . It
remains to note that the average over a set is no less than
the minimum average among a partition of this set.

VII. BOUNDED-DELAY ALLOCATION

In the previous section, incoming requests had only a value
characteristic, and the incurred latency was a property of
specific algorithms. In this case we were able to estimate
upper bounds for maximum and average delays that a request
may experience. Here, we consider the Bounded Delay model,
where the latency constraints are embedded on the model level:
packets have both value and allowed delay.

A. General lower bound

Our first result shows that this model is very different from
BH and BU: it is now impossible to find an online algorithm
with good competitiveness if α + β > 1 (in the BH model
ρ-AAP had an upper bound on competitiveness independent
of B).

Theorem 12. If α+β > 1, then any online algorithm is non-
competitive in the BD model. The statement still holds even if
all values and delays are equal to one.

Proof. Assume that we have some c-competitive online al-
gorithm A. Since A is competitive then there is some lower
bound l (possibly negative) on its revenue. We will build an
adversarial sequence of arrivals in such a way, that A’s revenue
is non-positive, while OPT’s revenue can be arbitrary high.

Now, if A has no resource units allocated for a timeslot
then there arrives a single request i with d(i) = 1 and
v(i) = 1, otherwise no requests arrive. First, note that every
resource unit allocated by A processes at most one request



(the one that arrived on the timeslot immediately before its
allocation). Since 1 − α − β < 0, it means that every time
A allocates a resource unit it pays, and since A’s revenue
is bounded from below, A allocates only a finite number of
resources units. Hence, after some timeslot T the sequence
has a request arriving on each time slot. Requests arriving
after T may be processed by OPT with a single resource unit,
getting an arbitrarily high revenue (allocation cost α becomes
negligible). Since A’s revenue is non-positive and OPT’s may
be arbitrarily high, A is in fact non-competitive.

Having proved the theorem, in the following we assume
α+β < 1. Note that the lower bound implies that there is no
way to get more than a constant factor advantage of processing
multiple requests by a single request unit.

B. Unbounded resources

Again, we begin with a default setting with no upper bound
on the number of allocated resources units (BD model). Again,
we are able to show a general lower bound.

Theorem 13. If α+β < 1, then in the BD model every online
algorithm is at least

(
1 + α

2(1−α−β)

)
-competitive.

Proof. Consider an arbitrary competitive online algorithm A;
again, if no packets arrive then there is some timeslot t
for which A has not allocated any resource units. Then the
adversarial sequence has no requests until t and then on
timeslot t two requests with unit delay and value arrive. A
clearly is unable to gain more than 2(1− β − α), since after
timeslot t+1 all requests will be dropped, and at time t A has
no resource units. OPT, in turn, can predict a single resource
unit on timeslot (t − 1) and process both requests on this
resource unit, getting revenue (2− 2β − α), as needed.

On the positive side, NRAP can be adapted for the BD
settings in such a way that its competitiveness is at most a
constant factor away from the global lower bound. To achieve
this, we assume that NRAP: (1) predicts the number of
allocated resource units for the next timeslot equal to the
number of requests arrived on this timeslot, and (2) processes
exactly those requests that arrived on the previous timeslot.

Theorem 14. If α+ β < 1, then in the BD model NRAP is
at most (1 + α

1−β−α )-competitive.

Proof. Every arriving request will be processed by NRAP on
the next time slot with a revenue at least (1−β−α). If the total
number of arrived requests is L, then NRAP’s total revenue
is no less than L(1− β −α), while OPT’s revenue is clearly
no more than L(1− β).

C. Bounded resources

We now bound the number of simultaneously allocated
resource units by B and call it the Limited Bounded De-
lay (LBD) model. Interestingly, in this case competitiveness
becomes provably worse. The problem is that with limited
resources available for allocation over a given time period, if
an algorithm fails to predict the needed resource units at the

start of the period, it cannot compensate by allocating more
in the future; the optimal algorithm always predicts correctly.

Theorem 15. If α+β < 1, then in the LBD model any online
algorithm is at least (2 + α

1−β−α )-competitive.

Proof. Again, for a competitive algorithm Athere exists a
time slot t when it allocates no resources. At time t, there
arrive 2B requests with unit delay and value. Again, similar
to Theorem 13, A is unable to process more than B requests
on the next time slot (the maximal number of resource units is
B, so A’s total revenue is at most B(1−β−α). OPT predicts
B resource units for timeslot t and processes 2B requests by
the end of timeslot t+ 1 with revenue 2B(1− β − α/2).

NRAP’s performance remains close to the absolute bound.

Theorem 16. If α + β < 1, then in the LBD model NRAP
is at most 3(1 + α+β

1−β−α )-competitive.

Proof. Consider an arbitrary sequnce of requests σ. Let O be
the set of requests processed by OPT; N , by NRAP. To prove
the bound we map requests from O\N to requests in N in such
a way that the preimage of every request i ∈ N is of size at
most 2 and the value of each request in the preimage is at most
v(i). If we can construct this mapping, the claim follows since∑
i∈O\N v(i) ≤ 2

∑
i∈N v(i), so

∑
i∈O v(i) ≤ 3

∑
i∈N v(i).

Because OPT pays at least β for each processed request and
NRAP pays at most β + α, the competitive ratio is at most

3σ − β|O|
σ − (α+ β)|I|

≤ 3+
β(3|I| − |O|) + 3|I|α

σ − (α+ β)|I|
≤ 3+

3(β + α)

1− α− β
since σ ≥ |I|, where σ =

∑
i∈I v(i).

For the mapping, we subdivide O \ N into two disjoint
subsets: D with requests served on the time slot when their
deadline expires and all other requests O \ D. We will map
each subset injectively to N . Assume that a request i ∈ O \D
is processed by OPT on timeslot t; then it remains alive on
timeslot t+ 1 because t is not i’s deadline. We map i to any
request i′ processed by NRAP on timeslot t + 1 that has no
requests mapped to it; it is possible because at least as many
resource units are allocated for timeslot t+1 as requests from
O\D processed on timeslot t. Moreover, v(i′) ≥ v(i) because
otherwise i would be processed instead of i′. Next, assume that
a request j ∈ D is processed by OPT on timeslot t. Since j’s
deadline is t, it was alive at time t−1, and following the same
logic we map it to a request processed by NRAP on timeslot
t. Since mappings from both D and O \ D are injective, in
their combination every preimage is of size at most 2.

Theorem 17. If α + β < 1, then in the LBD model NRAP
is at least 3-competitive.

Proof. As always, we present an adversarial sequence. Fix
V > 1; on timeslot t = 0, there arrive 2B requests with delay
1 and value (V − 1) and B requests with delay 2 and value
V . It is easy to see that NRAP processes B requests with
value V (on timeslot t = 1), while OPT is able to process all
3B requests, getting competitive ratio 3 − 1/V for arbitrary
V .



VIII. SIMULATIONS

A. Experimental Setting

To validate our theoretical results, we have conducted an
extensive simulation study. It would be valuable to test the
policies on real life traces, but unfortunately we have no access
to real life datasets for resource demands. In addition, in-
teresting interrelations between delaying service requests and
allocation/maintenance costs are difficult to cover. Therefore,
we have decided to test our algorithms on synthetic traces
in a series of four experiments; two of them study how the
objective function (total transmitted value less the cost of
resource unit maintenance and allocation) depends on buffer
size B and resource allocation cost α in the BH model,
the third considers average latency among processed service
requests, and the fourth adds delays in the BD model.

Note that the actual optimal algorithm in our model has pro-
hibitive computational cost even if we assume that the optimal
algorithm is clairvoyant: for α > 0 it is a hard optimization
problem to find the optimal sequence of (de)allocations. There-
fore, as OPT we simply use the maximal objective function
that can be generated, i.e., a clairvoyant algorithm that exactly
predicts the need for capacity at the next turn and, moreover,
gets to increase its capacity for free. Apart from OPT, NRAP,
and three different versions of ρ-AAP for ρ = 1.5, 2.0, and
2.5, we have also added for comparison three other algorithms:
Const5 simply always allocates 5 resource units, while Avg50
and Median50 use as their prediction the average and median
value of buffer occupancy over the last 50 time slots (a value
chosen by experimental cross-validation).

To generate traffic, we have, again lacking real life informa-
tion regarding job distribution, followed the ideas of network
traffic simulation for simulating incoming jobs. Network traffic
has a long-tail distribution due to its bursty nature; its has
long-range dependencies [36] that are not always perfectly
captured by Poisson models [37]. Mathematical models for
simulating long-tail traffic include Markov-modulated Poisson
processes [38], [39] and fractional Brownian motion [40]; here,
we use the Poisson Pareto burst process (PPBP), a recent
successful traffic model [41], [42]. In PPBP, traffic is modeled
with multiple overlapping bursts whose lengths conform to
a Pareto (long-tail) distribution. We use PPBP to model the
stream of incoming jobs, drawing each job’s value from a Zipf
(discrete inverse polynomial) distribution. We expect Avg50
and Median50 to perform well on average since the incoming
stream distribution does not change during simulations, and
they can learn the true mean quickly.

B. Objective function in the BH model

Figure 4 shows the results of our experiments for variable
B; in the figure, the top row (Fig. 4, (1)–(3)) deals with the
case of uniform values, and the bottom row (Fig. 4, (4)–
(6)) adds values into consideration. The figures show that
in our experiments, the proposed algorithms, NRAP and ρ-
AAP, start by losing to the benchmark algorithms Avg50 and
Median50 for small values of B but then overcome them as B

grows, approaching 1 much faster than the algorithms whose
predictions are based on average values. This effect is clearly
visible for both uniform and variable values (Fig. 4, (1) and
(4)), and it becomes even more pronounced as the input stream
intensity increases, increasing congestion (Fig. 4, (3) and (6)).
However, for larger values of the allocation cost α (Fig. 4, (2)
and (5), where α = 1.0) the proposed algorithms lose to the
benchmark ones. For NRAP, this is simply due to the fact that
it allocates and deallocates resources very unevenly on every
time slot, spending a lot on new allocations. For ρ-AAP, this
is due to the fact that as α grows, the algorithm becomes
more cautious, its allocation threshold grows, and therefore it
allocates fewer cores out of the available set. We explore this
effect in more detail in the next set of simulations.

In the second set of simulations (Fig. 5), we studied how
the objective function changes with α: uniform values in the
top row (Fig. 5, (1)-(3)) and variable values in the bottom
row (Fig. 5, (4)-(6)). We see the same effect: both NRAP
and ρ-AAP begin to lose to Avg and Median as α grows;
for extreme values of α they even drop below the simplest
benchmark algorithm, Const5.

C. Latency in the BH model

Finally, in the last set of simulations (shown on Figure 6)
we study the average latency among processed service re-
quests. There is no need to distinguish between uniform and
heterogeneous values here since the value does not influence
our objective function. The top row of graphs (Fig. 6, (1)-
(3)) shows how latency changes as B grows. We see that the
average latency of Const, Avg, and Median grows virtually
linearly with B. As expected for small α, the average latency
of ρ-AAP for all three considered values of ρ is virtually
indistinguishable from 1, so for larger B the latency of Avg
and Median grows significantly larger than that of ρ-AAP. The
most interesting behaviour is exhibited by NARP: at first its
latency decreases, reflecting the increasing processing power,
but then it begins to increase due to the increased usage of
the buffer. Still, its latency remains safely below the average
latency of all other considered algorithms and approaches 1
from below as B grows. The bottom row of graphs (Fig. 5,
(4)-(6)) shows the average latency as α grows. As expected,
no algorithms except ρ-AAP care for α at all, and ρ-AAP’s
latency begins to grow for α > 1 and further due to the effect
explained above.

D. The BD model

Figure 7 shows how the algorithms behave in the BD model,
with delays chosen according to a Zipf distribution. Note that
in this model, a packet has two characteristics so the priority
queue which is at the heart of every policy can come with
two different priorities, sorting packets either first by slack
and then by values (denoted with suffix S) or first by value
and then by slack (denoted with suffix V). The results are very
similar to the BH model; note, however, that algorithms that
sort first by value consistently and significantly outperform
their slack-preferring counterparts.
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Fig. 4. Simulation results in the BH model with variable B. Top row: uniform values; bottom row: variable values.
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Fig. 5. Simulation results in the BH model with variable α. Top row: uniform values; bottom row: variable values.

IX. CONCLUSION

Service providers operational environments introduce a fun-
damental tradeoff: between resource over-provisioning and
missed service requests. In this work, we have studied the
effects of delaying service requests to maximize revenues of
implemented services with competitive analysis, i.e., in an
adversarial setting without any assumptions on the arrival
distributions. In addition, we have analyzed the incurred
latency as a result of buffering service requests. We believe
that this study can help to identify desired properties of
resource allocation policies that optimize revenue in economic
constraints.
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