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CANONICAL RECURSIVE FUNCTIONS AND OPERATIONS 

N. Ao Shanin UDC 510.57 

A ser ies  of propert ies  of canonical r ecurs ive  functions and operations are  established, allowing 
the possibility of extrapolating to these functions and operations the method proposed by R. L. 
Goodstein for const ruct ing equational calculi.  

S e c t i o n  1 

Certain a t t ract ive singulari t ies  of the concept of partial  recurs ive  function (we have in mind the definition 
of this concept formulated in [1, Sec. 63] for the case  when the function being charac te r i zed  is previously un- 
known and ! = 0) impel many authors to r es t  their choice precise ly  on this concept,  when the requirement  ar ises  
in using any precise ly  defined equivalent of the general  (descriptively character ized)  concept of ar i thmetic  al-  
gor i thm (computable ar i thmetic  function). In par t icular ,  in the sea rch  for an answer to the question of the fea-  
sibility of an ar i thmetic  a lgori thm having given propert ies  the method itself  of defining part ial  recurs ive  func- 
tions (PRF) in many cases  "suggests"  a fruitful path to the construct ion of the algori thm sought. Here we have 
in mind the following. 

Various examples indicate that in many cases  the problem of construct ing an ar i thmetic  a lgori thm having 
given propert ies  U~, . . . ,  Um is successful ly  solved as a resul t  of reducing it to a problem of construct ing a 
cer ta in  finite collection of mutually "interact ing" ari thmetic a lgori thms,  among which the algori thm sought 
is found (the remaining algori thms occur r ing  in the collection are  considered as auxiliary),  moreover  such a 
collection, for which the conditions imposed on the algori thms (in par t icular ,  on the connections of the algo- 
r i thms with one another) and sufficing together  for  proving that the algori thm sought has the propert ies  UI . . . .  , 
Urn, c a n b e e x p r e s s e d i n t h e f o r m o f a c e r t a i n c o n s i s t e n t s y s t e m  El, . . . ,  E k of conditional equalities,, (If F and G 
are  functional expressions (objective te rms) ,  constituted by the usual method for ar i thmetic  languages f rom the 
number  0, the sign f, used for construct ing for a natural number N the natural number Nt direct ly  following 
it (we have in mind natural numbers of a single number sys tem),  functional constants denoting PRF,  objective 
and functional var iables ,  then the expression F -~ G is called conditional equality (CE) and is used as a notation 
for  the expression "if one of the te rms  F, G has a value (i.e., is computable), then the other t e rm also has a 
value and the values of these te rms  are  equal." Let us assume that each functional variable occur r ing  in the CE 
F - G cor responds  to some PRF with the same capacity as the given variable (i.e., with the same number of 
argument  places); one says of the collection of PRF obtained that it sat isf ies the CE F -~ G, if after  substitution 
in this CE in place of all functional variables of the PRF corresponding to them one gets a CE, true for all val- 

ues of the objective variables. The system (i.e., list) of conditional equalities E I .... , E k is called consistent 

if in the calculus whose axioms are El, . . ., Ek, and whose rules of inference are R1 and R2 from [i, Sec. 54], 

formulated with the replacement of the sign = by the sign -~, and also the rules % -~ ~ and "v---~ tL$ ~--- ~ it is 

impossible to derive a CE of the form M -~ N, where M and N are distinct natural numbers.) 

A consistent system of CE El, . . ., Ek, expressing the requirements of the collection of algorithms 

sought, in many cases (but not always!) is not only a constituent part of the formulation cf the problem to which 

the original problem on the feasibility of an algorithm satisfying given conditions U~ ..... U m has been re- 
duced, but also a "prepared" solution of this problem (and simultaneously of the original problem). The system 

El, . . ., E k can be considered as a constructive object, giving a definite collection of PRF (to each functional 
variable occurring in this system, distinguished as main functional variable, corresponds its PRF); in order to 

be able to directly use the definition of the concept of PRF from [i, See. 63], it suffices in the system con- 

sidered to replace the sign -~ used in this definition by the sign = and, possibly, to change the order of terms 
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of the s y s t e m  cons ide red .  If this co l lec t ion  of PRF  s a t i s f i e s  al l  the CE f rom the s y s t e m  El,  . . . ,  E k (and this 
s y s t e m  usual ly  tends to be cons t ruc ted  so that  such condit ions a r e  sa t i s f ied},  we get  a solut ion of the p rob l em 
toge the r  with c e r t a i n  (in many c a s e s  quite useful) in i t ia l  da ta  for  joint  inves t iga t ion  of va r ious  p r o p e r t i e s  of 
the P R F  sought and aux i l i a ry  PRF.  

At the s a m e  t ime  the concept  of PRF  has s i ngu l a r i t i e s  which evoke c o n s i d e r a b l e  inconvenience in the 
use  of this concept .  

F i r s t l y ,  pa r t i a l  r e c u r s i v e  functions a r e ,  accord ing  to the i r  def ini t ion,  ca lcu la t ions  of defini te  type,  and 
not a lgo r i t hms .  To this r e m a r k  one can objec t  that  the ca lcu la t ions  with which we a re  concerned  t r a n s f o r m  
in an obvious way into a lgo r i thms  - to this end one fo rmu la t e s  a ce r t a in  (one for  al l  such ca lcula t ions)  ap-  
p r o p r i a t e  method of developing a d e t e r m i n a t e  p r oc e s s  of s u c c e s s i v e  "expans ions"  of de r iva t ions  in any con-  
c r e t e  ca lculus  - such a p r o c e s s  in which for  any potent ia l ly  f eas ib le  de r iva t ion  W in the ca lculus  cons ide red  
t h e r e  occur s  a s tep ,  as a r e s u l t  of which the re  turns  out to be cons t ruc ted  a de r iva t ion  with the s a m e  l a s t  
t e r m  as the de r iva t ion  W. Here  one a l so  intends the following ru le  for  t e rmina t ing  the p r oc e s s  for  a given 
sequence  of na tura l  numbers  (i .e. ,  for  that  sequence for  which one ca lcu la t e s  the value of the PRF cons idered) :  
the p roce s s  s tops  at that  s t ep  at which the condi t ional  equali ty e xp r e s s i ng  the value of the PRF  cons ide red  on 
the given sequence turns out to be a s soc i a t ed  with the de r iva t ion  cons t ruc ted  e a r l i e r .  However ,  a lgor i thms  
defined by this method a re  unsuccess fu l  in many r e l a t ions .  In them the d e t e r m i n a t e  p r o c e s s  develops  inde-  
pendently of the given sequence  of na tu ra l  numbers  (this sequence s e r v e s  only for  recogniz ing  the concluding 
s tep  of the process} .  In view of this :  (a) it is quite fa r  in this type f rom a lgor i thms  ac tua l ly  cons t ruc ted  in 
ma thema t i c s  and its appl ica t ions  for  solving conc re t e  p r o b l e m s ,  (b} it is unfit f r om the p r ac t i c a l  point of view 
in view of its extreme complexity and the clear "uneconomicalness" of the computational processes, (c) in 
studying properties of these algorithms the approach consisting of the analysis "step by step" of the singular- 
ities of the development of the algorithmic process is inapplicable (this approach often turns out to be the re- 
sultant in applications to algorithms of other types, at least in seeking formulations of hypotheses about prop- 
erties of the concrete algorithm considered). 

Secondly, it is known that the set of consistent systems of CE is nondenumerable, and consequently un- 

decidable. 

Thus, from the point of view of the classification of concepts with respect to logical complexity charac- 
terizing their conditions, the concept of PRF turns out to be more complex than, e.g., the concept of Turing- 
Post algorithm (machine), normal algorithm of A. A. Markov, algorithm of A. N. Kolmogorov. lit is known 
that for modeling the algorithms of the types mentioned here by means of PRF a certain (suitable) decidable 
subset of the set of all PRF suffices.] 

Thirdly, any consistent system of CE uniquely determines in the sense indicated above a certain collec- 
tion of PRF; however, itis not always true that this collection satisfies all the CE of the given system. For 
example, the system of CE g(x[) ~x, g(0) ~- g(0)l, f(g(x)) - 0 is consistent, to the functional variable f corre- 
sponds the PRF identically equal to zero, to the functional variable g corresponds a PRF defined on all natural 
numbers, except 0, however, thispair of PRF does not satisfy the third CE. Here the CE g(0) - g(0)i does not 
allow one to extend somehow the second of these PRF to the number O, and consequently, such a pair of PRF 
which satisfies all the CE from the consistent system considered is impossible. 

What was said above extends also to the concept of recursive operator (we have in mind the definition of 

this concept formulated in [1, Sec. 63]). 

It is known that Kleene's theorem on the normal form of PRF (cf. [1, Theorem XIX(a)]) and certain of its 
modifications allowed the possibility of isolating certain decidable subsets of the set of all PRF, each of which, 
on the one hand, is representative (this means that it is sufficient for the representation up to the relation - 
of any PRF), and, on the other hand, does not have the above-mentioned deficiencies of the set of all PRF. The 
representative subsets used in the literature are usually determined in the following way: their elements are 
considered to be those and only those I:'RF which can be obtained from certain PRF by giving, generally 
speaking, comparatively simple (short) systems of CE and so-called initial functions, by means of chains of 
applications of certain recursive operations (e.g., the operation of regular substitution, the operation of prim- 
itive recursion, and the operation of constructing the least root of an equation, also called #-operation). Some 
authors associate the term "PRF" not with all PRF in the sense of Kleene, but only with the elements of one 
of the representative subsets, and expound the theory of algorithms on the basis of such a choice of a standard 
type of arithmetic algorithms (cf., e.g., [2, 3]). In those versions of the choice of representative subset of the 
set of all PRF, which are actually used in the literature for standardization of the concept of arithmetic algo- 
rithm, it emerges that the system of CE characterizing the PRF from the distinguished subset have certain 
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singularities, making it possible to place at the foundation of the definition of algorithms a eompietely different 
method of determinate development of the process of calculation of the value of the function considered at a 
given sequence of natural numbers than in the usual case - such a method for which the process from the very 
start "is sent" to that sequence of NN K, for which one calculates the value of the function, and consists of the 
successive transitions from a term of the form h(K), where h is the functional symbol corresponding to the 
function considered, to newer and newer terms by means of substitutions, "suggested" by the system, of CE 
considered. Moreover, any such system of CE is consistent and the collection of PIRF corresponding to it 
satisfies all the CE occurring in the system. This includes the essential merits of the approach mentioned 

here to the choice of a standard type of arithmetic algorithm. 

The inconvenience of this approach consists of the imposition of exceedingly rigid restrictions on the 
types of those systems of CE whichare intended for the given algorithms of standard type. For example, in 
the version most prevalent in the literature of the approach considered, in which the role of initial functions 
is played by the PRF corresponding to the conditional equalities f(t 0) -~ t01 , g(t 0) - 0, hn,k(t I, . . ., t n) - t k 
(n = I, 2 .... ; I -< k -< n), and as admissible operations one takes the operations of regular substitution, prim- 
itive recursion, and the construction of the least root of an equation, any system of CE in which there figures 
recurrent recursion or joint recursion for several functions, or recursion with respect to several variables, 
or transfinite recursion for ordered natural numbers with respect to the type of any constructive ordinal dif- 
ferent from co turns out to be unsuitable for the goal indicated. In view of this, the approach considered now 
allows one to use only partially those merits of the general concept of PRF with which we were concerned at 
the beginning of this paper. 

However, in order to get a representative subset of the set of all PRF, free from the deficiencies listed 
above of the set of all PRF and having the merits of certain representative sets mentioned, there is no neces- 
sity to resort to so radical a restriction of the types of systems of CE, intended for giving arithmetic algo- 
rithms of standard type, as is characteristic for the versions of the construction of a representative subset 
actually used in the literature. The indicated goal can be achieved by means of the insertion in the definition 
of the concept of PRF formulated in [i, Sec~ 63], of only those changes which in essentially (from the point of 
view mentioned at the beginning of this paper of applications of the general concept of PRF) restrict the class 
of systems of CE, intended for giving algorithms of standard type. 

In this paper it is shown that as suitable modification for this end of the concept of PRF one can take the 
concept of canonically recursive function (CRF), defined in [5, Sec. 2]. In particular, it is proved below that 
any system of CE, suitable for the direct construction with respect to it of CRF, is such that the collection of 
CRF corresponding to the considered system satisfies all the CE from this system. In [5] simultaneously with 
the concept of CRF and on the basis of analogous compelling considerations, there is introduced the concept of 
canonically recursive operator (CRO). Canonically recursive operators are sufficient for modeling all possible 
recursive operators over completely recursive (in other terminology general recursive) functions and many 
(but not all]) reeursive operators over PRF (we note that the #-operator, considered as an operator over PRF, 
is a canonically recursive operator). It is proved below that CRO are T'good" operators in the same sense that 
CRF are "good" functions. 

The singularities of the concepts ofCRFand CRO (in particular, those which distinguish these concepts 
from the concepts of PIRF and recursive operator over PRF in the sense of Kleene) make it possible to extra- 
polate in appropriate form to the set of all CRF and CRO the method of construction of equational calculi pro- 
posed by Goodstein (cf. [4]) on the example of the class of primitive recursive functions (and applied by a series 
of other authors to certain other classes oI' complete recursive functions). 

S e c t i o n  2 

In the following account we assume known Sections 0.2, 1.1-!.4, 2.1-2.6, 3.1-3.3 of [5]. For comparison 
of the account in this paper with the account of the theory of PRF in [1-3] and in many o~her monographs and 
papers it is necessary to keep the following in mind. 

In [5] there are clearly separated languages of two types: algorithmic languages, intended for giving con- 
crete CRF and CRO (Sec, 2.1), and logieomathematical (arithmetic) languages, intended for formulating state- 
ments about CRF and CRO, and also conditions imposed on CRF and CRO (Secs. 2.5 and 3.1). [The absence of 
a clear distinction of languages of these two types in certain accounts of the theory of PRF is essentially an 
appeal (not always explicit) to the set-theoretic version of the theory of recursive functions, in which by re- 
cursive functions is meant arithmetic functions in the set-theoretic sense, satisfying together with certain 
auxiliary arithmetic functions specific conditions.] 
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Symbolic expressions giving concrete CRF (concrete CRO) are canonically recursive functions (CRF) 
[respectively, canonically recursive operators (CRO)]. With respect to any CRF one constructs in a trivial 
way PRF equivalent to it (the construction with respect to a given PRF of a CRF equivalent to it in a wide class 
of cases covering practically all those "entering into use" in the theory of algorithms of concrete classes of 
PRF, is also accomplished in a trivial way; beyond the realms of this class it is accomplished with the help 
of the theorem of Kleene mentioned above). However the process of calculating the value of a given n-ary CRF 
q) on a given n-termed sequence of NN K (in contrast with the process of calculating the value of the corre- 
sponding PRF on the same sequence K) is not a process of successive generation of certain equalities or con- 
ditional equalities, but is a process of another type (a process of successive generation of network terms), 
with its very start "directed" by the sequence K and analogous in its type to the "natural" process of calcula- 
ting the value of a primitive-recursive function. In the algorithmic language intended for giving CRF and CRO, 
the signs ~- and = do not figure (these signs figure in correspondence with their common meaning in suitable 
logicomathematicaI languages). At the same time, for any system of CE El, . . . ,  Ek, which is a canonical sys- 
tem of CE without parameters (cf. below), one constructs in a single-valued and trivial way a basis of reduc- 
tions (cf. [5, Sec. 2.1]), determining in the standard way a certain collection of CRF, whose terms are equivalent 
(in the sense of the relation ~-) with the corresponding terms of the collection of PRF, directly defined (in the 
sense of Kleene's definition) by the system El, . . . ,  E k. In this sense we also apply in this paper expressions 
like "the collection of CRF corresponding to a given (suitable with respect to its type) system of CE," "direct 
construction of a collection of CRF with respect to a given system of CE," etc. 

The logicomathematical (arithmetic) languages ~0 ' ~i , and ~ are introduced in Sec. 3.1 of [5] under 

the assumption that there is fixed a certain basis of operator generation (BOG) 0, satisfying specific conditions, 
where it is essential that among these conditions there also figure conditions (a), (b), and (c), formulated at the 
beginning of Sec. 3.1. That the last conditions hold guarantees that all the CRF of type 0 (i.e., the CRF which 
are values of constant functors of terms of type 0) are complete CRF. The restrictions (a) and (b), imposed on 
0, exclude, in particular, the case when as distinguished BOG there figures a pair (0, consisting of the set of 
all possible CRF @I and the setof all possible CRO ~2. However, precisely this case is especially important 
from the point of view of the goals pursued in the present paper. Hence in the following account it is assumed 
that as BOG there is chosen the above-mentioned pair | not satisfying conditions (a) and (b) of Sec. 3.1, and 
we shall use logicomathematical languages ~I and ~9. , different in certain respects from ~ and ~ . The 

descriptions of these languages are based on the definitions of the concepts "objective term" (ObTe), "func- 
torial term" (FuTe), and "term" (Te) formulated in Sec. 2.6 of [5]. The alphabet of the new languages is ob- 
tained as a result of adjoining to the alphabet of the languages mentioned the signs ! and - .  By atomic formulas 
of the languages ~I and ~ are meant words of the form !T, where T is an ObTe, and words of the form (T I - 
T2) , where T~ and T 2 are ObTe. The atomic formula ]T is read thus: "the term T has value." The atomic for- 
mula (T I -~ T 2) is applied in the same sense as the metalinguistic notation T I equ T 2 in [5] (See. 2.6). 

Formulas of the language ~ are constructed from atomic formulas with the help of the logical connec- 

tives 7, ~, V, --~ and quantifier complexes of the form ~ and of the form ~ ,  where x is an ObVa, by the 

usual rules. By formulas of the language ~ '  are meant formulas of the language ~ and words of the form 

~ " "  ~K ~' , where ~ . . . . .  ~k are FuVa and F is a formula of the language ~ . In contrast with the languages 
~ and X~ , it will be assumed that the admissible values of any n-ary FuVa are all possible n-ary CRF. In 

Sec. 3.1 of [5] in connection with formulas of the languages ~; and ~ there is defined a series of concepts 

and relations. These definitions carry over word for word to the formulas of the languages ~I and ~ . It is 
known (cf. [5, Sec. 6.2]) that formulas of the languages ~ and ~ can be interpreted with the help of the 
theorem of Kleene mentioned above in the language ~8 for suitable choice of BOG 0 (e.g., if 0 is the BOG of 

primitive-recursive functions). However, in the following account there will be no reason to appeal to this 

pos s ibility. 

S e c t i o n  3 

In this section we use the following notation: ~* denotes a certain BaRed; ~: ~ ,  list of all ScheFu oc- 

curring in ~ ~--.~L~:j, ~m~--" ___~n ; and ~ , equiplacedness of the ScheFu ~m (1 --< m -< ~n); BI . . . . .  B~ 

denote ScheTe; ~/~i,...,'~ , sequences of numberliketerms;and rl . . . . .  rp are positive integers such that the 

BaRed ~ is representable in the form 

2 3 8 4  



~ list  of all functional p a r a m e t e r s  of ~ ~ -  $L--~-2..~ , ~ -~.~ ~ (~< ~ )  ; ~--~ ~ist of aH object ive 

p a r a m e t e r s  of :~, ~ ~ L ~ ,  ~$--~ .~  ( ~ ) .  ~ , any sequence  of F uTe, of the s a m e  type as ~ ,  and a ,  

any sequence  of ObTe, having the s a m e  number  of t e r m s  as the list  ~ , isLhe quality of the par ts .  ~ m ~ { ~ m ~  

~s -~_,, ~} (1 ~ m -< m); he re ,  if ~- is an autonomous BaRed (and consequently the l ists ~ and ~ and the s e -  

quences 4~ and A a re  empty) ,  then the express ions  { ~ ;  ~;~.~,j~} and { ~ ;  ~-;-~. ,~][qh,  A] will be identified 
in meaning with the CRF {e~a ; ~.}. '  

Le t  ~ be any va r i ab le  and ~ be any sequence of t e r m s .  We shall  say that c~ is a p a r a m e t e r  of the s e -  
quence ~ if c~ is the p a r a m e t e r  of at leas t  one t e r m  of this sequence.  

We shal l  use the meta l inguis t ic  a lgor i thms  e-~ ~ and ~'~ introduced in [5] (Sec. 2.1) in connection with 
ScheTe.  The a lgor i thm of e l emen ta ry  t r ans fo rma t ion  of constant  t e r m s ,  defined in [5] (Sec. 2.5), is cal led in 
this paper  the a lgor i thm of quas i e l em en t a ry  t r ans fo rma t ion  and is denoted by que[ +. The a lgor i thm calculat ing 
the value of constant  t e r m s  we denote by ~+ . In formula t ing  the meta l inguis t ic  definitions and asse r t ions  con-  
taining the notation for  meta l inguis t ic  a lgo r i t hms ,  we shall  use meta l inguis t ic  express ions  of the f o r m  ,~:~ and 
of the fo rm ( T 4 ~ T ~ ) ,  where  "T ,T4 ,  and T~. a r e  meta l inguis t ic  t e r m s ,  in the s a m e  senses  in which inside the 

languages ~ and ~ "  one uses ,  r e spec t ive ly ,  a tomic fo rmulas  of the fo rm ! T and of the f o r m  (T~ ~--- T2). 

THEOREM 1. For  each p (1 ~ p ~ p) the a s s e r t i o n  

- < e ~  

is true. 

COROLLARY. For each p (i -< p -< p) the assertion 

V (%p Lr :), aJ U~p)--L !~ P V <~r~FV,,~] >,j ,~ ,  f f  ) 

is true. 

THEOREM 2. IfX is a sequence of FuTe, of the same type as the list E, and the set of proper objective 

variables of the BaRed ~- does not intersect the set of parameters of the sequence X, ~, ~, then for each s 

(i -< s -< m) the assertion 

is true. Here Xs --~ Xs, zt ..... z~ is the list of all proper objective variables of the BaRed Y~, and Yl ..... 

Yds are distinct ObVa not belonging to the set of parameters of the sequence X, ~, s 

The basis of the proofs of Theorems 1 and 2 is constituted by the lemmas formulated below. In these 

lemmas ~ denotes any autonomous BaRed. 

LEMMA I. If (Ci) n is a sequence of constant ScheTe, ~? is an n-ary ScheFu, andat least one of the ScheTe 

CI, �9 �9 �9 Cn is not atomic, then 

To prove the lemma it suffices to note that any occurrence of any CanScheTe K in the ScheTe N((Ci) n) 

arises from some occurrence of K in one of the ScheTe C~, . . ., C n. 

LEMMA 2._ If C is a constant ScheTe, Ki, .... K m are constant canonical ScheTe, Ki ..... Km are the 

result of reduction of the ScheTe KI, .... K m (respectively) by means of ~r', V~, .... Vm are pairwise non- 

overlapping occurrences in C of words KI, . . ., K m (respectively), andC- is the result of the simultaneous 
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subs t i tu t ion  in C in p lace  of V~ . . . . .  Vm of the ScheTe  K,, . . . .  Km ( respec t ive ly ) ,  then ~.F~C~-~ }Zk C~ . In 
p a r t i c u l a r ,  ~zk-~'r, Caa-~hLCa" 

LEMMA 3. If C, C~, . . . ,  C n a r e  cons tan t  ScheTe ,  W~, . . . ,  W n a r e  p a i r w i s e  nonover lapp ing  o c c u r -  
r e n c e s  in C of words  C t . . . . .  C n ( r e spec t ive ly ) ,  and C* is the me ta l ingu i s t i c  t e r m  obtained as a r e s u l t  of the 
simultaneous~ subs t i tu t ion  in ~ r~ in p lace  of W ~ , . . .  , W n of  the e x p r e s s i o n s  ~:,Ct~,..., ~ : ~ a a  ( respec t ive ly ) ,  
then ~,r~C~ -.~-~zLC ~ ' 

R e m a r k .  H e r e  and in the fol lowing account  it is a s s u m e d  that  the p r o c e s s e s  of ca lcu la t ing  the values  of 
cons t an t  me ta l ingu i s t i c  t e r m s  a r e  developed a c c o r d i n g  to the s a m e  ru le  as fo r  cons tan t  t e r m s  of the languages  
~ and ~s . Hence the fol lowing a s s e r t i o n  is t rue :  !C* if and only if IC~ and . . . and lCn and !C +, w h e r e  C + 
denotes  the r e s u l t  of s i m u l t a ne ous  subs t i tu t ion  in C in p lace  of the o c c u r r e n c e s  W1, . . . ,  Wn, r e s p e c t i v e l y ,  of 
na tu ra l  n u m b e r s  M~ . . . .  , M n such  that  M i --~$X,~ ~= 4, . . . ,  ~ ). 

The proofs  of L e m m a s  2 and 3 c o n s i s t  (in c o r r e s p o n d e n c e  with the mean ing  of the re la t ion  --~ ) of c o n -  
s t r u c t i n g  a l g o r i t h m s  t r a n s f o r m i n g  the texts  o r  co l lec t ions  of texts  of the c o n s t r u c t i o n  of values  in the BaRed 
of one of the t e r m s  ment ioned  in the l e m m a s  into the texts  of the cons t ruc t i on  of values  in ~ of o ther  su i tab le  
t e r m s .  F o r  L e m m a  2 t he se  a l g o r i t h m s  a r e  obvious;  f o r  L e m m a  3 they a r e  c o n s t r u c t e d  by induct ion on the 
s teps  of the p r o c e s s e s  of g e n e r a t i n g  s c h e m a t i c  t e r m s .  

LEMMA 4. If <Sm >n is a sequence of constant ObTe, • is a constant n-ary FuTe, and at least one of the 
terms • Si, . . . ,  S n is not atomic, then 

q.o  %>k 
LEMMA 5. If (~ is a CRO, <~i> k a s equence  of cons tan t  FuTe ,  c o h e r e n t  with (~ . <T~>~ is a s equence  

of cons t an t  ObTe,  c o h e r e n t  wi th  0", and at l eas t  one of the t e r m s  ~1, �9 �9 �9  ~k,  T1, . . . .  T l is not a tomic ,  then 

c e ~ 

L E M M A  6. I f  F, Fi  . . . . .  F n are constant  t e rms ,  ~ I  . . . .  , ~n  are pa i rw ise  nonover lapping occurrences 
in F of the terms F i . . . . .  F n ( respect ive ly ) ,  and F*  is the meta l ingu is t i c  term. obtained as a resu l t  of the 
s imul taneous subst i tu t ion  in F in place of ~ I  . . . . .  ~2 n of the expressions ~ i ~ ,  ~. . . ,  ~+, f '~ j  ( respect ive ly) ,  then 

L e m m a  6 is p roved  with the help of L e m m a s  4 and 5 by induct ion on the s teps  of the p roce s s  of gene ra t i ng  
t e r m s .  

Le t  ~0 be a s equence  of  CRF,  of the s a m e  type as the l is t  ~k -~ ~ (1 _< k - k). We c o n s t r u c t  CRF ~1 . . . . .  
~$~ such  that  the s equence  <$i> k sa t i s f i e s  condi t ions  (1)-(3), f o rmu la t ed  in [5] (Sec. 2.3) fo r  the defini t ion of the 
p r o c e s s  of  appl ica t ion of a canon ica l  r e c u r s i v e  o p e r a t o r  to ini t ial  da ta  of sui table  type. We denote  b y ~  k and 

YrK, r e s p e c t i v e l y ,  the ScheFu  and BaRed such  that  ~/K'~-{~K; ~ k }  (t~K~-~). The sequence  of CRF <'~k> k (list of 

ScheFu  <~ k)~) wil l  be ca l led  the p r o p e r  v e r s i o n  ( re spec t ive ly ,  p r o p e r  t race)  of the sequence  <$k>~ for  ~ .  

Le t  us a s s u m e  that  bes ides  4,0 the re  is given ano ther  sequence  of NN A ~ such  that  ffLh ~ = ~'. We i n t r o -  
duce  the notat ion:  

o ~ , ~  

h e r e  ~o<~}:.  The au tonomous  BaRed c los  t_~; ~ h~ will  be ca l led  the c l o s u r e  of Y~ by means  of the s e -  

quence  4 ~~ A ~ The r e s u l t  of applying the CRO { 8 m . ; ~ ; - - ~ - , ~  ~ to the sequence  ~0, A0 is (by definition) the 

We note that for any k (I -< k <- [0 the i-th step of the process of calculating the values of q~k on a given 
sequence of NN Q coincides with the i-th step of the process of calculating the value of the constant ScheTe 

0 ~k(Q) in the BaRed clos .~; ~o ~.. 

In the fol lowing accoun t  we p r e s e r v e  the a b o v e - i n d i c a t e d m e a n i n g  of the notat ions ~0, A 0, and H ~ M o r e -  
- - .  ~oao 

o v e r ,  ~ closu~9 , a. 

LEMMA 7. If C is a ScheTe  such  that  the ScheFu  and FuVa  o c c u r r i n g  in C a lso  occu r  in the l is t  ~=, ~--~-, 
then for  all va lues  of ObVa: 
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Lemma 7 is proved with the help of Lemmas  3 and 6 by induction on the steps of the processes  of gener-  
ating ScheTe. 

LEMMA 8. For  all values occur r ing  in ql~p: 

,, P p') .  

This lemma follows direct ly  f rom Lemma 2. 

To complete the proof of Theorem 1 we note that for all values of ObVa occurr ing  in ~ p  one has the 
asser t ion:  

t. ~p 

F r o m  this asser t ion  and f rom Lemmas 7 and 8 it follows that for all values of ObVa: 

--- + - ' - ' = "  
-"?L } �9 

Pass ing  to the proof of Theorem 2, we formulate  some definitions and lemmas.  The let ter  Z will denote 

any autonomous BaRed. Moreover ,  ~ - ~  denotes the l i s t o f a l l S c h e F u o e c u r r i n g i n  ~7, ~ _.~ ~L ~a ~ f f ~ a  ( 4 ~ ' ~ ) .  

We fix a NN s such that 1 _< s -< r. The sequence of ScheFu f ~ ' ~ ' l  will be called a distinguished se -  

quence of ScheFu and we denote it by R .  Let C be a constant  ScheTe. By the process  of quasie lementary t r ans -  

format ion of a ScheTe by means of ,~7 with distinguished sequence ~ we mean the following process .  We make 
up the list L~, . . . ,  L m of all occur rences  in C of CanScheTe and for each t e rm of this list, s tar t ing with a 

schemat ic  functor  belonging to ~ ,  we develop the process  of calculation of its value in 27. If all these pro-  
cesses  terminate  (and, consequently,  each of them reduces to the construct ion of some NN), then after  this 
for  each of the remaining terms of the list  we cons t ruc t  the resul t  of its reduction by means of ,Z' .  Finally, 

we cons t ruc t  the ScheTe p.['.,,...,hm where D i denotes the NN or some ScheTe obtained f rom L i in the way ~" "3~ ~...~m ~ ' 

indicated. We denote the a lgor i thm descr ibed by quelz .  ~ . If ]~ is the empty sequence (i.e., s = r), then 

quel ~,]R~Ca-~ el x ~ C~ . We denote by el ~r and quel x~ the i terations of the algori thms el z and quel~-~ (re- 

spectively),  i .e. ,  the algori thms satisfying the following conditions: el z,C,0~, ~r quel x , ~ C ~ 0 z ~  ~ , - d  ~ C, 

L E M M A  9. (a) If the hypotheses of Lemma 1 hold. 

(b) I}L-~ quel r ~ -  C~. -~ }xLC~ ; 

(c) for any NN n, 

~ 

LEMMA 10. If t h e N N n i s  such that el ~ C 27" ,~tj is anNN,  t h e n q u e l ~ : , ~ , C , ~ j  is a l s o a n N N a n d  
* _ _ . _  

quel ~,][,C, rt ~--- el Z.~C;tt~--~- ~ZLC.J �9 

Lemma 10 is proved by induction on the steps of the processes  of generating ScheTe. 

By the process of constructing the quasivalue of the ScheTe C in the BaRed ~r with distinguished se- 

quence ~ we mean the process of successive construction of the values of the metalinguistie terms quelz, ~C, 

0 ~, quel ~,~ L C,0 JU etc., terminated after a step whose result is an NN. The algorithm, according to whiehproeess is 
realized, we denote by quva ,. ~. With the help of the preceding [emmas one proves the following lemma. 
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LEMMA 11. q u v a z ,  H LCj--~- }~L_C.j �9 

It  su f f i ces  to prove  T h e o r e m  2 fo r  the c a s e  when all t e r m s  of the sequences  @, A, and X a r e  cons tan t  
t e r m s .  We shal l  s t a r t  f r o m  this a s s u m p t i o n  and we a s s u m e  in addit ion that  the a s s e r t i o n  cons t i tu t ing  in the 
fo rmu la t i on  of T h e o r e m  2 the p r e m i s e  of the ou t e r  impl ica t ion  is t rue  (we denote  this a s s e r t i o n  by 9:). Le t  
s be one _,~ the n u m b e r s  1 . . . . .  m,  and let el . . . . .  eds be na tu ra l  n u m b e r s  such  that  ! ,Xs[@ , A](E) ,  w h e r e  
E--~ <ei>~s. We sha l l  show tha t  • -~ 7TS [q~ , A](E). 

On the bas i s  of L e m m a  6 we  have:  !~+L~}~_~(4~K~<~) and ! ~ / ~  (4~  ~ ~) . We in t roduce  the notat ion:  

- - -  + - -  + �9 . w e  h a v e ;  

In view of the fact that ~ ~*L~*(F).~, there are realizable a unique NN M and a unique collection of values of 

ObVa occurring in the sequence of numberlike terms ~t~ , such that ~ ,  and the sequence ~t~ for the col- 

lection mentioned of values of ObVa goes into the sequence of NN E. By Lemma 7 we have: ~ : (EL~x,+~$ ~ 

(E).~ . Consequently, the process of calculating ~,,E~(E).~ terminates and has as its result a certain NN w. 

We apply Lemma i i  to the case when as ~7 and ~. we have chosen, respectively, Y.~ and H ~ We have: 
quvax~,H,~E~(E). ~ . ~r. We denote by N an NN for which quel X~,~OLE~(E), ~ ~ .  

<em~ r~ ~.  

"~ ~'-~---~ G ~ , ,~,I~, (O-<n.~N) W e h a v e :  Go-.-]~(E ), GN~ In addition: G ~  quel/2,Ho.E~(E),~_~ , ,~.. u ~'<}r~ ~, ~~ ~ 

w. F r o m  the a s s u m p t i o n  ~ fol lows 

F r o m  L e m m a  12 we get  the equal i ty  ~ + ' ~ ( E ) ~ x  ~r. T h e o r e m  2 is proved.  In the c a s e  when ~ is an 

au tonomous  BaRed,  the p roof  given of  T h e o r e m  2 can be app rec i ab ly  s impl i f i ed .  

R e m a r k .  The concep t s  of  CRF  and CRO extend in a na tu ra l  way to the c a s e  when as ini t ial  da ta  fo r  the 
deve lopmen t  of the a l g o r i t h m i c  p r o c e s s e s  one takes  a r b i t r a r y  w o r d s  o r  sequences  of words  in a given a lphabet  
A. We note the bas i c  changes  in the s y s t e m  of def ini t ions  (it is a s s u m e d  that  the a lphabet  A does not conta in  
the l e t t e r s  ( , 1, [ , ], { , }, | , ,  > '- ,  }--). As a d m i s s i b l e  values  of O b V a w e  will  c o n s i d e r  any A - w o r d s .  Any 
w o r d  of  the f o r m  S0tilS a . . . tikS k, w h e r e  So, S~, . . . ,  S k a r e  A - w o r d s  and k >- 0, will  be ca l led  a w o r d - f o r m  
o v e r  A. We sha l l  say  tha t  the w o r d - f o r m  U conta ins  the A - w o r d  S, if U goes into S under  s o m e  co l lec t ion  of 
a d m i s s i b l e  values  of  the ObVa. We sha l l  say  that  the w o r d - f o r m s  U and V a r e  d i s jo in t  if the se t s  of values of 
the w o r d - f o r m s  U and V a r e  dis joint .  In the def ini t ion of the s c h e m a t i c  t e r m s  we r ep l ace  the gene ra t ing  ru le s  
(1) and (3), r e s p e c t i v e l y ,  by the fol lowing ru l e s :  (1) S is an A - w o r d  F-S is a ScheTe ,  (31 C~ is a ScheTe ,  C 2 
is a ScheTe  ~-C~C2 is a ScheTe .  The r e m a i n i n g  def ini t ions  a r e  b rough t  into c o r r e s p o n d e n c e  with those  m e n -  
t ioned.  Upon the in t roduc t ion  in this way of  the ex t rapo la t ion  of the concep ts  of CRF and CRO, T h e o r e m s  1 and 

2 extend toge the r  wi th  the i r  p roof s .  

S e c t i o n  4 

Le t  ]6 be an au tonomous  BaRed.  F o r  each  m (1 -< m -< m) we let c o r r e s p o n d  to the ScheFu em a c e r t a i n  
F u V a T  m of the s a m e  type  as i t ,  in s u c h  a wa y  tha t  d i f fe ren t  ScheFu  wil l  be a s s o c i a t e d  wi th  d i f fe ren t  FuVa.  w e  

"~ ~ E ~ , )  . The s y s t e m  of funct ional  equat ions introduce notation: [ ~ <  ~m >4 ~, I~nr Bm~r .j (I ~< ~ ~ 

. . .  , ( , t  

has the fol lowing p r o p e r t i e s :  ( a ) t he  sequence  of a l m o s t  a tomic  ObTe <V~(~p)>F  is r e g u l a r  in the s a m e  sense  
in which  in [5] the t e r m  " r e g u l a r  s equence  of CanScheTe"  is applied;  (b) any ObVa o c c u r r i n g  in the t e r m  Bp 

a l so  o c c u r s  in ~'~p(~)Lp) (~-<P -< P)  ; (c) any FuVa occurrir~g in the sequence  <~p>~ a l so  o c c u r s  in the sequence  

< ~'~p(~bp)>ff. We sha l l  cal l  s y s t e m s  of funct ional  equat ions s a t i s fy ing  these  condi t ions  canon ica l  s y s t e m s  of 
equat ions  wi thout  p a r a m e t e r s .  [Here  we do not c o n s i d e r  the c a s e  when in (.1 the re  f igure  notat ions fo r  c e r t a i n  
s e p a r a t e l y  given C R F ,  s ince  one can a lways  adjoin (after  su i tab le  change  of s c h e m a t i c  functors)  bases  of r e -  
duct ion def ining such  CRF to the BaRed c o n s i d e r e d  and a r r i v e  at a s y s t e m  of equat ions of the f o r m  (*), in 
wh ich  to the s e p a r a t e l y  given CRF  wil l  a l so  c o r r e s p o n d  its FuVa.] 

It follows f r o m  T h e o r e m s  1 and 2 that  the s equence  of CRF < [ ~ } ) ~  is a mins  solut ion of this 
s y s t e m  of equat ions - min ima l  f r o m  the point of view of the r e l a t ion  ~_ , defined fo r  s equences  of CRF <Um}~ 1 
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and (Vm) m in the following way: <{$~ E_<~'m>~ if and only if for each m (1 <_ m -< ~) the CRF V m is an 
extension (in a broad sense) of the CRF Um. Theorems 1 and 2, considered together, can be interpreted as 
one theorem on the realizability and uniqueness of a minimal fixed point of the defined operator over sequences 
of CRF, closely connected with the BaRed ~ .  Here we have in mind the operator ~, defined in the following 
way. We denote by ~ the parametric BaRed 

and we introduce the following CRO: O~{Sm~;~'}(~), where ~ denotes the BaRed, composed of those 

terms of the BaRed ~ on whose left sides occur the ScheFu~ m. (It is easy to see that the CRO ff~ is equiv- 

alent with the CRO {~mi~ in'] ) The sequence of CRO <(~m>~ we denote by ~. This sequence is an opera- 

tor, transforming any sequence of CRF, of the same type as the list ~, into a sequence of CRF of the same 

type as this list. For the operator (~ the sequence of CRF <{ m;~>~ is a minimal fixed point. 

Each CRO over sequences of CRF can be defined by means of a certain BaRed of the form now considered. 

Consequently, Theorems 1 and 2 repeat, in connection with the concepts of CRF and CRO, Kleene's theorem 
on the realizability and uniqueness of a minimal fixed point of a recurs[re operator over PRF (cf. [i, Theorem 

XXVI]). However the proof of Kieene's theorem and the proofs of Theorems 1 and 2 suggest the construction 

of fixed points in the realms of algorithms of different types. These proofs appeal to a specific method of de- 

veloping the process of calculating the values of PRF, on the one hand, and the process of calculating the values 

of CRF, on the other hand. The types of these processes differ from one another radically. However, in view 

of the fact that in point (ii) of the proof of Theorem XXVI of [I] the type of the arithmetic algorithm ~' does not 

play a role, and on the other hand, the proof given above of Theorem 2 carries over word for word to the case 
when XJ, .... )/~ are arithmetic algorithms of arbitrary type, we, combining Kleene's recurs[on theorem, 

point (iii) of the proof of this theorem, and Theorems 1 and 2, get the following assertion: 

THEOREM 3. For any m (I -< m -< m) the CRF{ ~m~ ~f~] is equivalent (as arithmetic algorithm) with 

the PRF defined (in the sense of Kieene) by the system of conditional equalities (*) with distinguished functional 

sign Ym. 

S e c t i o n  5 

Bases of reductions defining CRF and sequences of CRF are similar in certain respects to recursive 
programs. The term "recursive program" is applied here in the same sense as, e.g., in [6], Secs. 5.2 and 
5.2.3. Using the symbolics and terminology adopted in [5] and used above,one can write a recursive program 
in the form of a list 

tt 

w h e r e  T1, . . . .  T m a r e  s y m b o l s  of o p e r a t o r s ,  g iven in the f o r m  of t e r m s ,  each  of wh ich  is c o n s t r u c t e d  f r o m  
the symbols of certain given functions and schematic functors, belonging to the list h n, . . ., hm .n 

A basis of reductions, giving a sequence of CRF, can have a more complicated form- in it there can be 
several schemes of reductions for one and the same ScheFu. From the point of view expounded in [6] of the 

theory of recurs[re programs, this difference is inessential, since in the list of symbols of the given functions 

one is allowed to include the expression if... then 7 . �9 �9 else (in the following account it is denoted by it_~e), 
which is given the role of three-placed functional symbol, used for writing in termlike form the operation of 

branching of a set of functions and from this point of view is suitable for the "gluing" of several schemes of 

reductions of the form mentioned above into one, having form admissible in recurs[re programs. 

However, the customary operational understanding of it_~e as a specifically calculable prescription with 

specific sequence of calculations of values of three arguments leads, as is known, to the fact that linguistic 
expressions constructed on the model of terms using it__~e and symbols for algorithmically defined functions with 

infinite process of calculation of the value for certain values of the variables, "behave" in general not like 
terms of ordinary mathematical languages, and the operational (constructive) semantics of such linguistic ex- 

pressions is awkward. On the other hand, passage by means of "gluing" with the help it_~e from a given BaRed 

to a recurs[re program is actually the transition from the direct writing down of a certain List of reduction 
schemes to the indirect writing down of the same list in a form impeding the clear description of the connection 
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between the functions considered in a sufficiently simple form (e.g., in the form of conditional equalities). In 
the language of CRF and CRO the operation of branching of a set of two functions can be given in the form of 

the CRO {kr~i~o~J~,)c~,fJo} , where  ~o denotes the BaRed h~ (<~L>4)>'~ (f~o~< ~}4) 
rt+{.. _ . . .  _ , .  _ \ r  r r ~ol,;~h4)>--J~(@~,). Using the language of CRF and CROwe get the possibil i ty of express ing  many connec-  

tions between functions of i n t e re s t  to us in the fo rm of conditional equali t ies,  in which the te rms  a re  under-  
stood in the usual sense.  
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Essential Corrections to [5]. On p. 252, line 4 from the top: written: (T ~ ~r should be (~§ 

�9 On p. 256, line 16 f rom the bottom: written: (~r~+$,~ ~t$,j~)i sh~ be (r~+~.,~,) ~ ) "  
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