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CANONICAL RECURSIVE FUNCTIONS AND OPERATIONS

N. A, Shanin UDC 510.57

A series of properties of canonical recursive functions and operations are established, allowing
the possibility of extrapolating to these functions and operations the method proposed by R. L.
Goodstein for constructing equational calculi.

Section 1

Certain attractive singularities of the concept of partial recursive function (we have in mind the definition
of this concept formulated in {1, Sec. 63] for the case when the function being characterized is previously un-
known and ! = 0) impel many authors to rest their choice precisely on this concept, when the requirement arises
in using any precisely defined equivalent of the general (descriptively characterized) concept of arithmetic al-
gorithm (computable arithmetic function). In particular, in the search for an answer to the question of the fea-
sibility of an arithmetic algorithm having given properties the method itself of defining partial recursive func-
tions (PRF) in many cases "suggests" a fruitful path fo the construction of the algorithm sought. Here we have
in mind the following,

Various examples indicate that in many cases the problem of constructing an arithmetic algorithm having
given properties Uy, . . ., Up is successfully solved as a result of reducing it to a problem of constructing a
certain finite collection of mutually "interacting® arithmetic algorithms, among which the algorithm sought
is found (the remaining algorithms occurring in the collection are considered as auxiliary), moreover such a
collection, for which the conditions imposed on the algorithms (in particular, on the connections of the algo-
rithms with one another) and sufficing together for proving that the algorithm sought has the properties Uy,...,
Ums canbe expressedinthe form ofa certainconsistent system E;, ..., E of conditional equalities, (If F and G
are functional expressions (objective terms), constituted by the usual method for arithmetic languages from the
number 0, the sign |, used for constructing for a natural number N the natural number N| directly following
it (we have in mind natural numbers of a single number system), functional constants denoting PRF, objective
and functional variables, then the expression F = G is called conditional equality (CE) and is used as a notation
for the expression "if one of the terms F, G has a value (i.e., is computable), then the other term also has a
value and the values of these terms are equal." Let us assume that each functional variable occurring in the CE
F =~ G corresponds to some PRF with the same capacity as the given variable (i.e., with the same number of
argument places); one says of the collection of PRF obtained that it satisfies the CE F =~ G, if after substitution
in this CE in place of all functional variables of the PRF corresponding to them one gets a CE, true for all val-
ues of the objective variables. The system (i.e., list) of conditional equalities Ey, . . ., Ek is called consistent
if in the calculus whose axioms are E(, ..., E¢, and whose rules of inference are Rl and R2 from [1, Sec. 54],

v=ED
e 4

formulated with the replacement of the sign = by the sign =, and also the rules and _‘in%;:éiﬁ_ , it is

impossible to derive a CE of the form M =~ N, where M and N are distinct natural numbers,)

A consistent system of CE Ey, . .., Ek, expressing the requirements of the collection of algorithms
sought, in many cases (but not always!) is not only a constituent part of the formulation cf the problem to which
the original problem on the feasibility of an algorithm satisfying given conditions Uy, ..., Uy, has been re-
duced, but also a "prepared" solution of this problem (and simultaneously of the original problem). The system
E, ..., Excan be considered as a constructive object, giving a definite collection of PRF (to each functional
variable occurring in this system, distinguished as main functional variable, corresponds its PRF); in order to
be able to directly use the definition of the concept of PRF from [1, Sec. 63], it suffices in the system con-
sidered to replace the sign =~ used in this definition by the sign = and, possibly, to change the order of terms
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of the system considered. If this collection of PRF satisfies all the CE from the system E;, . .., Ex (and this
system usually tends to be constructed so that such conditions are satisfied), we get a solution of the problem
together with certain (in many cases quite useful) initial data for joint investigation of various properties of
the PRF sought and auxiliary PRF,

At the same time the concept of PRF has singularities which evoke considerable inconvenience in the
use of this concept.

Firstly, partial recursive functions are, according to their definition, calculations of definite type, and
not algorithms. To this remark one can object that the calculations with which we are concerned transform
in an obvious way into algorithms — to this end one formulates a certain (one for all such calculations) ap-
propriate method of developing a determinate process of successive "expansions" of derivations in any con-
crete calculus — such a process in which for any potentially feasible derivation W in the calculus considered
there occurs a step, as a result of which there turns out to be constructed a derivation with the same last.
term as the derivation W. Here one also intends the following rule for terminating the process for a given
sequence of natural numbers (i.e., for that sequence for which one calculates the value of the PRF considered):
the process stops at that step at which the conditional equality expressing the value of the PRF considered on
the given sequence turns out to be associated with the derivation constructed earlier. However, algorithms
defined by this method are unsuccessful in many relations., In them the determinate process develops inde-
pendently of the given sequence of natural numbers (this sequence serves only for recognizing the concluding
step of the process). In view of this: (a) it is quite far in this type from algorithms actually constructed in
mathematics and its applications for solving concrete problems, (b) it is unfit from the practical point of view
in view of its extreme complexity and the clear "uneconomicalness" of the computational processes, (c) in
studying properties of these algorithms the approach consisting of the analysis "step by step" of the singular-
ities of the development of the algorithmic process is inapplicable (this approach often turns out to be the re-
sultant in applications to algorithms of other types, at least in seeking formulations of hypotheses about prop-
erties of the concrete algorithm considered).

Secondly, it is known that the set of consistent systems of CE is nondenumerable, and consequently un-
decidable.

Thus, from the point of view of the classification of concepts with respect to logical complexity charac-
terizing their conditions, the concept of PRF turns out to be more complex than, e.g., the concept of Turing—
Post algorithm (machine), normal algorithm of A. A, Markov, algorithm of A. N. Kolmogorov. [It is known
that for modeling the algorithms of the types mentioned here by means of PRF a certain (suitable) decidable
subset of the set of all PRF suffices.]

Thirdly, any consistent system of CE uniquely determines in the sense indicated above a certain collec-
tion of PRF; however, itis not always true that this collection satisfies all the CE of the given system. For
example, the system of CE g(xl) ~x, g(0) = g(0)|, f(gx)) = 0 is consistent, to the functional variable f corre-
sponds the PRF identically equal to zero, to the functional variable g corresponds a PRF defined on all natural
numbers, except 0, however, this pair of PRF does not satisfy the third CE. Here the CE g(0) = g(0}! does not
allow one to extend somehow the second of these PRF to the number 0, and consequently, such a pair of PRF
which satisfies all the CE from the consistent system considered is impossible.

What was said above extends also to the concept of recursive operator (we have in mind the definition of
this concept formulated in [1, Sec. 63]).

It is known that Kleene's theorem on the normal form of PRF (cf. [1, Theorem XIX(a)]) and certain of its
modifications allowed the possibility of isolating certain decidable subsets of the set of all PRF, each of which,
on the one hand, is representative (this means that it is sufficient for the representation up to the relation =
of any PRF), and, on the other hand, does not have the above-mentioned deficiencies of the set of all PRF. The
representative subsets used in the literature are usually determined in the following way: their elements are
considered to be those and only those PRF which can be obtained from certain PRF by giving, generally
speaking, comparatively simple (short) systems of CE and so-called initial functions, by means of chains of
applications of certain recursive operations (e.g., the operation of regular substitution, the operation of prim-
itive recursion, and the operation of constructing the least root of an equation, also called p-operation), Some
authors associate the term "PRF" not with all PRF in the sense of Kleene, but only with the elements of one
of the representative subsets, and expound the theory of algorithms on the basis of such a choice of a standard
type of arithmetic algorithms (cf., e.g., [2, 3]). In those versions of the choice of representative subset of the
set of all PRF, which are actually used in the literature for standardization of the concept of arithmetic algo-
rithm, it emerges that the system of CE characterizing the PRF from the distinguished subset have certain
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singularities, making it possible to place at the foundation of the definition of algorithms a completely different
method of determinate development of the process of calculation of the value of the function considered at a
given sequence of natural numbers than in the usual case — such a method for which the process from the very
start "is sent" to that sequence of NN K, for which one calculates the value of the function, and consists of the
successive transitions from a term of the form h(K), where h is the functional symbol corresponding to the
function considered, to newer and newer terms by means of substitutions, "suggested" by the system of CE
considered, Moreover, any such system of CE is consistent and the collection of PRF corresponding to it
satisfies all the CE occurring in the system. This includes the essential merits of the approach mentioned
here to the choice of a standard type of arithmetic algorithm. ’

The inconvenience of this approach consists of the imposition of exceedingly rigid restrictions on the
types of those systems of CE which are intended for the given algorithms of standard type. For example, in
the version most prevalent in the literature of the approach considered, in which the role of initial functions
is played by the PRF corresponding to the conditional equalities f(ty} = tyl, gity) =0, hy,k(ty, . . o5 tyt =t
m=1, 2,...;1=<k=n), and as admissible operations one takes the operations of regular substitution, prim-
itive recursion, and the construction of the least root of an equation, any system of CE in which there figures
recurrent recursion or joint recursion for several functions, or recursion with respect to several variables,
or transfinite recursion for ordered natural numbers with respect to the type of any constructive ordinal dif-
ferent from w turns out to be unsuitable for the goal indicated, In view of this; the approach considered now
allows one to use only partially those merits of the general concept of PRF with which we were concerned at
the beginning of this paper,

However, in order to get a representative subset of the set of all PRF, free from the deficiencies listed
above of the set of all PRF and having the merits of certain representative sets mentioned, there is no neces-
sity to resort to so radical a restriction of the types of systems of CE, intended for giving arithmetic algo-
rithms of standard type, as is characteristic for the versions of the construction of a representative subset
actually used in the literature. The indicated goal can be achieved by means of the insertion in the definition
of the concept of PRF formulated in {1, Sec. 63], of only those changes which in essentially {from the point of
view mentioned at the beginning of this paper of applications of the general concept of PRF) restrict the class
of systems of CE, intended for giving algorithms of standard type,

In this paper it is shown that as suitable modification for this end of the concept of PRF one can take the
concept of canonically recursive function (CRF), defined in [5, Sec. 2]. In particular, it is proved below that
any system of CE, suitable for the direct construction with respect to it of CRF, is such that the coliection of
CRF corresponding to the considered system satisfies all the CE from this system. In [5] simultaneously with
the concept of CRF and on the basis of analogous compelling considerations, there is introduced the concept of
canonically recursive operator (CRO). Canonically recursive operators are sufficient for modeling all possible
recursive operators over completely recursive (in other terminology general recursive) functions and many
(but not all!) recursive operators over PRF (we note that the u-operator, considered as an operator over PRF,
is a canonically recursive operator). It is proved below that CRO are "good" operators in the same sense that
CRF are "good" functions.

The singularities of the concepts of CRFand CRO (in particular, those which distinguish these concepts
from the concepts of PRF and recursive operator over PRF in the sense of Kleene) make it possible to extra-
polate in appropriate form to the set of all CRF and CRO the method of construction of eguational caleculi pro-
posed by Goodstein (cf. [4]) on the example of the class of primitive recursive functions (and applied by a series
of other authors to certain other classes of complete recursive functions).

Section 2

In the following account we assume known Sections 0.2, 1.1-1.4, 2,1-2,6, 3.1-3.3 of [5]. For comparison
of the account in this paper with the account of the theory of PRF in [1-3] and in many other monographs and
papers it is necessary to keep the following in mind,

In [5] there are clearly separated languages of two types: algorithmic languages, intended for giving con~
crete CRF and CRO (Sec. 2.1), and logicomathematical (arithmetic) languages, intended for formulating state-
ments about CRF and CRO, and also conditions imposed on CRF and CRO (Secs, 2.5 and 3.1). [The absence of
a clear distinction of languages of these two types in certain accounts of the theory of PRF is essentially an
appeal (not always explicit) to the set-theoretic version of the theory of recursive functions, in which by re-
cursive functions is meant arithmetic functions in the set-theoretic sense, satisfying together with certain
auxiliary arithmetic functions specific conditions.]
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Symbolic expressions giving concrete CRF (concrete CRO) are canonically recursive functions (CRF)
[respectively, canonically recursive operators (CRO)]. With respect to any CRF one constructs in a trivial
way PRF equivalent to it (the consfruction with respect to a given PRF of a CRF equivalent to it in a wide class
of cases covering practically all those "entering into use" in the theory of algorithms of concrete classes of
PRF, is also accomplished in a trivial way; beyond the realms of this class it is accomplished with the help
of the theorem of Kleene mentioned above). However the process of calculating the value of a given n-ary CRF
@ on a given n-termed sequence of NN K (in contrast with the process of calculating the value of the corre-
sponding PRF on the same sequence K) is not a process of successive generation of certain equalities or con-
ditional equalities, but is a process of another type (a process of successive generation of network terms),
with its very start "directed" by the sequence K and analogous in its type to the "natural" process of calcula-
ting the value of a primitive-recursive function. In the algorithmic language intended for giving CRF and CRO,
the signs = and = do not figure (these signs figure in correspondence with their common meaning in suitable
logicomathematical languages). At the same time, for any system of CE E, . . ., Ek,which is a canonical sys-
tem of CE without parameters (cf. below), one constructs in a single-valued and trivial way a basis of reduc-
tions (cf. [5, Sec. 2.1}), determining in the standard way a certain collection of CRF, whose terms are equivalent
(in the sense of the relation =) with the corresponding terms of the collection of PRF, directly defined (in the
sense of Kleene's definition) by the system E;, . . ., Ex. In this sense we also apply in this paper expressions
like "the collection of CRF corresponding to a given (suitable with respect to its type) system of CE," "direct
construction of a collection of CRF with respect to a given system of CE," etc.

The logicomathematical (arithmetic) languages £, » 2! , and X2 are introduced in Sec. 3.1 of [5] under
[ (] (2]

the assumption that there is fixed a certain basis of operafor generation (BOG) 6, satisfying specific conditions,
where it is essential that among these conditions there also figure conditions (a), (b), and (c), formulated at the
beginning of Sec. 3.1. That the last conditions hold guarantees that all the CRF of type ¢ (i.e., the CRF which
are values of constant functors of terms of type 8) are complete CRF, The restrictions (a) and (b), imposed on
9, exclude, in particular, the case when as distinguished BOG there figures a pair @, consisting of the set of
all possible CRF ®, and the setof all pogssible CRO ®,. However, precisely this case is especially important
from the point of view of the goals pursued in the present paper. Hence in the following account it is assumed
that as BOQG there is chosen the above-mentioned pair ®, not satisfying conditions (a) and (b) of Sec. 3.1, and
we shall use logicomathematical languages £' and £* , different in certain respects from x; and :cg' . The

descriptions of these languages are based on the definitions of the concepts "objective term" (ObTe), "func-
torial term" (FuTe), and "term" (Te) formulated in Sec. 2.6 of [5]. The alphabet of the new languages is ob-
tained as a result of adjoining to the alphabet of the languages mentioned the signs ! and ~. By atomic formulas
of the languages X' and £% are meant words of the form ! T, where T is an ObTe, and words of the form (T, =
T,), where T, and T, are ObTe. The atomic formula !T is read thus: "the term T has value." The atomic for-
mula (T = T,) is applied in the same sense as the metalinguistic notation T, equ T, in [5] (Sec. 2.6).

Formulas of the language ¥! are constructed from atomic formulas with the help of the logical connec-
tives 1, &,V,— and quantifier complexes of the form Yx and of the form Jax, where x is an ObVa, by the
usual rules. By formulas of the language %% are meant formulas of the language X' and words of the form

Ve,..- V5« ', where &, .. ., & are FuVa and F is a formula of the language %! . In contrast with the languages
Zg and I:’ , it will be assumed that the admissible values of any n-ary FuVa are all possible n-ary CRF. In

Sec. 3.1 of [5] in connection with formulas of the languages ,}L‘e and 2’9‘ there is defined a series of concepts

and relations. These definitions carry over word for word to the formulas of the languages 2! and X% . Itis
known (cf. [5, Sec. 6.2]) that formulas of the languages £' and ¥* can be interpreted with the help of the
theorem of Kleene mentioned above in the language xe for suitable choice.of BOG 9 (e.g., if 9 is the BOG of

primitive-recursive functions). However, in the following account there will be no reason to appeal to this
possibility.
Section 3

In this section we use the following notation: & denotes a certain BaRed; E =, list of all ScheFu oc-
curring in %; m:SL[EJ, S Em ; and d,m: , equiplacedness of the ScheFu em (1 = m = m); By, . . ., Bp

denote ScheTe; 'UL,,...,'ULF , sequences of numberlike terms;and ry, . . ., rp are positive integers such that the

BaRed % is representable in the form
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8, (V) =By £y (W) Bs 5
==, list of all functional parameters of £; ¥=8 =, =P ({skek); P=s, list of all objective
parameters of X, = 5LlPJ ’ m(fi—’LPC (458@). @ , any sequence of FuTe, of the same type as =, and 4,
any sequence of ObTe, having the same number of terms as the list [P ,isthe quality of the parts, Tp=={g,;
£;=, P} 1 = m = m); here, if % is an autonomous BaRed (and consequently the lists = and P and the se-

quences ¢ and A are empty), then the expressions {§y,; &;=,P} and {g,; %;=,P}[®, A] will be identified
in meaning with the CRF {¢,,; %},

Let a be any variable and § be any sequence of terms. We shall say that o is a parameter of the se-
quence § if o is the parameter of at least one term of this sequence.

We shall use the metalinguistic algorithms el  and ¥% introduced in [5] Sec. 2.1) in connection with
ScheTe, The algorithm of elementary transformation of constant terms, defined in [5] {Sec. 2.5), is called in
this paper the algorithm of quasielementary transformation and is denoted by quel +. The algorithm calculating
the value of constant terms we denote by 3* . In formulating the metalinguistic definitions and assertions con-
taining the notation for metalinguistic algorithms, we shall use metalinguistic expressions of the form ["¥ and
of the form (% =<7,), where -2 ,%,, and % are metalinguistic terms, in the same senses in which inside the

languages &' and £* one uses, respectively, atomic formulas of the form ! T and of the form (T; = T,).
THEOREM 1. For each p (1 < p < p) the assertion
Sm 1&1
Vi, ["“' [P](m <4t m [, PT>™ )
is true,
COROLLARY, For each p (1 < p = p) the assertion

7"-"?

Vi, [CP A]U’H B *acm[qs A]>4,§’ A‘)

is true,

THEOREM 2. If X is a sequence of FuTe, of the same type as the list E, and the set of proper objective
variables_of the BaRed &£ does not intersect the set of parameters of the sequence X, &, A, then for each s
(1 = s = m) the assertion

~ |2V Em> ,._..,)P)
V(Vz4"'2¢',&=1(7‘1p(m?) P*‘(',' )4 9 AJ 7
(e, [, 81y g, Yt )= T DA )
is true. Here xq = Xgs Z(y« » - zg4 is the list of all proper objective variables of the BaRed %, and vy, ...,

ydg are distinct ObVa not belonging to the set of parameters of the sequence X, &, A,

The basis of the proofs of Theorems 1 and 2 is constituted by the lemmas formulated below, In these
lemmas J denotes any autonomous BaRed.

LEMMA 1. If (Ci)r} is a sequence of constant ScheTe, 7 is an n-ary ScheFu, andat least one of the ScheTe
Ci, ..., Cp is not atomic, then
— n,___ — "
eleY(<ci>4 )= 7(<51ILC1‘. J>4 ) .

To prove the lemma it suffices to note that any occurrence of any CanScheTe K in the ScheTe n{(C; )?)
ariges from some occurrence of K in one of the ScheTe Cy, ..., Cp.

LEMMA 2, If C is a constant ScheTe, K, ..., Ky, are constant canonical ScheTe, I—ij, v ey i{m are the
result of reduction of the ScheTe Ky, ..., Ky (respectively) by means of 4y Vigeoos Vi are pairwise non-
overlapping occurrences in C of words Ky, . . ., Ky, (respectively), andC is the result of the simultaneous
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substitution in C in place of Vy, . . ., Vi of the ScheTe K|, . . ., Ky (respectively), then }ILE_,”—; (2o C,.In
particular, 7, iel, C_,ﬁ‘r}z‘_c_]_

LEMMA3, ¥C,Cy, ..., Cy are constant ScheTe, Wy, ..., W, are pairwise nonoverlapping occur-
rencesin C of words Cy, . . ., Cp (respectively),andC* is the metalinguistic term obtained as a result of the
simultanious substitution in I” in place of Wy, . . ., W, of the expressions }JLC“,..., 77.Cy. (respectively),
then3, C, 3.0, '

Remark, Here and in the following account it is assumed that the processes of calculating the values of
constant metalinguistic terms are developed according to the same rule as for constant terms of the languages
¥" and £* . Hence the following assertion is true: !C* if and only if !C; and . . , and !Cy, and !1C*, where C*+
denotes the result of simultaneous substitution in C in place of the occurrences Wi, ..., Wy, respectively, of
natural numbers My, . . ., Mp such that M F4rlin i=4..,n),

The proofs of Lemmas 2 and 3 consist (in correspondence with the meaning of the relation z¢ ) of con-
structing algorithms transforming the texts or collections of texts of the construction of values in the BaRed I
of one of the terms mentioned in the lemmas into the texts of the construction of values in .° of other suitable
terms. For Lemma 2 these algorithms are obvious; for Lemma 3 they are constructed by induction on the
steps of the processes of generating schematic terms.

LEMMA 4, If (Smfl‘l is a sequence of constant ObTe, x is a constant n-ary FuTe, andatleast one of the
terms x, S, ..., Sp is not atomic, then

SIS, e X e S,

LEMMA 5. If ¢ is a CRO, (&; )11{ a sequence of constant FuTe, coherent with ,.(T;;)f is a sequence
of constant ObTe, coherent with (", and at least one of the terms @iy 00y Pk, Ty, ..., T is not atomie, then

e+, ORI 2 0 (¢ qar+ @ 3 T

LEMMAG6. If I', I'y, ..., I'y are constant terms, @, ..., {, are pairwise nonoverlapping occurrences
in T of the terms I'y, . . ., I'y (respectively), and I'* is the metalinguistic term obtained as a result of the
simgltaneous substitution in ' in place of 4, ..., §2 of the expressions }*LEJ,. vy }+L|"n_l (respectively), then
+ ~
3 LFJT} Lr.l ¢

Lemma 6 is proved with the help of Lemmas 4 and 5 by induction on the steps of the process of generating
terms,

Let 3 be a sequence of CRF, of the same type as the list P == &_bf( l=k= k). We construct CRF Uiseoos
iz such that the sequence (¥i )E‘ satisfies conditions (1)-(3), formulated in [5] (Sec. 2.3) for the definition of the
process of application of a canonical recursive operator to initial data of suitable type. We denote by ny and

&by » respectively, the ScheFu and BaRed such that \[/KI'{’ZK;:QK} (4sks¥) . The sequence of CRF (:ek>£< (list of
ScheFu {5 k)%{) will be called the proper version (respectively, proper trace) of the sequence (¢k )}i for & .

Let us assume that besides ®° there is given another sequence of NN A’ such that é'l_A:' =1. We intro-
duce the notation:

— LB A0 = P E'

clos LI”7 @ » A_l" |_;~/"+ H°:A°_1 ’<'I}K>4 ?
here Ho-'_—,OZK)f. The autonomous BaRed clos LI};@O, A’ will be called the closure of % by means of the se-
quence 3%, A%, The result of applying the CRO { &,,; % ;=,P} to the sequence ¢°, A’is (by definition) the
CRF {&,,; cios, 55T}

We note that for any k (1 < k = k) the i-th step of the process of calculating the values of ¢} on a given
sequence of NN Q coincides with the i-th step of the process of calculating the value of the constant ScheTe
Mk@) in the BaRed clos  %; P°, A°,.

In the following account we preserve the above -indicated meaning of the notations %, A% and H’. More-
over, $¥= Eﬂ,‘;cfy;éz A,

LEMMA 7. If C is a ScheTe such that the ScheFu and FuVa occurring in C also occur in the list [E,E'.,
then for all values of ObVa:
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e o= =
Cf@_ w5 A°]> . T T 01 Hos
Lemma 7 is proved with the help of Lemmas 3 and 6 by induction on the steps of the processes of gener-
ating ScheTe,
LEMMA 8. For all values occurring in ’I}LP:

, P _ -
}ﬁ*LSﬂ'P(mP ?Xi*LBP,H A (P—-",, P)

This lemma follows directly from Lemma 2,

To complete the proof of Theorem 1 we note that for all values of ObVa occurring in mP one has the
assertion:

7w L8870 ), 2 fe o0 (V).
From this assertion and from Lemmas 7 and 8 it follows that for all values of ObVa:

e —
m> )":"P

[@ AT(W,), =5 40%<7c,,‘r[€D"1.\]>1 , D08 -

Passing fo the proof of Theorem 2, we formulate some definitions and lemmas. The letter £ will denote
any autonomous BaRed. Moreover, R== denotes the listofall Sche Fu occurring ing, =8 R,, fy== R . (i1 %)
We fix a NN s such that 1 < s = r. The sequence of ScheFu <j’»,, eq will be called a distinguished se-
quence of ScheFu and we denote it by R . Let C be a constant ScheTe, By the process of quasielementary trans-

formation of a ScheTe by means of J with distinguished sequence R we mean the following process. We make
up the list L;, . . ., Ly of all occurrences in C of CanScheTe and for each term of this list, starting with a

schematic functor belonging to R, we develop the process of calculation of its value in [, If all these pro-
cesses terminate (and, consequently, each of them reduces to the construction of some NN), then after this
for each of the remaining terms of the list we construct the result of its reduction by means of .£°, Finally,

we construct the ScheTe C* v ’SMJ , where Dj denotes the NN or some ScheTe obtained from L; in the way

indicated. We denote the algorithm described by quel g . If R is the emply sequence (i.e., s = r), then
quel J,R'-CJ% el zt C.,. We denote by-a % and quel 2 ZE the iterations of the algorithms elz and quel;g {re~
spectively), i.e., the algorithms satisfying the following conditions: el wl0¥7 quel IRLC,O_,‘%‘ C,el 3G,
wl% el ., el 7,0, hy, quel £xeGnLF quel Lg o quel 2<ﬁ,_0,n_,_, (n is any NN).

LEMMA 9, (a) If the hypotheses of Lemma 1 hold:

E[Ee_l—ac‘,ﬁu.vl«gi.)qn).n%:’l (( quel ¢ fL B,',_,>,n)';

(b) %IL quel I,RLCJJ%}-CL-CJ;
(c) for any NN n,

3: ,_el;._c, n.uT%;LCJv };L quel,c,ﬁl.c;n.:.:'fﬁln.c_‘
LEMMA 10. If the NN n is such that el s uC,yn, is an NN, then quel T ®.Cyny is also an NN and
quel ﬁ'—c n,= elzLC n=3,,C,
Lemma 10 is proved by induction on the steps of the processes of generating ScheTe,
By the process of constructing the quasivalue of the ScheTe C in the BaRed 4 with distinguished se-

quence R we mean the process of successive construction of the values of the metalinguistic terms quelx @.C,

0, » quel R'—C 01, ete.,terminated after a step whose result is an NN, The algorithm, according to whichprocess is
realized, we denote by quva , g . With the help of the preceding lemmas one proves the following lemma,
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LEMMA 11, quvaJ,ELC_‘Q{— I 0l

It suffices to prove Theorem 2 for the case when all terms of the sequences ®, A4, and X are constant
terms. We shall start from this assumption and we assume in addition that the assertion constituting in the
formulation of Theorem 2 the premise of the outer implication is true (we denote this assertion by )., Let
s be one of the numbers 1, ..., m, and let ey, . . ., edg be natural numbers such that ! rg[$, AJ(E), where
E < (e;)%8. We shall show that x5 (E) ~ r5[®, A](E).

On the basis of Lemma 6 we have: !}‘*’L@UMSKS K) and gg*L_A_(,_, (4sb<T) . We introduce the notation:
95 Br, M= Ao s DR, Ky, W=7t w[BN],, B*= G (63 DAL - We have: T = {5, %% -
In view of the fact that !}*ijr*(E)_, , there are realizable a2 unique NN M and a unique collection of values of
ObVa occurring in the sequence of numberlike terms Wy , such that &= &, and the sequence W, for the col-
lection mentioned of values of ObVa goes into the sequence of NN E. By Lemma 7 we have:'g"L'Ir:(E) ¥ Gy &
(E), . Consequently, the process of calculating 31*,_85(5:')_, terminates and has as its result a certain NN w,

We apply Lemma 11 to the case when as £ and R we have chosen, respectively, &% and H’, We have:
quvax}tHol_Eé(E)_, = w. We denote by N an NN for which quel ;E,H"’—Eb( E), NJ = .

<Ew™, =, P
<Y'm>4m , QO) A

In addition: G,== quel 3 o & (E),n 5 & 2= Gl , (0sn<N) . we have: G =V, (E), C?Nz

w. From the assumption F follows

LEMMA 12, 3" G, ¥ 3% G (U<ns<N).

From Lemma 12 we get the equality 3+L’¥5(E)_,‘£ w. Theorem 2 is proved. In the case when b is an
autonomous BaRed, the proof given of Theorem 2 can be appreciably simplified.

Remark. The concepts of CRF and CRO extendin a natural way to the case when as initial data for the
development of the algorithmic processes one takes arbitrary words or sequences of words in a given alphabet
A, We note the basic changes in the system of definitions (it is assumed that the alphabet A does not contain
the letters (,), [,1, 1 5 J» @, 5, >, ). As admissible values of ObVa we will consider any A-words. Any
word of the form S,ti S;. . . t; Sk, where Sy, Sy, . . ., Sk are A-words and k = 0, will be called a word-form
over A. We shall say that the word-form U contains the A-word 8, if U goes into S under some collection of
admissible values of the OhVa, We shall say that the word-forms U and V are disjoint if the sets of values of
the word-forms U and V are disjoint, In the definition of the schematic terms we replace the generating rules
(1) and (3), respectively, by the following rules: (1) S is an A-word S is a ScheTe, (3) C; is a ScheTe, C,
is a ScheTe —C,C, is a ScheTe, The remaining definitions are brought into correspondence with those men-
tioned. Upon the introduction in this way of the extrapolation of the concepts of CRF and CRO, Theorems 1 and
2 extend together with their proofs.

Section 4

Let 4 be an autonomous BaRed. For eachm (1 = m = m) we let correspond to the ScheFu ey, a certain
FuVa vy, of the same type as it, in such a way that different ScheFu will be associated with different FuVa, We
E

r- ({sm =) . The system of functional equations

introduce notation: F==<Yy, );i, Ry=. Bm{

r"w('m"l) = §4 IR X"-L;; (pr)m EF ()

has the following properties: (a) the sequence of almost atomic ObTe <u,,(mp)>f is regular in the same sense
in which in [5] the term "regular sequence of CanScheTe" is applied; (b) any ObVa occurring in the term Bp

also occurs in x"q,P(ULP) (1<p<P) ; (c) any FuVa occurring in the sequence <'EP>1F also occurs in the sequence

<X"«P(1ILP)>,,P . We shall call systems of functional equations satisfying these conditions canonical systems of
equations without parameters. [Here we do not consider the case when in () there figure notations for certain
separately given CRF, since one can always adjoin (after suitable change of schematic functors) bases of re-
duction defining such CRF to the BaRed considered and arrive at a system of equations of the form (%), in
which to the separately given CRF will also correspond its FuVa.]

It follows from Theorems 1 and 2 that the sequence of CRF ({Gm;b’})? is a minimal solution of this &
system of equations — minimal from the point of view of the relation © , defined for sequences of CRF (Um>1
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and {Vy /1% in the following way: (ﬂmsz('U'm)'m if and only if for each m (1 = m =< m) the CRF Vyy is an
extension (in a broad sense) of the CRF Up,. Theorems 1 and 2, considered together, can be inferpreted as
one theorem on the realizability and uniqueness of a minimal fixed point of the defined operator over sequences
of CRF, closely connected with the BaRed & . Here we have in mind the operator {, defined in the following
way. We denote by T the parametric BaRed

~

5¢4('UL4)>"' B4 200 E%-F(mp))“gﬁ

and we introduce the following CRO: ﬁm“—:— {Em;gm;ﬂ(fsmsﬁt), where g’m denotes the BaRed, composed of those
terms of the BaRed & on whose left sides occur the Sche Fuey,. (It is easy to see that the CRO §,, is equiv-
alent with the CRO {am-,fi ;'Y ) The sequence of CRO <Ofm>1’7" we denote by F. This sequence is an opera-
tor, transforming any sequence of CRF, of the same type as the list §, into a sequence of CRF of the same
type as this list. For the operator § the sequence of CRF <{8m;:5'})4m is a2 minimal fixed point.

Fach CRO over sequences of CRF can be defined by means of a certain BaRed of the form now considered.
Consequently, Theorems 1 and 2 repeat, in connection with the concepts of CRF and CRO, Kleene's theorem
on the realizability and uniqueness of a minimal fixed point of a recursive operator over PRF (cf. [1, Theorem
XXVI]). However the proof of Kleene's theorem and the proofs of Theorems 1 and 2 suggest the construction
of fixed points in the realms of algorithms of different types. These proofs appeal to a specific method of de-
veloping the process of calculating the values of PRTF, onthe one hand, and the process of calculating the values
of CRT, on the other hand. The types of these processes differ from one another radically, However, in view
of the fact that in point (ii) of the proof of Theorem XXVI of [1] the type of the arithmetic algorithm ¢' does not
play a role, and on the other hand, the proof given above of Theorem 2 carries over word for word to the case
when x;, . . ., X are arithmetic algorithms of arbitrary type, we, combining Kleene's recursion theorem,
point (iii) of the proof of this theorem, and Theorems 1 and 2, get the following assertion:

THEOREM 3, Forany m (1 = m = r.;1) the CRF{ Em s 5} is equivalent (as arithmetic algorithm) with
the PRF defined (in the sense of Kleene) by the system of conditional equalities (x) with distinguished functional
sign Ym-.

Section 5

Bases of reductions defining CRF and sequences of CRF are similar in certain respects to recursive
programs, The term "recursive program" is applied here in the same sense as, e.g., in [6], Secs. 5.2 and
5.2.3. Using the symbolics and terminology adopted in [5] and used above,one can write a recursive program
in the form of a list

ey ) > I b o fent e ),

where 74, . .., Ty, are symbols of operators, given in the form of terms, each of which is constructed from
the symbols of certain given functions and schematic functors, belonging to the list hlY, . . ., h?n.

A basis of reductions, giving a sequence of CRF, can have a more complicated form — in it there can be
several schemes of reductions for one and the same ScheFu. From the point of view expounded in [6] of the
theory of recursive programs, this difference is inessential, since in the list of symbols of the given functions
one is ailowed to include the expression if. . .then Z ... else (in the following account it is denoted by ite),
which is given the role of three-placed functional symbol, used for writing in termlike form the operation of
branching of a set of functions and from this point of view is suitable for the "gluing™" of several schemes of
reductions of the form mentioned above into one, having form admissible in recursive programs,

However, the customary operational understanding of ite as a specifically calculable prescription with
specific sequence of calculations of values of three arguments leads, as is known, to the fact that linguistic
expressions constructed on the model of terms using ite and symbols for algorithmically defined functions with
infinite process of calculation of the value for certain values of the variables, "behave" in general not like
terms of ordinary mathematical languages, and the operational (constructive) semantics of such linguistic ex-
pressions is awkward. On the other hand, passage by means of "gluing™ with the help ite from a given BaRed
to a recursive program is actually the transition from the direct writing down of a certain list of reduction
schemes to the indirect writing down of the same list in a form impeding the clear description of the connection
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between the functions considered in a sufficiently simple form (e.g., in the form of conditional equalities). In
the language of CRF and CRO the operation of branching of a set of two functions can be given in the form of
' : L H n 1 n n n
the CRO {I";%y; 1 ,)“n,to} , where J, denotes the BaRed hn'(('tﬁ:b))-h“ (tn)<ti,>1) ,han'* (0;<ti,>4)>~f4 ((t,, 4))7
n+f ny [
h (tol’(ti>4)>—fz(<h>‘). Using the language of CRF and CRO we get the possibility of expressing many connec-

tions between functions of interest to us in the form of conditional equalities, in which the terms are under-
stood in the usual sense.
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[ %) [}
Essential Corrections to [5]. On p. 252, line 4 from the top: written: (?m-rz,no Ia. ,-J) ; should be (?HHE " Lo
0~ ] . ) Ty
. N . . . o .
'pq_-a . On p. 256, line 16 from the bottom: written: (?m,,,,n ?‘L’P),.should be (?mu,n,ﬁo ?a) .
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