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G E O R G  C A N T O R  AS T H E  A U T H O R  OF C O N S T R U C T I O N S  P L A Y I N G  
F U N D A M E N T A L  R O L E S  IN C O N S T R U C T I V E  M A T H E M A T I C S  

N.  A.  Shan in  UDC 510.25+510.21 

An extended version of the author's talk at the meeting of the St. Petersburg Mathematical Society (March 
3, 1995), dedicated to the 150th anniversary of G. Cantor's birth, is presented. The following inventions 
of Cantor and their roles in constructive mathematics are discussed: the system of notation for order-types 
less than eo, a constructive (in essence) definition of the notion of real number, and Cantor's "diagonal" 
construction. Bibliography: 22 titles. 

The 150th anniversary of Georg Cantor, which is celebrated in 1995, is a suitable occasion to recall not 
only set theory created by him, but also some achievements of the great mathematician,  which played roles 
in the history of science which could not be imagined by Cantor, who was devoted to a set-theoretical 
"way of mathematical  thinking." By this we mean a series of constructions invented by Cantor. Below we 
discuss only three constructions: the system of notation for order-types of well ordered sets which are less 
than co (w the constructive (in essence) idea of the definition of a real number (w and Cantor's famous 
"diagonal" construction (w 

w 

The system of notation for order-types less than c0, invented by Cantor, has played an unexpected role 
in realizing the character of difficulties arising in the analysis of foundations of mathematics  already on the 
level of natural numbers, and turned out to be a source of additional arguments for those mathematicians 
who undertook, at the end of the nineteenth century and in the twentieth century, a critical analysis of the 
idealizations occuring in forming the "intuitive base" of set theory. This has been an analysis of the "level 
of agreement" between the idealizations accepted and the results of experimental study of the nature (on 
the macro-, micro-, and megalevel of detailing and scope in space-time). 

Cantor came to the notions of well ordered set and transfinite ordinal number (ordinal in the modern 
terminology) by considering the operation assigning every closed set i~ the number line its derived set 
(i.e., the set constituted by all its limit points). Cantor has mentally iterated the operation (under the 
assumption that a certain initial closed set F is given) and added to the iterations the "passages to the 
limit" by "constructing" the intersection of all sets obtained in the earlier stages. When performing such a 
"passage to the limit" on the intuitive level, we use an act of imagination, called the abstraction of complete 
(actual) infinity. The idea of a "natural" relation of preceding for the elements of the mentally constructed 
family of sets is formed on the same level. 

After this "generalized" iteration (where only the first steps have the form of the "usual" induction, 
and a "far-reaching" generalization of such induction is obtained as a whole), Cantor came to the idea of 
well ordered sets and their order-types. The corresponding definitions are stated in terms of general set 
theory, and the rule of transfinite induction is formed in the same terms. In axiomatic set theory, the rule 
of transfinite induction has the status of a derived rule of inference, and certain statements in various areas 
of mathematics get the status of theorems only due to this rule of inference. 

In constructive mathematics,  the rule of transfinite induction cannot even be stated in the "generality" 
in which it appears in set theory. At the same time, it was Cantor who suggested the construction allowing 
one to state certain special cases of this rule and discuss them from the point of view of acceptability. In 
Cantor's theory, the ordinals are thought of (on the intuitive level) as certain "abstract entities," but a 
notation is introduced for some "entities" of this kind. In particular, one of the order-types is denoted 
by co, and all order-types preceding co can also be denoted by bulky strings of symbols of a certain 
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form, constructed from the symbols 0, w, and + according to special generating rules. These strings of 
symbols can be found in many textbooks. They are constructively defined objects, and in the framework of 
constructive mathematics it is quite sensible to consider them without appealing to ideas of some "abstract 
entities." For example, to "get" in the intuitive "generating procedure" to the set having the "ordinal index" 

'~ + w I + 1 + 1 (here 1 denotes the expression w~ it is necessary to "go through" a very complicated 
infinite hierarchy of infinite procedures. At the same time, "ordinal index" itself can be constructed in ten 
steps by the corresponding generating rules. After that other authors suggested "well-defined" systems of 
notation also for "much wider" scales of order-types corresponding to certain well orderings of countable 
sets. Furthermore, a general notion of con~tructible ordinal has been suggested, but the "explanation" of 
the definition appeals to ideas of "freely chosen sequences," which are used in intuitionistic mathematics in 
contrast to mathematical  theories belonging to the constructive direction in mathematics.  

Cantor's system of notation for the ordinals less than c0, as well as the above-mentioned "well-defined" 
extensions of this system of notation admit "rectilinear" versions (using certain additional elementary 
symbols), and it is not difficult to pass from them (using appropriate algorithms which one-to-one map 
the set of all strings of symbols of the given notation onto the set of all natural  numbers, so that zero 
is mapped to zero) to using the natural numbers a~ the constructive ordinals of the scale. Here the term 
natural number is used in the finitary sense. We mean the version where this term is used as common 
name of the words 0, 0 I, 0 I f, 0 I I I, . . . .  The ordering which is introduced for the objects of the 
notation considered can be "carried over" onto the natural numbers, and if the type of ordering is denoted 
by a certain symbol a (which certainly does not belong to the notation under consideration), then the 
corresponding relation of preceding is denoted by <~. For the "well-defined" scales of constructible ordinals 
(in particular, for Cantor's scale) the relation of preceding is expessible in primitive recursive arithmetic 
and hence is algorithmically verifiable. 

Hilbert [1, 2] drew the attention of mathematicians to the merits of constructing elementary arithmetic 
and algebra in such a way that the terms natural number, integral number, rational number, polynomial with 
integral coefficients, etc. denote strings of symbols of special types characterized by generating rules (and 
not some "abstract entities"). The further examples of constructively defined objects (CDO), which drew 
Hilbert's attention, are formulas of logical languages, inferences in logical calculi, etc. Kronecker established 
the possibility of definition of the notion algebraic number which does not use the notion of real number 
and characterizes algebraic numbers as CDO (van der Corput [4] suggested a "more visual" definition). 

After singling out CDO as specific objects of study, Hilbert "outlined" (a sketch of) a specific way of 
considering them, which he called finitary attitude (finitary point of view) [1, 2, 3]. The origins of this 
at t i tude can be found in certain statements of Kronecker. The finitary at t i tude suggests considering CDO 
as visually conceivable ("almost physical") objects by using the idealization which is called the abstraction 
of potential infinity (potential realizability) and not the abstraction of complete (actual) infinity. In so 
doing " . . .  one uses direct contensive arguments, which are performed as mental experiments over visually 
conceivable objects and do not depend on assumptions of axiomatic character." (See [2].) Under such 
an attitude, the problem of explaining mathematical  assertions about CDO turns out to be the problem 
of extrapolation to such "almost physical" objects of those ideas of true judgments that  are formed when the 
"natural structures," which are discretely structured and can be viewed in finite time, are experimentally 
studied on the macroscopic level of their detail and "scope" in space-time; such structures are amenable to 
satisfactory simulation in mathematical  theories with finite sets of objects of study. 

In mathematical  theories of this kind, all statements which are formulated in the languages "usual" for 
such theories admit clear semantics of operational character: the logical signs -1, &:, V, ---~, ~ are understood 
as designations of the corresponding Boolean functions, and formulas of the form VxA and 3xA, where A 
is a quantifier-free formula and admissible values of the variable x are constants c l , . . .  , cN, are interpreted 
as (Algz...  &AN) and (A1 V. . .  V AN) respectively. Here Ai denotes the result of substituting the constant 
ci for all occurences of the variable x in A (1 < i < N).  

When attempting to extrapolate this semantics to arithmetic (to the theory of natural  numbers), crucial 
difficulties arise, and a very important role in realizing their character was played by the scale of constructible 
ordinals, invented by Cantor. First consider statements of the two following kinds $1 and $2 (below, the 
term recursive function is used as a synonym of the term partially recursive function): 

3184 



$1. The recursive arithmetical function f of n variables is total. 
Symbolically this can be written in the form 

V x l  . . .  V x n ! f ( z l , . . .  , z n ) .  

H e r e  X l , . . .  , X n  are the variables for natural numbers and by writing ! f ( x l , . . .  , xn) we mean the process 
of computing the value of f ( x l , . . .  ,xn) terminates. 

$2. The total recursive function r of n variables is a O-function. 
Symbolically this is written as follows: 

VXl . . .  V X n ( r  . . , X n )  = 0 ) .  

It is impossible to consider these statements as claims about some phenomena in the "world of experi- 
mental data," because the ideas of "very large" natural numbers are formed on the basis of "experimenting" 
with strings of symbols which already exist or are immediately created, and using the abstraction of poten- 
tial realizability, analogies, etc. In addition, these ideas actually appeal to hypotheses of global cosmological 
character. For statements of type $1 and 5'2 the finitary att i tude suggests looking for those eztrapolation8 of 
the notion of true statement used in mathematical theories with finite sets of objects, which are character- 
ized by "sufficient conditions of truth" (considered "against the background" of the abstraction of potential 
realizability) such that their fulfillment, when an n-tuple M~,. . .  , Mn of natural numbers is constructed, 
gives a "sufficient reason" for recognizing as true that special case of the considered "generalizing" state- 
ment of type 5'1 or 5'2 which corresponds to the n-tuple constructed, true in the sense which is natural 
(and obvious) for the obtained "particular" statement containing no variables. The difficult component 
of the process is motivation of "acceptability" of the extrapolation suggested. When such extrapolation 
is sufficiently clearly characterized, it can be given the status of partial semantics open for "weakenings," 
and in this situation the notion of true statement is naturally identified with that of statement having 
justification under given particular semantics. The "range of types" of the semantics which are actually 
used in mathematics is very wide, and the above-mentioned Cantor scale of ordinals made a fundamental  
contribution to realizing the complexity of the resulting situation. 

If f is a concrete primitive recursive function, then the particular semantics under which the justification 
of statement 5'1 can be "obtained" is based on the "usual" arithmetical induction (corresponding to the 
ordering of the natural numbers modeled on the ordinal co). 

Now let us consider a more complicated situation. Let N be a natural number, g a primitive recursive 
function of two variables, c~ a certain type of well-ordering of natural numbers such that the relation of 
preceding <~ is "well defined" (e.g., c~ = G0), and 7 a primitive recursive function such that 3'(0) = 0 and 
7(x I) <~ x I for every natural x. Let f be the recursive function characterized by the following conditional 
equalities (giving an example of defining a function by ordinal recursion under the ordering of natural 
numbers by the ordering <~): 

f (O)~-N,  f ( x l ) ~ - g ( x l , f ( 7 ( x l ) ) ) .  

Under the standard procedure of computing the value of f on the given positive number M0, the expres- 
sions f(7(M0)),  f(7(M1)), f(7(M2)),  . . . ,  where Mi+l = 7(Mi), occur "inside" the consecutively obtained 
expressions, and hence Mi+l <~ Mi for i _> 0. The process terminates if at some step the expression f(0)  
is obtained, and it does not if "in the process of transfinite descent" from the number M0 via the function 
7 zero is not obtained. Thus, a substantive justification of totality of f includes a substantive justification 
of the following claim: 

$3. Whatever the natural number x is, in the process of "transfinite descent from it" via the function 7 
zero i~ obtained. 
A similar situation arises when considering statements of the form $2. Let us assume (for example) that  

r is a primitive recursive function of one variable and the symbol 7 has the previous meaning. The rule of 
inference 

r  = 0,  , ) )  = 0 - ,  r  ,) = 0 

= o ( * )  

3185 



is the rule of transfinite induction under the ordering of natural  numbers modeled on a with descent function 
7- The justification of its "acceptability" includes the statement Sa. 

GSdel [5] says the following about the justification of the latter statement: " . . .  surely, the justification 
(die Giiltigkeit) of inference by reduction to e0 cannot be made intuitively obvious, which is possible, say, 
for w 2. More precisely, this means that we already cannot consider all different structural possibilities, 
which exist for decreasing sequences, and thus have no possibility to verify visually that  every such se- 
quence necessarily terminates . . . .  by gradually passing from smaller to larger ordinal numbers, such visual 
knowledge cannot be realized, and only abstract perception using notions of higher levels is possible." 

The idea of "obviousness" of statement $3 in the case where a = t0 (and in general for any constructible 
ordinal o~) can arise due to the fact that  in the axiomatical set theory one can prove that  the relation <~ 
is a well-ordering in the sense of set theory. Nevertheless, in the analysis of foundations of arithmetic the 
possibility of finitary (axiom-less, "contensive") justification of $3 is discussed, and in such formulation of 
the question the situation turns out to be very complicated. 

The statement on the consistency of Peano's arithmetic (and any other mathematical  theory having the 
form of a calculus in the modern sense of the word) can be expressed by a formula looking like Vx(r --- 0), 
where r is a certain primitive recursive function (depending on the specific calculus). The first justification 
of consistency of Peano's arithmetic was suggested by G. Gentzen [6, 7]. First of all, it contains an indication 
to the particular semantics for statements of type $2 under which the considered statement Vx(r = 0) 
admits a justification. In this particular semantics, inference (*) for ~ = t0 is considered as an acceptable 
tool of extrapolation of ideas of true statements. To justify the acceptability, Gentzen proposes an argument 
using ideas of "attainability" of ordinals, but these ideas go far outside the limits of ideas which can be 
explained by appealing to the "usual" arithmetical induction. Gentzen notes in [7]: "However, I cannot 
indicate the "place" where . . .  the induction which is undoubtedly acceptable from the constructive point 
of view ends and doubtful transfinite induction begins." 

Already before Gentzen's above-mentioned paper, a statement of the type under consideration was 
constructed which admits no justification in the framework of semantics with"usual" induction, but  at the 
same time there is no necessity to appeal to transfinite induction. Here we mean G6del's famous example of 
a statement such that the translations of statements G and -,G into arithmetical language are not deducible 
in this axiomatic theory, but G itself has a eontensive justification of special type, based on understanding 
the "specific meaning" of the statement. 

Thus, GSdel and Gentzen actually ascertain the impossibility of any "full and final" refinement of ideas, 
suggested by concrete examples, concerning possible extrapolations of the notion of true statement, used 
in theories with finite sets of objects, to statements $1 and $2. In this sense, the problem of formulating 
a "precise" semantics for such statements can be characterized as a dead end. This stimulates choosing 
particular semantics for mentioned statements (and for the statements which can be reduced to them by 
using clear semantic agreements) and "working" with statements which are true in the semantics chosen. In 
the framework of this approach one finds useful (as a suitable base for developing various theories of finitary 
mathematics) primitive reeursive functions, the quantifier-free language based on them (it uses the relation 
= and Boolean functions), and the apparatus of logical inference compatible with "usual" arithmetical 
induction. This entire complex acquired the name primitive recursive arithmetic (PRA). When using a 
formula of PRA as a statement, it is implied that in front of the whole formula there are "invisible" 
universal quantifiers connecting all variables occuring in the formula. 

All mentioned above stimulates the discussion of one more question concerning the "intuitive base" of 
Cantor's set theory. We restrict ourselves by considering the set af all natural numbers and its subsets 
which admit a definition of the form 

m E M ~ Vx(r x) = 0), (**) 

where r is a primitive recursive function of two variables. The condition written to the right of +-* is 
"expressible" in the language of set theory. Subsequently substituting the numbers 0, 0 I, 0 I I, 0 I I I, 
. . .  for the variable m in this condition, we will obtain statements for which the question of truthfulness 
becomes sensible only after fixing a specific particular semantics (the exceptions are the cases where the 
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mentioned condition can be checked algorithmicaily). When changing the values of the variable m one may 
want to vary the particular semantics. Thus, even for the sets characterized by definitions of type (**), 
the "contensive explanation" of the relation E turns out to be "vague." At the same time, "the set of all 
subsets of the set of positive integers" is considered in the "intuitive base" of set theory as a "well-defined" 
object. The situation gives an additional reason for a "cautious" atti tude to this base. 

w 

The definition of the notion of real number suggested by Cantor and (independently) by Ch. Mer~ is 
based on a certain construction. Here we use the term "construction" not in the sense in which it is used 
in constructive mathematics, but in a wider sense. The discussed definition appeals to "Mmost physical" 
ideas of sequences of rational numbers as of processes of consequently constructing some objects, and from 
this point of view it is "intuitively constructive." "Algorithmization" of this construction supplemented 
with appropriete modifications and generalizations, opened the way to develop constructive and, what is 
more, finitary (in the sense of Hilbert) versions of mathematical analysis. 

Finitary versions of mathematical theories (and in some respects also versions that are constructive in the 
wide sense) yield a "positive" continuation of critical analysis of Cantor's set theory: they are suggested as 
Mternatives to the versions using set theory. Such alternatives give certain answers to the question: whether 
construction of mathematical theories without using the set-theoretical "way of thinking" is possible, and 
what are the merits of such a construction. A historical paradox is that Cantor was the author of the 
idea which (combined with other ideas) turned out to be a suitable tool for creating Mtenatives to the 
"mathematical world-outlook" which is his child. 

Defining real numbers as fundamental sequences of rationals (considered "against the background" of 
a certain equality relation), suggested by Cantor and Mere, competed with the definitions proposed by 
Weierstrass and Dedekind. However, it was their definition which was very fruitfully generalized to the 
notion of a fundamental sequence of points of a given metric space, proposed by Hausdorff. The version of 
this definition convenient for "constructivization" has the following form: 

Let (M,p)  be a metric space (with support M and metric function p) and let F be a map of type 
N ~ M.  We say that F is a fundamental sequence of points of this space if there exists a function h 
of type IN ~ N which is a regulator of convergence in itself for the sequence F of points, i.e., for every 
three natural numbers i, k, l the condition 

(k > h(i) ~ l > h(i)) -~ p(F(k),F(1)) < 2 -i ( . .  ,) 

is fulfilled. 
If a fundamental sequence F is "given" but its convergence regulator is not provided, then there arises a 

"creative" problem of finding, say, a natural number N such that for every k the distance from F(0) to F(k) 
is less than N. Such insufficiency of information contained in the fundamental sequence F itself (which 
is especially "keenly" felt in the system of notions of constructive mathematics) stimulates preferring the 
completions of metric spaces, consisting of duplexes (i.e., the pairs of the form (F, h / satisfying condition 
(* * *) for any i, k, l) to those consisting of fundamental sequences of points. 

An analog of such completion in the system of notion of constructive mathematical analysis results from 
restricting the "field of vision" by constructible metric spaces, algorithmically defined sequences of points 
and algorithmically defined convergence regulators (see, for example, [9; w However, the criticism of 
the "intuitive base" of set theory, discussed in w can be extended to the "intuitive base" of traditional 
mathematical analysis: the statements formulated in the latter go far from the limits of the language of 
finitary mathematics and hence suggest guessing difficult "semantic riddles." In particular, one of the 
central notions, that of constructible function on constructible continuum (see [10]), is characterized by 
a condition of the form Vx"~Vy-,Vz(~(c, x, y, z) = 0), where )~ is a primitive recursive function, c is the 
arithmetical code of the constructible function under consideration, and x, y, z are variables for natural 
numbers. This is the arithmetical version of the condition, resulting from suitable coding by naturals of 
constructible objects of different types, occuring in the definition of the notion. 

It is said in monograph [2] that in mathematical analysis " . . .  nonfinitary ways of creating notions 
and nonfinitary proofs are an integral part of the theory." However, when discussing the poroblem of 
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"finitarization" of mathematical analysis we mean not one or another version of "retelling" definitions and 
assertions of the standard mathematical analysis in the language acceptable in finitary mathematics (such 
attempts are hopeless!), but using the means of that language for construction of a system of notions 
which may differ very much from the traditional one but gives a possibility to develop the technical part 
of mathematical analysis to the extent which is "practically sufficient" for its traditional applications and 
(which is desirable) in a form giving some additional possibilities (for example, a possibility to clearly "see" 
the types of constructions occuring when the solution of the considered problem is constructed, and the 
types of initial data for such constructions). From this point of view, we can certify that Hilbert's opinion 
that mathematical analysis cannot be "finitarized" has been disproved in the course of further development 
of mathematics. 

The process of "finitarization" was started in works of R. L. Goodstein [11, 12], where he introduces 
and studies approximatively defined function~ of some types, which are finitary analogs of continuous (or 
continiously differentiable) functions on a closed rational segment. These analogs are remarkable in that they 
require no preliminary introduction of the notion of a real number in any form. The functions introduced 
by Goodstein are (in essence) objects of a special type corresponding to the following definition by Euler: 
"A function of varying quantity is an analytic expression composed in some way from the varying quantity 
and numbers or constant quantities." The system of notions suggested by Goodstein turned out not to be 
sufficiently suitable for extending it to various functional spaces, and for this reason some modifications 
and extrapolations of the system were proposed. 

The choice of basic notions for satisfactory construction of finitary versions of several areas in mathe- 
matical analysis was prepared (first of all) by specific theorems from different divisions of mathematical 
analysis, having the following form: "In the metric space (.M, p) there exists a countable everywhere dense 
set." Theorems of this kind are usually considered as establishment of a very essential property of the 
considered space, providing a possibility (if (.M, p) is a complete space) to introduce into consideration the 
"isometric double" of the given space, obtained as the result of completion of a certain countable metric 
space. However, in traditional mathematical analysis "it is not customary" to follow the example of Cantor 
and Mer~ and use "the completion procedure" as a tool systematically applied for defining mathematical 
objects of "complex" type (in particular, "complex" elements of functional spaces) based on objects of 
simple types. But precisely following this example opens the way to overcoming the "taboo" put by Hilbert 
onto creation of finitary versions of different areas of mathematical analysis. 

In many cases, traditional proofs of specific theorems on existence of countable everywhere dense subsets 
in metric spaces are (or can easily be made) proofs of some detailed versions of the considered theorems, 
which establish a series of essential features of the countable everywhere dense subsets presented in the 
proofs and have the following form: 

"In the metric space (A,I,p) there exists an everywhere dense subset T such that (1) its elements are 
individually given as constructively defined objects of a certain specific type (we call them objects of 
type r), and each object of type ~- "defines" a certain element of the set T, (2) the objects of type r 
constitute a decidable and hence enumerable set (we carl assume essentially without loss of generality 
that the objects of type r are words in a suitable alphabet and that we are dealing with decidability of 
the set of objects of type ~- as the subset of the set of all possible words in the alphabet), (3) the metric 
function p on the set T considered as the set of objects of type r is given as an algorithm, and (4) if X 
and Y are objects of type r, then p(X, Y)  is a rational (in the second version, algebraic) number." 
In specific functional spaces, the elements of the chosen countable everywhere dense subset are (for 

example) polynomials with rational coefficients, polygonal or step-functions with rational coordinates of 
"vertices." In the metric space constituted by the subsets of the real line which are Lebesgue measurable 
and have finite measure they are finite collections of intervals with rational ends, and in the space of 
completely continious operators defined on the space of functions of square integrable functions on the 
interval [0,1] they are finite-dimensional operators given as square matrices (of arbitrary size) with rational 
(algebraic) elements. 

Any particular theorem of the above-described kind "hints" at a specific point of view at the metric 
space under consideration: the elements of (Ad,p) are "almost CDO of type v." This point of view is 
a guiding line when defining finitary analogs of many specific metric spaces playing paramount roles are 
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in mathematical  analysis and its applications (including the analogs of specific functional spaces, spaces 
of operators of certain types "acting" in specific functional spaces, specific metric spaces consisting of 
objects of geometric character, etc,): Here we mean the definitions based on the idea of completion of a 
suitable "elementary" metric space consisting of CD0 of a certain type r and satisfying conditions (1)-(4). 
Certainly, the objects added to the initial "elementary" space acquire definitions in the framework of finitary 
mathematics, and a finitary analog of one or another metric space (3d, p} from the arsenal of traditional 
mathematical  analyses, which is created in this way, can "exist independently" without appealing even to 
the idea of the definition used for initial characterization of elements of Ad (for example, for the space 
of Lebesgue integrable functions on the interval [0, 1] this is the idea of "a Lebesgue measurable function 
defined on all real numbers from the interval [0, 1]." 

The constructive direction of mathematics contains mathematical theories of finitary type (characterized 
by very "severe" requirements to "clarification" of formulated statements and definitions), as well as the 
theories belonging to "wide" constructivism. The latter contain not only the statements which are explained 
on the level of requirements of the finitary attitude (which perhaps is more widely understood than originally 
conceived), but also statements on CDO with complex combinations of quantifiers and propositional logical 
connectives, causing semantic problems (here in general, statements of types $1 and $2 are understood 
as "immediately clear"). Theories of finitary type are also theories of the second type since the wide 
"constructivism" has no grudges of "disproving" character to the theories of finitary direction. 

In the version of mathematical analysis developed in the framework of "wide constructivism" (see [10, 
13]), the objects added to the "elementary" metric space under its constructive completion are duplexes 
of the form (F, h}, where F and h are algorithms which are total in a "immediately clear" sense and 
satisfy "immediately clear" quantifier-free condition (* �9 ,). In some cases only the duplexes satisfying an 
appropriate special condition are added (see [15]). 

The passage from the described version of completion of the "elementary" space to finitary completion 
requires preliminary specification of some particular finitary mathematics taken as the base for construction 
of specific mathematical theories. This step was outlined in w some details can be found in [16]. For 
technical reasons it is appropriate to code by natural numbers the CDO of different types occuring in the 
considered theory, and to use the arithmetical recursive functions as algorithms of standard type. By this 
approach the above-mentioned PRA turns out to be a convenient (and "practicully sufficient" in a wide 
range of cases) particular finitary arithmetic (see [2], [17], or [18]). 

By finitary completion of "elementary" space, the objects added to it are duplexes of the form (F*, h} such 
that (a) F* and h are arithmetical recursive functions from that class of re~ursive functions whose totality 
can be justified under the semantics of chosen particular finitary arithmetic, and (b) using the technique 
of inferences of the chosen particular finitary arithmetic one can prove the statement expressed by the 
quantifier-free arithmetical formula resulting from formula (* * *) under its natural (w.r.t. the coding of 
CDO) "translation" into the quantifier arithmetical language (in the process of "translation," F is replaced 
with F*, which corresponds to replacing a sequence of points of the "elementary" space with the sequence 
of the arithmetical codes). 

There are cases when it is necessary to change the mentioned version of finitary completion of "elemen- 
tary" spaces in some detail (for example to satisfy condition (4), sometimes it is appropriate to convert the 
metric space into a countably metric space equivalent to it in the sense of uniform topology, etc.). To ob- 
tain "finitary expressions" for some notions and theories of the traditional version of mathematical analysis 
which are worthy of notice, "quasifundamental" sequences of points of metric spaces are introduced (this 
idea goes back to a property of monotone and bounded sequences of rational numbers, which was noted by 
E. A. Bishop [14; p. 109]; the idea was worked out in [19]). 

All of the preceding concerned finitary analogs of separable metric spaces. The space of generalized 
functions in the sense of Sobolev-Schwartz yields an example of nonseparable topological space for which, 
already in the framework of set-theoretical mathematics, the basis idea of Cantor and Mer6 directed the 
way to creating a version which is much more "visible" than the original one. In [20, 21] this idea has been 
subjected to certain changes which allowed one to adjust it to the radically new situation and to obtain 
an approximative version of notion of generalized function. Now it is not difficult to pass from this version 
to a finitary analog of notion of generalized function (see [22]), where the original "structural material" is 
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polynomials with rational coefficients. 
Finitary versions of different divisions of mathematical analysis (and other areas of mathematics) provide 

mathematical applications with means for constructing theoretical models of various fragments of the "world 
of experimental data," which have "purely informational character." By this we mean the models in which 
the implied objects and their interrelations are individually presented in sufficient detail and with satisfactory 
accurateness by "concrete pieces of information" having the form of discrete symbolic constructions. These 
"concrete pieces of information" are considered with constant regard for this feature of theirs and with 
using no idealizations without which we are able to do. We also do not "surround" them by any "ideal 
objects" having no individual definitions via symbolic constructions. Such purpose forms the finitary type of 
mathematical thinking, whose highlights were outlined by Kronecker and Hilbert. In certain respects, this 
gives an alternative to the set-theoretical type of mathematical thinking, introduced into the mathematical 
use by Cantor. However, the power of mathematical intuition characteristic for Cantor has manifested in 
that his summary contribution to science was of much help for beginning and development of a promising 
alternative to the "mathematical world-outlook" chosen by him. 

w 

Cantor invented the diagonal construction, a method of "obtaining" from any sequence of reals a real 
which is different from all members of the sequence. This method becomes an algorithm in an obvious 
way if the members of the sequence are real duplexes and the sequence represents an algorithm. Various 
modifications, analogs, and generalizations of the diagonal construction in the framework of set-theoretical 
mathematics have proven to be very productive tools, especially in those cases when a classification of 
certain objects is considered and it is required to "obtain" an object of one or another type, which does not 
occur in the classification. In constructive mathematics, the role of the diagonal construction is still more 
significant, since it interacts with other algorithmic constructions and provides the means for discovering 
numerous "deeply hidden" properties of algorithms and enumerable sets. In particular, one of the most 
profound theorems of the theory of algorithms, the theorem on the fixed point of a recursive operator, which 
was stated and proved by S. Kleene, "comes back" to the idea of Cantor's diagonal construction. 

Constructions of "diagonal type" are widely used in the finitary version of mathematical analysis. Let 
me mention only one example. 

In mathematical applications, experimentally interpreted mathematical objects often turn out to be 
interval functions "originating" from functions of real variable and corresponding to these or those ideas 
of the "approximately defined" values of the considered functions at the "approximately defined" values 
of variable. In relation to interval functions, the initial functions play the role of "tools" for the indirect 
representation. In the finitary version of mathematical analysis, interval functions are first defined for the 
elements of the "elementary" functional space whose finitary completion yields the space of interest for 
us (w For example, if the polynomials with rational coefficient are considered as elements of the space 
of continious (or continiously differentiable) functions on the interval [0, 1], then the "suitable" interval 
function is (for example) the function under which the triple (P, o, n), where P is a polynomial with rational 
coefficients, a is a rational interval contained and relatively open in [0, 1], and n is a natural number, is 
assigned the rational interval (A, B) where A (resp., B) is the approximation (obtained by a fixed method) 
of the algebraic numbers min P (resp., max P)  from below (resp., from above) by rational numbers with an 

accuracy of 2-" .  (Introduction of n as an additional input data is convenient from the technical point of 
view.) On the other hand, if the mentioned polynomials are considered as elements of the space of square 
integrable functions on [0, 1], then the "suitable" interval function will be the function under which the 
same input data are assigned the interval (C - 2 -" ,  C + 2 -'~) where C is the mean integral value of the 
polynomial P on 0. If W is the duplex added to the "elementary" space under its finitary completion in 
the first (second) case, then extrapolation of the first (second) interval function onto the triple (W, 0, n) is 
performed by means of an appropriate construction of "diagonal type." 

Translated by N. Yu. Netsvetaev. 

3190 



R E F E R E N C E S  

1. D. Hilbert, "/)ber das Unendliche," Math. Ann., 95, 161-190 (1926). 
2. D. Hilbert and P. Bernays, Grundlagen der Mathematik, I (2 Aufl.), Springer-Verlag (1968). 
3. D. Hilbert and P. Bernays, Grundlagen der Mathematik, II (2 Aufl.), Springer-Verlag (1970). 
4. J. G. Corput van der, "On the fundamental theorem of algebra. I," Indagat. Math., 8, 430-440 (1946). 
5. K. GSdel, "Uber eine bisher noch nicht beniitzte Erweiterung des finiten Standpunktes," Dialectica, 12, 

280-287 (1958). 
6. G. Gentzen, "Die Widerspruchsfreiheit der reinen Zahlentheorie," Math. Ann., 112,493-565 (1936). 
7. G. Gentzen, "Neue Fassung der Widerspruchsfreiheitsbeweises ffir die reine Zahlentheorie," Forch. Logik 

u. Grundleg. Exak. Wiss., 4, 19-44 (1938). 
8. Mathematical Theory of Logical Inference [in Russian], Collection of translations, ed. A. V. Idel'son and 

G. E. Mints, Moscow (1967). 
9. N. A. Shanin, "Constructible real numbers and constructible functional spaces," Trudy Mat. Inst. Akad. 

Nauk SSSR, 67, 15-294 (1962), English translation: Transl. Math. Monographs, 21, Am. Math. Soc., 
Providence (1968). 

10. A. A. Markov, "On constructible functions," Trudy Mat. Inst. Akad. Nauk SSSR, 52, 315-348 (1958). 
11. R. L. Goodstein, "Function theory in an axiom-free equation calculus," Proc. London Math. Soc., Set. 

2, 48,401-434 (1945). 
12. R. L. Goodstein, Recursive Analysis, North-Holland, Amsterdam (1961). 
13. "Problems of constructive direction in mathematics. 2," Trudy Mat. Inst. Akad. Nauk SSSR, 67 (1962). 
14. E. Bishop, Foundations of Constructive Analysis, New York (1967). 
15. E. Ya. Dantsin, "On approximative version of notion of constructible analytical fuction," Zap. Nauchn. 

Semin. LOMI, 60, 49-58 (1976). 
16. N. A. Shanin, "On finitary development of mathematical analysis on the base of Euler's notion of func- 

tion," in: 8 Intern. Cong. of Logic, Method. and Philos. of Science, Sect. 1. Abstracts, Vol. 1, Moscow 
(1987), pp. 60-63. 

17. R. L. Goodstein, Recursive Number Theory, North-Holland, Amsterdam (1957). 
18. N. A. Shanin, "On recursive mathematical analysis and R. L. Goodstein's calculus of arithmetical equal- 

ities," in: R. L. Goodstein, Recursive Analysis [Russian translation], Moscow (1970), pp. 7-76. 
19. V. A. Lifshits, "On the study of constructible functions by the method of filling," gap. Nauchn. Semin. 

LOMI, 20, 67-79 (1971). 
20. J. Mikusinski and R. Sikorski, The Elementary Theory of Distributions, I, II, Warsaw (1957, 1961). 
21. J. Korevaar, "Distributions defined from the point of view of applied mathematics," Indagat. Math., 17, 

368-389 (1955). 
22. N. A. Shanin, "A finitary version of notion of generalized function," in: 9th All- Union Conf. Math. Logic. 

Abstracts of Reports [in Russian], Leningrad (1988), pp. 179. 

3191 


