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Abstract

An approach to constructing counterparts of some #elds of mathematical analysis in the frames
of Pilbert’s “#nitary standpoint” is sketched in this paper. This approach is based on certain re-
sults of functional spaces theory development in classical mathematics. c© 2002 Elsevier Science
B.V. All rights reserved.
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1. On basic ideas of �nitary mathematics

1.1. A prevailing opinion among mathematicians at present is that Cantor’s set theory
(CST) in its modern form (assuming in particular modern construction of mathematical
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Some additions, details and notes are placed in the appendices at the end of the paper. References to the
literature are given in square brackets.
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logic) is able to play a role of an intuitively acceptable base of various areas of
mathematics, among them that of the mathematical analysis (MA).

On the other hand, basic ideas of the set theory long ago became the objects of
a critical analysis. Essentially, this was an analysis of idealizations participating in
forming an intuitive foundation of set theory (in the #rst place the idea of “in#nite
totalities of simultaneously existing objects”) from the viewpoint of the ‘level of agree-
ment’ of accepted idealizations with the results of experimental investigation of nature
on macro-, micro- and mega-levels of detalization and of ‘extension’ in space and
time.

The origins of a critical attitude towards the intuitive basis of CST can be found
in the mode of thought of some ancient thinkers, who did not accept the idea of a
“#nished in#nity”. (Sometimes, in Russian language literature, one uses a term “actual
in#nity”, but it is less apt.) The development of such views was helped by the absence
among the results of an ‘experimental investigation’ of nature (at least at the level
of detalization and extension in time-space available at that time) any data witnessing
the existence in nature of at least one ‘realization’ of the idea of in0nite totalities of
simultaneously existing objects of any distinctly characterized type. A contribution was
made also by the appearance of paradoxes ‘at the level of pure thought’. In particular,
it was diFcult to assimilate the idea that a line segment of a positive length ‘consists’
of separate points. At the same time ‘intuitive motivations’ of some arguments used,
for example, in proofs of geometric theorems appeal in fact to ‘forbidden’ ideas (in
particular, via application of the law of excluded middle).

Refuting the idea of “#nished in#nity” ancient mathematicians and philosophers rec-
ognized as admissible the ideas of a “potential in#nity”. The latter arises from consid-
ering some processes ‘developing in time’ as well as some procedures. For example, in
the #rst book of Euclid’s classical “Elements” the second postulate is stated as follows:
“: : :a restricted straight line can be extended along the straight lines”.

1.2. An even more complicated situation arose at the time of formation of the diGer-
ential and integral calculus. In [7, Introduction] it was characterized as follows:

“Logically precise reasoning, starting from clear de#nitions and noncontradictory,
‘evident’ axioms, seemed immaterial to the new pioneers of mathematical science. In a
veritable orgy of intuitive guesswork, of cogent reasoning interwoven with nonsensical
mysticism, with a blind con0dence in the superhuman power of formal procedure
(the stress is mine, N.Sh.), they conquered a mathematical world of immense riches.
Gradually the ecstasy of progress gave way to a spirit of critical self-control. In the
nineteenth century the immanent need for consolidation and the desire for more security
in the extension of higher learning 〈: : :〉 led back to a revision of the foundations of
the new mathematics”.

The revision of foundations started by Bolzano, Cauchy and Weierstrass prompted a
search for basic ideas (in the #rst place in mathematical analysis) which were able to
satisfy to some degree a need for ‘clarity’. The system of ideas suggested by Cantor and
using the idea of “in#nite totalities of simultaneously existing objects” as an intuitive
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base attracted the attention of many mathematicians as one of the versions claiming
to satisfy such a need. The need for ‘clarity’ was so urgent that many mathematicians
agreed to disregard that this version actually rejects the results of the deep analysis of
the problem performed by ancient thinkers, and suggests the formation of basic ideas
starting from very idealized and super#cial analogies with ideas which are formed
when one considers ‘visualizable’ #nite totalities of real objects and operators with
such totalities. (Appendix A.)

1.3. Already at the very beginning of dissemination of CST to new areas of mathematics
the question of ‘a level of fantasy’ of some abstractions used in CST, the question of
the ‘level of imagination arbitrariness’ acceptable when they are formed, again became
a subject of discussion. (Appendix B.)

This discussion which began at the end of the XIX century and the beginning of
the XX century essentially diGered from the discussions of the #nished in#nity in
the previous ages: ‘main characters’ of the new discussions tried to complement their
criticism by search and proposals of alternatives (in the #rst place the alternative
foundations of mathematical analysis). Participants of such a two-sided activity were
(in the #rst place) outstanding mathematicians of the end of the XIX century and
the #rst half of the XX century, L. Kronecker, A. Poincare, L.E.J. Brower, H. Weyl,
D. Hilbert (at the middle of the XX century this list was continued by A.A. Markov)
who fruitfully worked also on problems of theoretical mechanics and physics and in-
evitably approached an analysis of foundations of mathematics with ‘impressions’ of
the participants of the process of cognition of nature.

The general direction of the search for alternatives was suggested by the fact that
typical problems of applications of mathematics have both as data and potential so-
lutions some ‘concrete informations’ about some objects (in the wide sense) or some
connections between them given as combinations of signs of de#nite types (for example
as words in a suitable alphabet or as discrete ‘sign constructions’ admitting ‘individual
speci#cation’ by words in a suitable alphabet). In the case of varying initial data of
this character one usually looks for an algorithm transforming initial data into required
solutions.

Intuitively perceived optional character of ‘far-reaching’ idealizations of CST, in the
problems mentioned above directed the thought to a search of the versions of various
mathematical theories where the objects are individually speci#ed by sign constructions
of a suitable type. The latter are ‘almost physical’ objects, and in their theoretical
consideration it is expedient to avoid ‘far-reaching’ idealizations.

Both purely theoretical considerations arising in critical analysis of intuitive foun-
dations of mathematics and the above-mentioned stimuli arising immediately from ap-
plications of mathematics created preconditions for the rise and development of the
constructive direction in mathematics (constructive mathematics). (Appendix C.)

A general feature of speci#c theories of constructive mathematics is the fact that
all objects (of all types) considered in these theories are constructively de#ned ob-
jects. There are, however, considerable (and even principal) diGerences between various
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theories in the ‘level of demands’ to semantic clarity (to de0niteness of meaning) of
statements and de#nitions.

1.4. Even mathematical theories having #nite individuum domains (such theories are
included in constructive mathematics in an obvious way) rely on mental considerations
of ‘very extensive’ #nite totalities on extrapolations and idealizations whose relations
with results of physics and cosmology are far from simple. An activity in a ‘world of
experimental data’ on a macroscopic level of detalization and ‘embrace’, in the space–
time of fragments of this ‘world’, together with the perception of various mentally
selected ‘actually visualizable’ 0nite totalities consisting of simultaneously existing
objects ‘practically unchanged in time’, as well as various operations on such totalities
leaving elements of these totalities practically unchanged, form the basis of idealized
extrapolations ‘by an analogy’ to ideas of arbitrary (including ‘very extensive’) #nite
totalities.

These extrapolations in fact use a number of ideas which are drastically diGerent
from modern ideas of physics and cosmology (in particular the idea of simultaneity
of two spatially remote events which are elements of a #nite set under consideration
is borrowed from Newtonian mechanics).

Situations in which a cognizing subject arrives as a result of mental separation
(maybe using idealized extrapolations mentioned above) of a #nite family of #nite
individuum domains and a #nite family of operationally characterized procedures (the
term “procedure” is used here and below as a common name for objects operations
and predicates) which are totally de#ned for all data admissible under given types of
the procedures, are referred to as completely 0nitary situations. Theoretical models
obtained by signi#cant modeling of the completely #nitary situations are referred to as
completely 0nitary mathematical theories.

Such theories usually use traditional #rst order logical language, propositional logical
signs, ¬;&;∨;→;↔ are understood as designations of suitable Boolean operations, and
every formula containing quanti#ers (signs ∀ and ∃) is ‘deciphered’ as a quanti#er-free
formula using the following agreements: every formula of the form ∀xA (of the ∃xA)
where x is an individuum variable and A is a quanti#er free formula, is ‘deciphered’
as a formula (A1&A2& · · ·&Ak) [respectively, as a formula (A1 ∨A2 ∨· · ·∨Ak)], where
Ai (1 6 i 6 k) denotes a result of substituting in A for the variable x the individuum
constant having the number i in the list of all admissible values of the variable x.

In totally #nitary theories every closed formula (every sentence) can be perceived as
a coded description of a de#nite (generally multi-step) process or a certain experiment,
which is called in the logical literature the process of determining the logical value
of a sentence. Recursive de#nitions of the logical value of sentences frequently stated
in logical literature ‘hint’ at methods of development of the deciphering processes, but
at the same time they ‘shade’ a possible immediate description. An immediate and
clear description of the procedure takes the form of successive advancement through
the syntactic analysis tree of a given sentence from the ‘leaves’ of the tree to its ‘root’
performing the basic procedures in order. (It is understood that the sentence considered
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is preliminarily ‘deciphered’ into a quanti#er-free formula.) When the result of such a
process is a standard ‘recognition symbol’ in the form of the propositional constant t
(or just the word “yes” in everyday version), the sentence considered is called a true
sentence. Hence for completely #nitary theories with ‘not too extensive’ individual
domains (such that there are reasons to stay at the macroscopic level of consideration
of the whole ‘picture’) it is possible to achieve relative clarity in making precise
‘everyday’ intuitive ideas of true sentences [46].

1.5. Transcending the framework of completely #nitary mathematical theories but re-
maining in the framework of theories which study only constructively de#nable objects
and admit some additional, but ‘relatively careful’ extrapolations and idealizations, we
pass to the ‘level’ of the theories of 0nitary mathematics. ‘Relative care’ means at
least rejection of ideas of “#nished in#nity” and admission of only logico-mathematical
languages where sentences admit explanation by ‘relatively visualizable’ extrapolation
of semantical ideas accepted in completely #nitary mathematical theories.

D. Hilbert [18] pointed out the advantages of such construction of arithmetics and
algebra where terms like “a natural number”, “an integer”, “a rational number”, “a
polynomial with integer coeFcients” are de#ned as special strings of signs character-
ized by generation rules (as diGerent from ‘abstract entities’ usually understood when
corresponding areas of mathematics are build up axiomatically or set-theoretically).

The term “natural number” is understood below as a general name for words 0; 0|;
0||; 0|||; : : :which are characterized by ‘natural’ generating rules (and as abbreviations
of these words we use corresponding decimal numerals). Integers and rational num-
bers are also de#ned by ‘natural’ generating rules using signs 0; |;−; =. (For rationals
one introduces a special equality relation diGerent from the graphical equality, and all
considerations use this speci#c equality relation as a ‘background’.) (Appendix D.)

Further examples of constructively de0nable objects (CDO) which attracted Hilbert’s
attention were formulas of logical languages, derivations in logical calculi, etc.

L. Kronecker showed that it is possible to de#ne the notion of algebraic number in
such a way, that algebraic numbers are characterized as CDO and a notion of a real
number is not used at all. A ‘more visualizable’ de#nition is given in [6]. (Appendix E.)

After Hilbert distinguished CDO as speci#c objects under consideration, he sketched
a speci#c way to consider them, which he called a 0nitary position (a 0nitary stand-
point). One can trace some sources of this position to some statements by Kronecker.
The #nitary standpoint considers CDO as ‘visualizable objects’ [18] using an ideal-
ization called abstraction of potential in#nity (or potential realizability) but without
abstraction of completed (actual) in#nity. Here one “: : :uses direct contentual argu-
ments, performed as thought experiments over visualizable objects and not depending
on assumptions of an axiomatic nature”. (Appendix F.)

The latter formulation is a restriction on admissible types of mathematical arguments
which is very ‘strict’ from one side but ‘fuzzy’ from the other side. It has ‘approxi-
mately orienting’ character and implicitly includes restrictions of used language con-
structs. Speci#c examples considered by Hilbert and some of his formulations allow
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to make precise (preserving Hilbert’s main idea) the type of judgments which can be
considered as meaningful from the #nitary point of view. In the number theory these
are judgments of the form

S0 ∃+y1 : : :∃+ym∀x1 : : :∀xnR (m¿ 0; n¿ 0);

where ∃+ is the constructive existential quanti#er (quanti#er of potential realizabil-
ity) explained by a word combination “it is possible to construct” (or “potentially
realizable”), R is an algorithmically testable (decidable) (m + n)-ary condition and
y1; : : : ; ym; x1; : : : ; xn are variables for natural numbers. Outside the theory of natural
numbers these are judgments which can be ‘translated’ into judgments of the above
form by arithmetization, i.e. by an eGective encoding into natural numbers of objects
of all types in the theory considered. (Appendix G.)

Judgments of the form S0 belong to such a ‘narrow’ type of judgments actually
employed in mathematics (in particular in mathematical analysis) that at #rst sight one
cannot hope to express in this language ‘in a practically satisfactory way’ even ‘the
most applicable’ parts of MA.

Finitary standpoint in the monograph [19] (and before that in [18]) was demonstrated
#rst using the example of elementary arithmetic, which includes constructively de#ned
primitive recursive functions (PRF), and of elementary algebra. In the further parts
of [19] it was tested on the material of language construction of logical and logico-
mathematical languages and derivations in logical and logico-mathematical calculi. This
standpoint was not proposed by Hilbert as a recommended methodology for the whole
of mathematics. Moreover, after mentioning the possibility to construct foundations of
the theory of algebraic numbers in the framework of #nitary standpoint discovered by
L. Kronecker, Hilbert and Bernays claim that in MA “: : :non-#nitary ways of de#nition
and non-#nitary proofs are form an indispensable part of the methods of a theory”.

Thus Hilbert, although he proposed #nitary standpoint as a suitable foundation for
investigation of properties of logical and logico-mathematical calculi (in the #rst place
of their consistency) and as a method of construction of relatively elementary fragments
of mathematics, did not expect that it might be possible to construct #nitary variants of
‘suFciently rich’ mathematical theories. He stressed the dominant role in mathematics
of the axiomatic method based (in its logical part) on the deductive apparatus of
classical logic, which is motivated by intuitive ideas of the CST.

However, our discussion of the problem of ‘#nitization’ of MA is not concerned
with some variant of ‘retelling’ de#nitions and statements of the traditional MA into
a language admissible in #nitary mathematics: such attempts are hopeless. We would
like to construct by means of such a language a system of notions which may be
considerably di7erent from the traditional system but allows to develop an apparatus
of MA to a degree ‘practically suFcient’ for traditional applications and (hopefully)
in a form admitting additional possibilities (for example allowing to ‘see’ clearly the
types of constructions participating in solutions of the problem under consideration, as
well as the types of data for such constructions). It can happen that #nitary analogs
of some theorems of MA turn out to be ‘#nitary strengthenings’ of the analogs of
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these theorems in a constructive MA, which was developed in the XX century on
the basis of ‘immediate’ constructive analogs of the basic notions of the classical
MA in the framework of ‘weaker’ requirements of ‘semantical clarity’ than in #nitary
mathematics. (This ‘traditional’ constructive MA uses much wider language than that
of #nitary mathematics.)

From this viewpoint of the goal to be achieved one can say that the opinion of
Hilbert and Bernays about ‘non-#nitizability’ of mathematical analysis was refuted by
the further development of mathematics.

The main goal of this paper is to con#rm this conclusion.

2. Particular theories of natural numbers and arithmetical algorithms as an
‘environment of modeling’ �nitary theories of constructively de�nable objects of
various types

2.1. The theory of CDO uses a standard technique of coding arbitrary words in a
given alphabet, words of special types characterized by generating systems and CDO
of other types by natural numbers. This technique allows to ‘translate’ many questions
of #nitary mathematics into the language of arithmetics (the theory of natural numbers)
and arithmetical algorithms. This possibility is used systematically below.

The term “recursive function” is used below as a synonym of the term “partial
recursive function”.

2.2. From the #nitary standpoint the problem of explanation of mathematical judgments
about CDO is a problem of extrapolation to such ‘almost physical objects’ of the
ideas about true judgments (characterized in Section 1:4 above) which were shaped
by completely #nitary situations. Attempts to extrapolate such semantics to the theory
of natural numbers cause principal diFculties. A signi#cant role in the understanding
of the character of these diFculties was played by the scale of constructive ordinals
developed by Cantor.

Principal diFculties appear already for arithmetical sentences of the following two
forms S1 and S2:

S1 A recursive n-ary arithmetical function f is total:

A symbolic translation explaining this judgment has the form

∀x1 : : :∀xn!f(x1; : : : ; xn):

Here x1; : : : xn are variables for natural numbers and notation !f(x1; : : : ; xn) means: “the
process of computing of the value of f(x1; : : : ; xn) terminates”.

S2 A total n-ary recursive function � is a 0-function:

In the symbolic notation,

∀x1 : : :∀xn(�(x1; : : : ; xn) = 0):
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A discussion of diFculties we have in mind here is presented (with a short history)
in [45, Section 1]. Let us only note here that as a result of analyzing principal dif-
#culties one has to ‘resign’ to the impossibility of any ‘complete and #nal’ re#ne-
ment of an idea of ‘convincingly motivated’ extrapolation to judgments of the form
S1 and S2 of the notion of a true sentence used in completely #nitary situations.
In this sense the problem of ‘exact’ semantics for such sentences can be called a
‘deadlock’.

This motivates one to choose particular semantics for those sentences (as well as
for the sentences which can be reduced to them by exact semantical de#nitions, for
example judgments of the form S0) and to ‘work’ with judgments true in the chosen
particular semantics.

2.3. One usually uses a method of presenting particular semantics based on de#ning a
notion of a “true judgment” by a pair of generating systems (generating grammars) �
and � having the properties listed below.

(1) Objects generated by the system � (call them �-functions) are sign combinations
determining (in a precise sense) some arithmetical recursive functions and composed
(for example) in the way H. Curry proposed in [8] (cf. also, [35], [36, Section 2])
for PRF composed from symbols of initial functions and some operators. (For Curry’s
notation for PRF these are symbols for operators of regular substitution and primitive
recursion.) The sets of generated objects for actually used systems of this kind usually
are decidable.

(2) It is assumed that some ‘suFciently visualizable’ (‘contentual’ in the sense of
Hilbert) justi0cation of totality of every �-function is given. (For example justi#cation
of totality of any particular PRF uses ‘familiar’ inductive argument for the standard
ordering of natural numbers, and there is no need in some more complex form of
induction.)

(3) To present ‘composite’ recursive operators, which are natural in the framework
of a given notation (we call them �-operators below), one introduces sign combi-
nations, which are obtained by using variables for �-functions together with original
�-functions in the construction processes (by means of which �-functions are char-
acterized), followed by binding of all functional variables occurring in the generated
expressions by Church’s �-symbol.

(4) It is assumed that, based on the generating system �, a language (called a
�-language below) is introduced. Formulas of this language are constructed in a stan-
dard way from natural numbers, variables for natural numbers, �-functions, variables
for �-functions, �-operators, variables for �-operators and sign =;&;∨+;∀;∃+. The
signs ∨+ and ∃+ stand here for constructive (Brouwer’s) disjunction and existential
quanti#er, respectively. ‘Classical’ disjunction ∨, ‘classical’ existential quanti#er ∃ and
equivalence ↔ are introduced as abbreviations:

(P ∨ Q) def= ¬(¬P&¬Q); ∃xP def= ¬∀x¬P;

(P ↔ Q) def=((P → Q)&(Q → P)):
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One counts as 0nitarily meaningful closed formulas of the form

S∗ ∃+�1 : : :∃+�k∀ 1 : : :∀ l!;

where ! is a quanti0er-free formula and �1; : : : ; �k ;  1; : : : ;  l are distinct variables,
each of them ranging over either natural numbers or �-functions or �-operators. A
#nitary justi#cation of the formula S∗ consists in producing (or describing a method of
construction) of some sign combinations Z1; : : : ; Zk in the range of variables �1; : : : ; �k
(respectively) plus a ‘#nitary admissible’ justi#cation of validity of the quanti#er-free
formula !+ which is obtained from ! by substituting words Z1; : : : ; Zk for variables
�1; : : : ; �k , respectively.

(5) To distinguish quanti#er-free formulas admitting ‘#nitarily acceptable’ validity
justi#cation one uses a generating system �. It is assumed that all objects generated
by � (call them �-objects) are quanti0er-free formulas of the �-language, and that a
‘suFciently visualizable’ validity justi#cation for all �-formulas is given. (For example,
to justify the validity of every formula of the language of primitive recursive arithmetic
generated by the standard logical deduction apparatus for this arithmetic one uses an
‘ordinary’ inductive argument.)

The specialization of the notion “true sentence” by means of presenting � and �
states that exactly those ∀-closures of the formulas generated by the system � are
considered to be “true” that are based on a ‘suFciently motivated’ extrapolation (into
theory of natural numbers and arithmetical functions) of the idea of true sentence used
in completely #nitary theories.

However, every such extrapolation is ‘open for extensions’. Particular semantics can
be ‘arranged’ into hierarchies according to ‘diFculty’ and our con#dence in the two
justi#cations mentioned in (2) and (5). Acceptability of the stages of these hierarchies
as ‘motivated extrapolations’ of the notion of a true judgment used in completely
#nitary situations becomes less and less convincing when one moves away from the
beginning of a hierarchy.

2.4. At the same time ‘initial stages’ of some hierarchies turn out to be ‘suFciently
motivated’ and at the same time suitable as a semantical base for development of
‘rich in content’ theories of #nitary mathematics. From this point of view, the primi-
tive recursive functions (PRF), the quanti0er-free language constructed on their base
(and using equations of primitive recursive terms as atomic formulas and ‘boolean
combinations’ of such atomic formulas as formulas of the language) and quanti#er-
free apparatus of classical logical deduction with the rule of substitution of terms for
variables, complemented by the quanti#er-free rule of ‘ordinary’ arithmetical induction
and postulates, characterizing the equality relation, initial functions and the operators
used, attracted special attention. The whole complex was called “primitive recursive
arithmetic” (PRA). It is described in [19] as an axiomatic system. Basic features of
PRA in a non-formalized form can be found in [47]. Very interesting versions of PRA
were suggested by Goodstein [12, 14] (cf. also [35]) and by Church [5].
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When a formula of PRA is used as a judgment it is understood that a sequence
of universal quanti#ers bounding all variables occurring in the formula is ‘invisibly’
present in front of the formula. The traditional language of PRA is obviously ‘com-
pleted’ to a language including formulas of the form S∗.

Admissibility of PRA is motivated by the arguments admissible under #nitary stand-
point and justifying the totality of every PRF and validity of every formula derived by
the deductive apparatus of PRA.

In connection with a great interest in modern mathematics to the question of possi-
bility to solve some problems by ‘as simple as possible’ (in some sense) constructive
means, signi#cant attention is attracted by some subrecursive arithmetics. These are
particular #nitary arithmetics ‘smaller’ than PRA (cf. for example [30]; cf. also [38]).
An example of a well-developed theory of this type is the theory of Kalmar elementary
recursive functions.

It makes sense to talk of axiomatic theories of particular #nitary arithmetics. One
has in mind ‘general’ study of pairs �; � of generating systems satisfying the conditions
given above and some additional conditions. Fixing additional conditions imposed for
such a pair, one gets a theory of particular #nitary arithmetics of a de#nite type.

In the following we do not use an axiomatic approach, but have in mind primitive
recursive arithmetic as a concrete but typical (in many respects) example of a particular
#nitary arithmetic.

3. Approach of R.L. Goodstein to a construction of �nitary versions of initial parts of
mathematical analysis

3.1. The notion of a function of real variable which is central for traditional MA is
‘connected’ with the notion of a real number and is an instance of the notion of a
map of a set into another set. The search for ways to ‘constructivize’ and ‘#nitize’
MA drew attention in the #rst place to two problems. (a) How to de#ne reasonably
analogs of these two notions? (b) Is the introduction of an analog of a notion of real
number as a basic notion unavoidable (unavoidability of the introduction of some real
numbers for special applications is indisputable)?

The second question is caused by the fact that experimentally interpretable mathe-
matical objects in applications of mathematics often turned out to be interval functions
corresponding to some kind of ideas of ‘approximately de#ned’ value of the function
considered for an ‘approximately de#ned’ value of the initial data. With respect to
interval functions used in MA, ‘pointwise de#ned’ real functions primarily play the
role of an instrument which allows to assign to an ‘approximately de#ned’ value of
an initial data (usually a rational closed interval) some ‘approximately de#ned’ value
of the function (usually in the same form).

In particular, if f is a continuous function and g is a Lebesgue integrable func-
tion then suitable interval functions $1 and $2 can be de#ned (for example) as
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follows:

$1(f; [r; s]; n) def=


〈inf

[r;s]
f
〉n−

;

〈
sup
[r;s]

f

〉n+

 ;

$2(g; [r; s]; n) def=[〈C〉n−; 〈C〉n+];

where r and s are rational numbers such that r¡s; n is a natural number. Expressions
〈'〉n− and 〈'〉n+ where ' is a real number denote a rational approximation of ' up to
2−n from below and (respectively) from above de#ned in some #xed way; C denotes
the integral mean value of the function g over [r; s]. (Introduction of the variable n
together with the ‘variable closed interval’ [r; s] is not necessary, but is convenient
technically.) In this part of the article it is not assumed that the function f (number
') is de#ned by algorithms, and speaking of methods of rational approximation of the
number ' we rely on ideas connected with this term in classical MA.

In the case of continuous functions, a possibility in principle to replace them by
interval functions satisfying certain conditions was noticed by mathematicians belong-
ing to the intuitionistic direction in mathematics (cf. [17]). A similar approach was
developed in the theory of recursive functionals and operations. Construction of some
fragments of the theory of diGerential and integral equations using the language of
functions of domains enriched methods and content of mathematical physics (cf. [16]).

Although thinking in terms of functions of domains seems very natural from the
viewpoint of applications of mathematics, one usually employs the techniques (in par-
ticular, ‘pointwise de#ned’ real functions) which determine the functions of domain
only indirectly. The problem is that an ‘obvious’ de#nition of diGerentiation of an in-
terval function leads to ‘pointwise de#ned’ functions (i.e. leads outside the realm of the
functions of domains). Moreover, it is easy to present formulas for interval functions
corresponding to (say) sin, ln etc., but it is very diFcult to deduce even the simplest
property of these functions based on their interval representations. This #xed the idea
of the basic role of the traditional notion of real function and real number in MA in
the mentality of the majority of mathematicians.

3.2. The #rst attempt at the ‘constructivization’ of the notion of real number was
made by Weyl [50]. He #xed a certain language allowing, in particular, to represent
some subsets of the set of rational numbers by formulas with one free variable for
rationals. The formulas of this language de#ning sets satisfying the properties of upper
classes of Dedekind cuts in the set of rationals are considered to be “de#nable” real
numbers. Weyl developed (using apparatus of classical logic) a theory of de#nable
numbers and de#nable functions. As it turned out later, this theory due to some of its
peculiarities cannot play the role of a satisfactory base for ‘constructivization’ of MA.
Weyl himself criticized his theory, but at the center of his criticism were not technical
or logical aspects of the theory, but the following fundamental fact: “This was truly
atomistic theory of continuum logically consistent but forced. By an epistemological
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analysis I tried to explicate as distinctly as possible the deep abyss that separates our
mathematical constructions from the immediately experienced continuity” [51].

In fact, Weyl resumes here criticism of intuitive ideas of ‘formation’ of a line seg-
ment from separate points originating with ancient thinkers. He accepts Brouwer’s ideas
of a numerical continuum as an ‘environment for free choice of sequences of ratio-
nals’. But these ideas were appreciated as ‘suFciently understandable’ by only few
mathematicians. After the intuitive notion of algorithm was made mathematically pre-
cise (and standard) in the form of a notion of “Turing machine” and some equivalent
notions, the eGorts of mathematicians who tried to construct a constructive version of
MA were directed mainly to development of the theory of ‘algorithmically de#nable’
(in several senses) real numbers and of functions ‘algorithmically de#ned’ for such
numbers. However, Weyl’s criticism of the fundamental peculiarity of his theory is
completely applicable to theories dealing with ‘algorithmically de#nable’ real numbers.

3.3. A principally new approach to the problem of construction of constructive (even
#nitary) variants of some initial chapters of MA was proposed by Goodstein [12, 13,
15]. He chooses as basic objects of MA ‘approximatively de#nable’ functions of some
types considered as #nitary analogs of functions that are continuous (or continuously
diGerentiable) on a given rational segment, as opposed to ‘pointwise de#ned’ real
function (as done in the traditional MA). These analogs are remarkable since their
de#nition does not assume that reals are previously de#ned in any form. The main ideas
of the approach of Goodstein are presented below with some diGerences of technical
and terminological character.

First of all, a method for de#nition of some rational-valued functions of rationals
(as well of some sequences of such functions) using PRF is #xed. As ‘images’ of
rational numbers in the language of PRA one uses triples of natural numbers (a triple
K; L;M ‘describes’ a rational number K−L=M +1) and standard de#nitions of equality,
order relations and basic operations are translated into the language of such ‘descrip-
tions’. Use of symbols playing the role of variables for rational numbers is permitted:
every such symbol is treated as a notation for a triple of distinct variables for natu-
ral numbers. Use of symbols playing the role of notations for certain rational-valued
functions de#ned for tuples of natural numbers (and hence sometimes on rational num-
bers) is permitted: in every such case symbol one assumes that a triple of PRF is
#xed to ‘explain’ the employed notation for the rational-valued function. If a symbol
F is explained by a triple F1; F2; F3 of PRF then the expression of the form F(H)
is understood as a notation for the expression F1(H); F2(H); F3(H). Use of symbols
playing the role of variables for rational-valued functions is also permitted. If V is
such a symbol, then the expression V (H) is understood as a notation for the expres-
sion V1(H); V2(H); V3(H) where V1; V2; V3 are distinct variables for PRF with a suitable
number of arguments.

A triple F1; F2; F3 of ternary PRF is called a rational monadic PRF if it transforms
equal rational numbers into equal rational numbers, and PRA derives a formula transla-
tion of this statement. A triple G1; G2; G3 of 4-ary PRF is called a sequence of rational
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monadic PRF if PRA derives a formula translation of the following statement: every
triple of ternary PRF obtained from G1; G2; G3 by #xing a value of the #rst argument
is a rational monadic PRF.

A variant of a #nitary analog of a notion of a function uniformly continuous on a
rational segment [a; b] proposed by R.L. Goodstein can be de#ned in the following
way (letters i; k; l; n below are variables for natural numbers and r; s are variables for
rational numbers):

A sequence G of rational PRF is called a recursive uniformly continuous function
in [a; b] if it is possible to construct PRF h; p and q such that for all admissible values
of variables the following conditions are satis#ed:

(k ¿ h(i) & l¿ h(i)) → (|G(k; r) − G(l; r)| ¡ 2−i);

(|r − s| ¡ 2−p(i) & n¿ q(i)) → (|G(n; r) − G(n; s)| ¡ 2−i):

Goodstein had in mind (but did not say explicitly) that these conditions should be
supported by derivations in PRA.

Using a similar approach, Goodstein introduced #nitary analogs of the notions of a
function continuously diGerentiable in [a; b] and of a plane curve [13].

The #nitary analogs of several notions of traditional MA suggested by Goodstein are
de#ned by a method ‘similar’ to the method of completion of metric spaces. There are,
however, essential diGerences. The role of a sequence G of rational PRF mentioned
above can be played by a sequence, where some of the PRF obtained by #xing a
number of a term of this sequence are discontinuous in some rational points (and
generally only become ‘less and less discontinuous’ when the number of a term of
the sequence increases). Hence the rational PRFs which ‘constitute’ the sequences do
not form a subspace of the space under construction. In Section 4:6 below we note
another feature of the system of ideas suggested by Goodstein which forms an obstacle
to an ‘immediate’ embedding of theorems stated on the base of this system into the
quanti#er-free language of PRA.

One has to conclude that Goodstein’s approach in its original form is not suFciently
adapted for extension to many function spaces which play an essential role in modern
MA. It needs modi#cations, and such modi#cations are ‘suggested’ by some results of
development of the function space theory in classical mathematics.

A de#nite step in this direction was made by Goodstein himself. He constructed
an algorithm (which can be turned into a recursive operator) which transforms any
quadruple consisting of a sequence G of rational PRFs and a triple h; p; q of PRF
satisfying the conditions above (characterizing G as a recursive function uniformly
continuous in [a; b]) into a particular recursive function G+ uniformly continuous in
[a; b] and equivalent to the function G in the ‘natural’ sense, such that all terms of the
sequence G+ are polygonal function with rational ‘vertex coordinates’.

Goodstein stressed that his #nitary analogs of notions of the traditional MA do not
assume preliminary introduction of the notion of a real number in any form whatsoever.
On the other hand, for a recursive uniformly continuous function G supplied with a
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triple h; p; q of PRF one can de#ne in a natural way (by a ‘diagonal type’ construction)
its values at algorithmically presented reals (to do this it is convenient to pass to G+).
Despite this possibility, functions introduced by Goodstein are objects of a special type
corresponding to the following de#nition given by L. Euler: “A function of a variable
quantity is an analytic expression combined in some way from this variable quantity
and numbers or constant quantities.”

The role of initial material for such a de#nition could have been played in particu-
lar by power series with rational coeFcients considered as sequences of polynomials
‘against the background’ of certain ways of manipulating coeFcients of such polyno-
mials.

With time and depending on the situation the meaning of the term “analytic ex-
pression” has been changing (in accordance with accepted means of construction of
symbolic expressions and the ways of their interpretation). As a result, one encounters
in mathematics many diGerent forms of functions in the sense of Euler. Suitable re#ne-
ments of the quoted approximate characterization of the functions in the sense of Euler
based on some modi#cation and extrapolation of Goodstein’s ideas of approximatively
de#ned functions together with the results of development of theory of function spaces
in the traditional MA, lead to introduction of notions which allow to develop a sig-
ni#cant part of MA in the framework of #nitary mathematics and advance realization
of Kronecker’s program directed to construction of various areas of mathematics using
only ‘careful’ idealizations.

4. Finitary completions of elementary metric and countably metric spaces as �nitary
counterparts of function spaces of classical mathematics

4.1. The concepts of a metric space, a countably metric space, and the completion of
a metric (or countably metric) space, introduced in the #rst half of the 20th century,
played key roles in achieving the goal we talked about earlier. The concept of the
completion of a metric space has its roots in the de#nition of the concept of a “real
number” proposed by G. Cantor and, independently, by Ch. MTeray. That de#nition is
based on a certain construction.

The term “construction” is used here not in the sense that it has in constructive
mathematics but in a more general sense. The de#nition in question appeals to ‘almost
physical’ ideas of sequences of rational numbers as processes of sequential genera-
tion of certain objects; from this point of view, it is ‘intuitively constructive’. The
‘algorithmization’ of this construction, with appropriate modi#cations and generaliza-
tions, opened a way towards building constructive and, moreover, #nitary, versions of
a number of areas of MA. (Appendix H.)

The de#nition of real numbers as fundamental sequences of rational numbers (viewed
against the ‘background’ of a certain natural equality relation between such sequences),
proposed by Cantor and MTeray, competed with the de#nitions proposed by K. Weier-
strass and R. Dedekind. But it was the Cantor–MTeray de#nition that led to the quite
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fruitful generalization proposed by HausdorG – the concept of a fundamental sequence
of points of a given metric space. A version of that concept that is convenient ‘for
constructivization’ can be de#ned as follows:

Let 〈M; 2〉 be a metric space (with the carrier M and metric function 2), and let
F be a mapping of the set N of all natural numbers into M. We say that F is a
fundamental sequence of points of this space if there exists a function h from N into
N which is a regulator of convergence in itself for the sequence F of points, that is,
a function satisfying the following condition: for any natural numbers i; k; l,

(k ¿ h(i)&l¿ h(i)) → (2(F(k); F(l)) ¡ 2−i): (∗)

If a fundamental sequence F is ‘exhibited’ as an algorithm, but no regulator of
convergence of this sequence in itself is given, then, even in the cases when the
‘hidden’ function h is actually an algorithm, the problem of #nding (for instance) a
natural number n such that, for all k, the distance from F(0) to F(k) is less than n turns
out to be a ‘creative’ problem. This insuFciency of the information contained in the
fundamental sequence F itself (which is felt particularly ‘strongly’ in the framework
of constructive mathematics) prompts us to use, instead of the completions of metric
spaces that consist of fundamental sequences of points, the completions that consist of
duplexes, that is, pairs 〈F; h〉 that satisfy (∗) for all i; k; l.

The counterpart of such completion in the framework of constructive mathematical
analysis is the result of restricting attention to constructive metric spaces, algorithmi-
cally presented sequences of points, and algorithmically presented regulators of con-
vergence in itself (see, for instance, [33; 34; Section 10; 48]). In particular, if M
is the set of rational numbers and 2(r; s) = |r − s| then duplex 〈F; h〉 is called a real
duplex. It can be naturally viewed as an ‘informationally wholesome’ counterpart of
the concept of a real number according to Cantor and MTeray.

But the criticism of the intuitive base of set theory presented in Section 1 can be
extended to a certain degree to the intuitive base of traditional (‘broad’) constructive
mathematical analysis: some judgments admitted in the latter are outside of the language
of #nitary mathematics, and consequently diFcult ‘semantic puzzles’ are found in them.
In particular, one of the central concepts – the concept of a constructive function de#ned
on the constructive continuum [22, 23] – is characterized by a condition that can be
converted by the logical means of ‘broad’ constructive mathematics to the form

∀x¬∀y¬∀z(4(c; x; y; z) = 0);

where 4 is a primitive recursive function, c is the arithmetical code of the con-
structive function under consideration, and x; y; z are variables for natural numbers.
This is an arithmetical version of that condition that is obtained as a result of en-
coding the constructive objects of various types used in the de#nition by natural
numbers.

4.2. The choice of basic concepts appropriate for building #nitary versions of a number
of areas of MA is motivated primarily by speci#c theorems in various parts of MA
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that have the form

Metric space 〈M; 2〉 has a countable everywhere dense subset:

Theorems of this form are usually viewed as statements of a very important property
of the space under consideration – the property that allows us (whenever 〈M; 2〉 is
complete) to introduce the ‘isometric double’ of that space, obtained by completing a
certain countable metric space. But in traditional MA it is ‘not common’ to use the
completion procedure in a systematic way as a tool for de0ning mathematical objects
of ‘complex’ types (in particular, ‘complex’ elements of function spaces) on the basis
of objects of simple types. But this method is what allows us to overcome Hilbert’s
‘taboo’ on the creation of #nitary versions of various areas of MA.

In many cases, traditional proofs of speci#c theorems about the existence of count-
able everywhere dense subsets in metric spaces are (or can be easily turned into)
proofs of more detailed theorems that describe some essential features of the countable
everywhere dense subsets ‘exhibited’ in the proof. Such more detailed theorems have
the following form:

In metric space 〈M; 2〉 there exists an everywhere dense subset T such that (1)
its elements have individual representations as constructively de#ned objects of a
certain speci#c type (we shall call them objects of type 5), so that every object of
type 5 ‘represents’ a certain element of T, (2) objects of type 5 form a decidable,
and consequently recursively enumerable, set (one can think, essentially without
loss of generality, that objects of type 5 are words in an appropriate alphabet and
that the decidability of the set of objects of type 5 is understood as the decidability
of a subset of the set of all words in this alphabet), (3) metric function 2 on the
set T viewed as the set of objects of type 5 is given as a certain algorithm, and
(4) if X and Y are objects of type 5 then 2(X; Y ) is a rational (the alternate
version: algebraic) number.

Any particular theorem of this kind ‘demonstrates’ a speci#c point of view on the
metric space under consideration: elements of space 〈M; 2〉 are ‘almost constructively
de#ned objects of type 5.’

4.3. Some function spaces studied in MA, when de#ned in a natural way, turn out
to be countably metric, that is to say, function 2 in the pair 〈M; 2〉 is de#ned on
the set N×M×M (or on the set Nk × M×M with k¿1), where N is the set of
natural numbers, so that for all particular values of the numeric argument(s) function 2
‘behaves’ as a semi-metric function on M. Function 2 is called a multi-metric function
on M. What we said above about everywhere dense subsets of some metric spaces
applies to countably metric spaces as well.

In the theory of uniform spaces there is a theorem asserting that every countably
metric space is uniformly equivalent to a metric space. Due to this theorem, countably
metric spaces are given little attention in classical mathematics (except for countably
normed spaces). However, when #nitary counterparts of function spaces are de#ned,
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replacing some countably metric spaces by metric spaces in accordance with the theo-
rem mentioned above can be counterproductive, because the metric function replacing
the family of semi-metric functions may turn out to map some objects of type 5 to
nonalgebraic numbers. On the other hand, similar considerations suggest that some
function spaces that are treated as metric spaces in their de#nitions that are natural
from the perspective of classical MA can be usefully ‘turned’ into countably metric
spaces. (This has to be done in practically all cases when at least one end of the
interval playing the role of the domain of functions under consideration is not rational,
or not algebraic.)

4.4. As examples, we will consider some function spaces of classical MA. In each
example, a and b stand for rational numbers; 2 is the metric or multimetric func-
tion in M; f and g are arbitrary points of the function space under consideration;
5 is the name of a type of element of the everywhere dense subset of the function
space.

• Space of the functions uniformly continuous on [a; b].

2(f; g) = sup
[a;b]

|f − g|; objects of the type 5 are polygonal functions with ratio-
nal “vertices” represented as a #nite sequence of pairs of
rational numbers (alternatively, objects of the type 5 may
be polynomials with rational coeFcients).

• Space of the functions continuous on the half-open interval [0; 9).

Assume that the irrational number 9 is given (for instance) as a primitive recur-
sive sequence of rational numbers : such that, for all k and l, :(k) 6 :(k + l) and
:(k + l) − :(k) ¡ 2−k .

’
2(k; f; g) = sup

[0;:(k)]
|f − g|; 5 is understood as in the previous example:

The multimetric function 2 under consideration can be used (in a speci#c way) to
de#ne the space of the functions uniformly continuous on the closed interval [0; 9]. The
method of using the function 2 for this purpose will be discussed later in Section 4:6.

• Space of the functions m times uniformly di7erentiable on [a; b].

2(f; g) = max
06n6m

(
sup
[a;b]

|Dn(f) − Dn(g)|
)

, objects of the type 5 are polynomials
with rational coeFcients.

If f is an element of type 5 then Dn(f) is understood as the formal nth derivative
of f.

• If we replace sup in the last equality with
∫

, we shall get the metric function in the
space of the functions that have m generalized derivatives in the sense of Sobolev
on [a; b].
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• Space of functions in0nitely di7erentiable on (−∞;∞).

2(k; m; f; g) = max
06n6m

(
sup

[−k;k]
|Dn(f) − Dn(g)|

)
, objects of the type 5 are polyno-

mials with rational coeFcients.

• Space of the functions absolutely continuous on [a; b].

2(f; g) = Var
[a;b]

(|f − g|) + |(f − g)(a)|; 5 is understood as in the #rst example.

• Space of the functions whose nth power is summable on [a; b] (n is a positive
integer).

2(f; g) =
(∫

[a;b] |f − g|n
)1=n

, objects of the type 5 are step functions with
#nitely many rational ‘steps’ represented as #nite
sequences of pairs of rational numbers (alterna-
tively, objects of the type 5 may be polynomials
with rational coeFcients).

• Space of Lebesgue measurable functions on [a; b].

2(f; g) =
∫

[a;b]

|f − g|
1 + |f − g| ; 5 is understood as in the previous example:

Alternatively, 2(f; g) can be taken to be the mean metric value of |f− g| on [a; b].
In transition from space of functions on the numeric continuum or its parts to spaces

of functions de#ned on multi-dimensional numeric spaces or their parts, it is often natu-
ral to use appropriate multi-metrics (in ways ‘similar’ to the second and #fth examples
above). As a preliminary step, one needs to introduce approximative counterparts of
lines and regions of a number of types found in the corresponding parts of traditional
MA. (Problems that need to be resolved here are usually technical in nature rather than
fundamental.) The #rst step in this direction was made in [13]. See also [9] where a
constructive (essentially #nitary) counterpart of the concept of an analytic function is
discussed.

4.5. Consider some other examples of metric spaces that illustrate the remarks made
in Section 4:2.

• Space of Lebesgue measurable subsets of the numeric continuum that have a 0nite
measure.

2(P;Q) = mes((P\Q) ∪ (Q\P)), objects of the type 5 are the unions of a #nite
collection of open intervals with rational ends
and of rational points given as #nite sequences
of pairs of rational numbers and of separate
rational numbers. (Appendix I.)

P and Q are arbitrary measurable subsets with a #nite measure.
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Important in functional analysis are also compact metric spaces, whose de#nition,
convenient for ‘constructivization’, has the following form: a compact metric space is
a well-bounded (that is, having an <-net for every positive rational <) and complete
space. If metric space 〈M; 2〉 are objects of type 5 satisfy all the conditions listed in
Section 4:2 above then it turns out to be useful to de#ne #nitary counterparts of totally
bounded subspaces of the given space in the following way.

If P and Q are #nite sets of objects of type 5, we de#ne

2∗(P;Q) = “the HausdorG distance between P and Q”

(this distance is an algebraic number). The elements of the #nitary completion (see
below) of the space formed by the #nite sets of objects of type 5, with distances
between sets measured by the metric function 2∗, are natural #nitary counterparts of
totally bounded spaces of classical MA. Uniformly continuous functions on such #nitary
counterparts are de#ned in a straightforward way, ‘Goodstein-style’.

In classical mathematics, the theory of functionals and operators of certain types is a
key part of functional analysis. In many cases, the original de#nitions of these concepts
were quite diGerent in character from ideas of #nitary mathematics. But, in the process
of development of functional analysis, in some principal cases, it has been determined
that the operators in question can be approximated in a ‘suFciently interesting’ sense
by ‘#nitarily describable’ operators of the same type. In such cases, approximative
de#nitions can be used in the corresponding parts of the theory of operators as well.
Here is one example of this kind.

In classical MA, an operator is called totally continuous if it is continuous and the
image of every bounded set has a compact closure. On the other hand, a theorem in
the theory of operators asserts that, in the space of totally continuous operators de#ned
(for instance) on the space of functions whose square is summable on an segment
[a; b], the #nitely dimensional operators de#ned by #nite square matrices of arbitrary
size with rational elements form an everywhere dense subset (the distance between two
operators being de#ned as the norm of their diGerence).

4.6. Any speci#c theorem about an everywhere dense subset of a metric (or countably
metric) space that has the form described in Section 4:2 suggests a way to de#ne a
#nitary counterpart for that space. The de#nition we have in mind is based on the
idea of completing an appropriate ‘elementary’ metric (countably metric) space that
consists of CDO’s of a certain type 5 and satis#es conditions (1)–(4). Of course,
objects appended to the initially taken ‘elementary’ space acquire de#nitions in the
framework of #nitary mathematics. The #nitary counterpart of a metric space 〈M; 2〉
from traditional mathematics that is created in this way can ‘exist on its own’ without
appealing even to the idea of the de#nition used originally to characterize the elements
of M (for instance, in the case of the space of functions that are Lebesgue integrable
on [a; b], without appealing to the idea of a “function that is de#ned on all real numbers
from [a; b] and is Lebesgue measurable”).
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In constructive mathematics we #nd both mathematical theories of the #nitary type
(with their quite ‘rigid’ requirements on the ‘clarity’ of judgments and de#nitions) and
theories that are constructive in a ‘broad’ sense. Theories of the latter type include not
only judgments that are clari#ed on the level of requirements of the #nitary position
but also judgments about CDO’s that contain complex combinations of quanti#ers and
propositional connectives causing semantical problems; generally speaking, judgments
of forms S1 and S2 from Section 2:2 are viewed as ‘understandable in a straightfor-
ward way’. Theories of the #nitary type belong to this second type as well, because
‘broad’ constructivism does not claim to ‘refute’ theories of the #nitary direction. In
the version of mathematical analysis that was developed in the framework of “broad”
constructivism (see [22, 23, 33, 34, 48, 49, 53]), the objects appended to the ‘ele-
mentary’ metric space when it is constructively completed are duplexes of the form
〈F; h〉, where F and h are algorithms that are total in a sense that is ‘understandable
in a straightforward way’ and satisfy condition (∗) that is ‘understandable in a straight
forward way’ as well. In some cases, the duplexes are appended only when they satisfy
some additional condition (see [9]).

In the process of completing a countably metric space, when 2 ‘depends’ (for in-
stance) on a single numerical parameter, the F and h that form together an element of
the completion are total algorithms, h is de#ned on pairs of natural numbers, and the
condition

(k ¿ h(m; i)&l¿ h(m; i)) → (2(m; F(k); F(l)) ¡ 2−i) (∗∗)

is assumed to be satis#ed for all natural numbers m; i; k; l.
Let W be a total algorithm that maps every pair of natural numbers to an element of

the space that is being completed, and let H be a total ternary arithmetical algorithm.
The pair 〈W;H 〉 is called a sequence of points of the completion if, for all n; m; i; k; l,

(k ¿ H (n; m; i)&l¿ H (n; m; i))→ (2(m;W (n; k); W (n; l)) ¡ 2−i): (∗ ∗ ∗)

For such sequences, the notion of a regulator of convergence in itself is intro-
duced in a straightforward way, and the triples 〈W;H; R〉 such that R is a regulator
of convergence in itself for 〈W;H 〉 are called fundamental sequences of points of the
completion of the ‘elementary’ countably metric space under consideration. Finally, a
theorem about the completeness of the completion, in the operator form, is stated and
proved: the operator Lim is constructed that maps every triple of the form described
above to an element of the completion that is the limit of this fundamental sequence
in a natural sense.

Including the regulators of convergence in itself, and regulators of other types, in
newly introduced objects of approximative nature as their ‘parts’ allows us, both in
constructive MA and in #nitary MA, to formulate theories of appropriate objects in the
operator version. In a number of ways, this version is more attractive than the predicate
version. Several advantages are demonstrated, in particular, by the operator presentation
of some parts of constructive MA in [33, 34]. For details on the ‘relationships’ between
the two versions, see [27, 28]. Goodstein constructs his version of MA in the predicate
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form. In this, he follows the method of presentation common in classical mathematics.
He does not include the regulators (of various types) that appear in his de#nitions
as ‘parts’ in the objects that are being de#ned, and that is what prevented him from
realizing his approach to MA directly in the framework of PRA.

In connection with what we said above, let us consider the space of the functions
uniformly continuous on the closed interval [0; 9]. As mentioned in Section 4:4, one
may regard the space of the functions continuous on the half-open interval [0; 9) as a
result of completion of the ‘elementary’ space, which consists of the objects of the type
5 (in our case, these objects are polygonal functions represented as #nite sequences of
pairs of rationals or polynomials with rational coeFcients), by means of the speci#c
multimetric function 2. In the passage to the constructive mathematics, one keeps in
mind the constructive completion of the type characterized above.

In order to de#ne in the same ‘style’ the space of the constructive functions uniformly
continuous on the closed interval [0; 9], it is suFcient to select those elements, which
have regulators of equicontinuity. We say that an arithmetical algorithm 2 is a regulator
of equicontinuity of a duplex 〈F; h〉, which belongs to the above-mentioned completion,
if for any i and k and for any rational numbers r and s the following condition holds:

(0 6 r ¡ s6 :(k) & s− r ¡ 2−q(i)) → (|{F(k)}(r) − {F(k)}(s)| ¡ 2−i):

Here {F(k)}(r) denotes the value at r of that rational-valued function of a rational
argument, which is determined uniquely by the object F(k) of the type 5.

In order that the objects, considered as constructive analog of uniformly continuous
on [0; 9] functions, possess ‘suFciently complete’ information, it is advisable to con-
sider as these objects the triples 〈F; h; q〉 such that condition (∗∗) holds and q is a
regulator of equicontinuity of the duplex 〈F; h〉.

For the closed interval [0; 9], constructive analog of the remaining functional spaces
introduced in Section 4:4 for the closed interval [a; b] with rational endpoints can be
de#ned in a similar way using ‘regulators’ of suitable types.

Transition from the way of completing an ‘elementary’ space described above to a
0nitary completion is predicated on the choice of some particular #nitary mathematics
as a base for constructing speci#c mathematical theories. This step has been discussed
in Section 2. For technical reasons, it is useful to encode CDO’s of various types that
appear in the theory under consideration by natural numbers, and to use arithmetical
recursive functions as standard algorithms. With this approach, PRA turns out to be
a convenient (and ‘practically suFcient’ in a wide variety of cases) particular #nitary
arithmetic, and in the rest of this presentation we will assume, as an example, that
PRA is chosen to play this role.

For 0nitary completion of an ‘elementary’ metric (or countably metric) space, one
has to use arithmetical codes of CDO’s of several types. We assume certain #xed
methods for coding of objects of type 5, rational and algebraic numbers by natural
numbers, and we #x on this base a method of ‘translating’ into the language of PRA the
algorithms, concepts and relations, which are considered in connection with formulas
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of type (∗) and (∗∗). Using this method, for any formula > we can construct in a
natural way its arithmetical counterpart 〈>〉ar.

In the #nitary completion, the appended objects are duplexes of the form 〈F∗; h〉
such that F∗ and h are PRFs, every value of F∗ is the code of an object of type 5
(F will stand for the algorithm that constructs that object), and formula 〈D〉ar, where
D denotes formula of type (∗) (or, respectively, formula (∗∗)), is derivable in PRA.
The set of duplexes of this form is recursively enumerable. Now, if we extend the
duplex 〈F∗; h〉 by appending the arithmetical code 〈?〉cod of some derivation ? of
〈D〉ar in PRA, we will get a triplex 〈F∗; h; 〈?〉cod〉 – an object that contains ‘richer’
information than 〈F∗; h〉. Such triplexes form a decidable subset of the set of all words
in the alphabet of the language.

The concepts of a sequence of points of the completion and of a fundamental se-
quence of points of the completion are modi#ed in a similar way. Finally, in the
operator form, one can state and prove a theorem on the 0nitary completeness of the
0nitary completion.

4.7. Some concepts and theorems of classical MA that deserve attention because of
their ‘intuitive contents’ do not #nd their expression in the framework of the system of
concepts outlined above. But the situation changes when ‘quasi-fundamental’ sequences
of points of the metric space are introduced. The idea of such sequences goes back
to a certain property of monotone, bounded sequences of rational numbers observed
in [2, p. 109]. This idea, developed in [21], serves as the basis of the theory of
0llings of constructive metric spaces, and of constructive functions on #llings. In [21],
all considerations are conducted in the framework of ‘broad’ constructive MA. The
#nitary counterpart of the notion of a totally bounded space mentioned in Section 4:5
above and the discussion of #nitary completions in Section 4:6 form an appropriate
foundation for a #nitary version of the theory of #llings.

The discussion above concentrated on #nitary counterparts of the metric and count-
ably metric spaces that have recursively enumerable (countable in the constructive
sense) everywhere dense subsets. The space of generalized functions in the sense of
Sobolev and Schwarz provides an example of a topological space that does not have
such a subset. But, for this space, even in the framework of set-theoretic mathematics,
the basic idea of Cantor and MTeray showed a way to create its version that is much
more ‘tangible’ than its initial version. The modi#cations of this idea in [25, 26, 20]
adapted it to the new situation and made it possible to de#ne an approximative ver-
sion of the concept of a generalized function. In [10, 11] this version is adapted to
the system of concepts of ‘broad’ constructive MA, and in [44] the transition to the
#nitary counterpart of the concept of a generalized function is made. Polynomials with
rational coeFcients are used there as basic ‘building blocks’.

4.8. In combinatorial (algebraic) topology, there is a system of concepts oriented to-
wards approximating (usually not in the metrical sense) various topological objects
by objects that have ‘simple structure’ (and often #nitary representations), and these
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concepts ‘work’ quite well. These concepts have been known for a long time – es-
sentially, beginning with the groundbreaking work by P.S. Aleksandrov on projec-
tive simplicial spectra [1]. Finitary versions of theories developed in this framework
can be usually developed with ‘little eGort’. What is required is basically the re-
placement of the concept of a mapping (in particular, the concept of a sequence
of objects) in the sense of CST by the concept of an algorithm of an appropriate
type.

4.9. Let us go back now to the contents of Section 3:1 and discuss the use of ap-
proximately de#ned functions of some types to specify interval functions indirectly.
In the #nitary version of mathematical analysis, interval functions are de#ned #rst for
elements of the ‘elementary’ space whose #nitary completion produces the function
space we are interested in. For instance, if the role of ‘elementary’ objects is played
by polygonal functions with rational ‘vertex coordinates’ (or polynomials with ratio-
nal coeFcients), and they are treated as the foundation of the #nitary space of the
functions uniformly continuous on [a; b], and if f is such as ‘elementary’ object then
$1(f; [r; s]; n) (see Section 3:1) is an algorithmically presented rational interval. If, on
the other hand, this role is played by step functions with #nitely many rational ‘steps’
in [a; b] (or polynomials with rational coeFcients), and they are treated as the foun-
dation of the #nitary space of the functions that are summable on [a; b], and if g is
an ‘elementary’ object of that type, then the same can be said about $2(g; [r; s]; n).
(Appendix J.)

The extrapolation of the interval function $1 to elements of the #nitary completion
(we will denote it by $∧

1 ) is conducted by the ‘diagonal’ method. If 〈F; h〉 is a duplex
that it is an element of the #nitary completion then

$∧
1 (〈F; h〉; [r; s]; n) def= $1(F(h(n)); [r; s]; n):

It is easy to estimate the ‘measure of diGerence’ between the rational intervals ob-
tained in this way, depending on n and on the ‘closeness’ of r and s. The extrapolation
$∧

2 of the interval function $2 to the elements of the second completion is de#ned in
literally the same way, and what was said above about an estimate for $∧

1 applies to
$∧

2 as well.
Speci#cations of interval functions on the basis of approximatively de#ned functions,

as above, are indirect speci#cations. But their essential feature is that they do not appeal
to the concept of a real number in any form whatsoever.

5. On the theorems of �nitary mathematics that have the form of majorants of
theorems of ‘broad’ constructive mathematics

5.1. Theorems of ‘broad’ constructive mathematics are stated in a language that is
‘richer’ than the language of #nitary mathematics. For instance, a judgment of the
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form

∀x(∀y(�(x; y) = 0) → ∀z( (x; z) = 0)) (∗ ∗ ∗∗)

where � and  are PRFs, and x; y; z are variables for natural numbers, is beyond
the range of the language of #nitary mathematics. What we said in Section 2:2 about
judgments of the form S2 prevents us from understanding the sign “→” in this formula
as a Boolean function.

The question of the semantics of judgments stated in the language of ‘broad’ con-
structive mathematics has a long history. A brief survey of that history can be found
in [39]. One of the approaches proposed in [36] (and brieUy presented in [39]) is
suggested by a large variety of examples of theorems of ‘broad’ constructive mathe-
matics for which one could #nd #nitary provable majorants (that is, ‘strengthenings’
from the perspective of the deductive apparatus of ‘broad’ constructive mathematics)
that have the form S∗ (Section 2:3) or can be converted to that form by means of
arithmetization. Such examples suggested a hierarchy of methods for constructing the
majorants of arbitrary arithmetical judgments that have the form S∗. There is no reason
to claim, of course, that any arithmetical judgment or its negation has a majorant in
these hierarchies that is true in an ‘acceptable’ particular #nitary semantics. But an
approach to extrapolating ideas about the truth of judgments to the ‘broad’ arithmetical
language does emerge from these considerations.

This approach enhances our understanding of properties of the languages and of
the logical apparatus used in constructive mathematics, but, generally, it does not give
much help in our search for the #nitary versions of theorems of constructive mathe-
matics that have an ‘interesting content’. The problem is that the general methods for
constructing majorants mentioned above assume the preliminary step of converting the
given judgment to a special form that has no occurrences of implication and, on the
whole, ‘drastically’ changes the given judgment.

But in many cases one can construct, on the basis of speci#c considerations, #ni-
tary majorants that are ‘relatively close’ in their logical structure to the initially given
judgments and, on the other hand, are true in a certain particular semantics that is
located in an ‘initial part’ of the hierarchy of particular semantics (for instance, in
PRA). Special methods for constructing majorants that are fruitful in this respect vary
from one case to another (which leads, one can say, to a library of such methods), and
it turns out that some theorems of #nitary mathematics can be usefully stated in the
form of suitable theorems of ‘broad’ constructive mathematics along with an indication
of a speci#c method for constructing majorants. When such a speci#c method is #xed,
some theorems of ‘broad’ constructive mathematics can play the role of convenient
statements of certain theorems of #nitary mathematics. Then some fragments of the
deductive logical apparatus of ‘broad’ constructive mathematics turn out to be admis-
sible (possibly under some limitations) from the point of view of this understanding
of the role of the theorems mentioned above.
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5.2. As an illustration, consider two examples. For a judgment of form (∗∗∗∗), the
role of a #nitary majorant with ‘interesting content’ can be played, for instance, by the
formula

∃h∀x∀z(∀y6h(x;z)(�(x; y) = 0) → ( (x; z) = 0));

and also by the formula

∃h′∀x∀z(�(x; h′(x; z)) = 0) → ( (x; z) = 0));

where h and h′ are variables for 2-place PRFs and x; y; z are variables for natural
numbers.

In Goodstein’s work on recursive MA we #nd theorems reducible to that of the
form (∗∗∗∗) and of more complex forms, but he never describes precisely the kinds of
inferences that he uses (intuitively, in fact), which, inevitably, go beyond the PRA (pri-
marily because of the logical form of the judgments that appear in his reasoning). The
analysis of the ‘logical situation’ in these papers can be found in [35]. It turns out that
in a number of cases Goodstein actually justi#es majorants with ‘interesting content’
for some judgments that are theorems of constructive, in the ‘broad’ sense, MA.

As the second example, consider, in the framework of classical mathematics, the
judgment: “Every monotone nonincreasing PRF has a point of stabilization”. In the
logico-arithmetical language it has the form

∀f(∀m(f(m + 1) 6 f(m)) → ∃n∀k(k ¿ n → f(k) = f(n)))

where f is a variable for one-place PRFs, ∃ is the ‘classical’ existential quanti#er (see
Section 2:3), and m; n; k are variables for natural numbers.

This judgment has the logical structure that is much more complex than (∗∗∗∗). But
from the ‘natural’ reasoning used in classical mathematics to justify this theorem one
can ‘extract’ a majorant of this judgment with an interesting ‘visual meaning’ that has
a #nitary justi#cation (cf. [40, 41]).

Appendix A

There was also another line of development of foundational ideas that played a major
role in the formation of the ‘appearance’ of mathematics. It was not (directly) based on
any analysis of the idea of ‘in#nity’, and it has led to the development of the axiomatic
method of building mathematical theories as an independent mathematical ideology. Its
roots are found in Euclid’s Elements. This line is clearly described in the following
excerpts from [3] (Chapter “Foundations of Mathematics. Logic. Set Theory”):

“Mathematicians were always convinced that they prove ‘truths’ or ‘true proposi-
tions’. 〈: : :〉 The traditional view of mathematical truth goes back to the time of
Renaissance. In this view, there is no signi#cant diGerence between the objects
that the mathematician deals with and the objects studied in natural sciences. Both
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were considered intelligible, mastered by man by means of intuition and reason-
ing. 〈: : :〉 From antiquity until the 19th century, there had been complete unanimity
regarding the objects that are basic for mathematicians; 〈: : :〉 those are numbers,
quantities and #gures. 〈: : :〉 No matter how much philosophical ideas about mathe-
matical objects developed by mathematicians and philosophers diGered from each
other in details, there was at least one thing that they had in common: those
objects are given to us, and it is not in our power to assign arbitrary properties
to them, just as the physicist does not have the power to change a law of na-
ture. 〈: : :〉 The #rst blow to these classical concepts came from the development
of non-Euclidean hyperbolic geometry by Gauss, Lobachevsky and Bolyai at the
beginning of the century. 〈: : :〉 Gauss and Lobachevsky believed that disagree-
ments between various possible geometries can be resolved by experience. 〈: : :〉
This view was shared by Riemann. 〈: : :〉 But this problem is clearly outside of the
realm of mathematics. And it seems that not one of the authors mentioned above
had any doubt that, even if some ‘geometry’ does not agree with experimental
data, its theorems still remain ‘mathematical truths’. 〈: : :〉 Finally, it becomes clear
to mathematicians that 〈: : :〉 in mathematics, it is completely legal to reason about
objects that have no sensory ‘interpretation’. From that time on, wide use of the
axiomatic method becomes common. 〈: : :〉 In other words, mathematics appears
to be essentially the study of objects about which one knows nothing except for
certain properties describing these objects – the properties taken as the axioms the
theory is based on”.

Georg Cantor ‘sharpens’ the idea expressed in the last sentence by saying:
“: : :mathematics is completely independent in its development, and its concepts are
bound only to be noncontradictory and to be related to concepts introduced earlier
by precise de#nitions” [4]. In this connection, one might remember Hermann Weyl’s
‘correction’ [52]:

“The constructions of the mathematical mind are at the same time free and neces-
sary. The individual mathematician fells free to de#ne his notions and to set up his
axioms as he pleases. But the question is, will he get his fellow-mathematicians
interested in the constructs of his imagination. We cannot help feeling that cer-
tain mathematical structures which have evolved through the combined eGorts of
the mathematical community bear the stamp of a necessity not aGected by the
accidents of their historical birth”.

In its modern form, the axiomatic method of building mathematical theories includes
describing a theory as a formal deductive system (which is a special case of the ‘purely
symbolic’ concept of a calculus) and poses the problem of justifying the consistency
of this system, but (generally) it does not require any motivation for the choice of
speci#c axioms and logical inference rules included in the theory under consideration.

Broad use of the axiomatic method in mathematics was accompanied by ‘replacing’
the concept of a “true judgment” with the concept of a “judgment derivable from certain
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initially given judgments by certain inference rules”. This ‘liberation’ from diFcult
semantical questions made the axiomatic method an attractive tool for achieving some
kind of ‘clarity’. This clarity is achieved at the price of eliminating from the ‘#eld of
view’ any relationship (that may include, generally, extrapolations and idealizations)
between judgments of the language used in a given theory on the one hand, and
conjectures about the results of experiments expected in certain situations, on the other.

But the mathematical theories that are of interest in real ‘mathematical life’ usually
have de#nitions that are accompanied by certain motivations. What is valued partic-
ularly highly (at least from the point of view of applications of mathematics) is a
‘delineation’ of at least one ‘realization’ of the axiomatic theory that ‘traces’ how
it emerged in the course of modelling real-life situations of some kind using certain
(preferably ‘careful’ or at least ‘not too fantastic’) extrapolations and idealizations.

Motivations that are oGered ‘inside’ mathematics often have the nature of an inter-
pretation of the axiomatic theory under consideration in some other axiomatic theory
which has already been given an acceptable, from a certain point of view, motivation.
On this path, sometimes one may be able to #nd an interpretation in the framework
of the theory of #nite sets, and sometimes in the framework of #nitary mathematics,
and that boils down to providing a motivation of the kind described earlier.

But interpretations (and sequences of interpretations) of axiomatic theories in other
axiomatic theories (if we think of those actually studied in modern mathematics) lead
eventually, in most cases, to Cantor’s theory of in0nite sets, or to ‘large’ fragments of
that theory (for instance, due to the use of the logical deductive apparatus of classical
logic whose acceptability is motivated using the idea of ‘completed in#nity’).

Thus the ‘clarity’ achieved by representing mathematical theories in the axiomatic
form is usually technical in nature, in a manner of speaking. The axiomatic formulation
of a mathematical theory creates favorable conditions for the development of various
technical aspects of that theory, which makes it a valuable tool. But an axiomatic
theory that is not accompanied by a motivation is essentially (from the perspective of
a natural scientist) a complex of hypothetical considerations to be ‘kept in store’, ‘just
in case’.

The history of science knows a number of cases when ‘unmotivated’ axiomatic
theories were required as appropriate theoretical models of certain real-life situations.
Non-Euclidean geometries provide a particularly good example. But the dependence of
both Euclidean geometry and traditional non-Euclidean geometries (presented, for ex-
ample, as appropriate ‘analytical geometries’) on CST is ‘insigni#cant’: ‘small’ changes
can turn them into theories of #nitary mathematics.

Appendix B

Cantor illustrates the meaning that he gives to the word “set” by saying, “A set is
a collection of certain well distinguished objects of our intuition or thought taken as
a whole” [4]. These explanations appeal to the ‘world of images’, but they involve
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no ‘direct’ comparison of the idea of “in#nite collections of simultaneously existing
objects” with any kind of results of the ‘experimental conquering’ of nature (on any
level of detalization, and with any ‘extent’ in time and space), and no analysis of
the nature of the extrapolations and idealizations that lead from experimental data to
images of this kind. Within this approach, the doubts and questions raised by ancient
thinkers do not arise, except for those related to paradoxes ‘on the level of pure
thought’.

Cantor’s ‘naive’ set theory, at early stages of its development, brought mathemati-
cians a ‘surprise’ in the form of examples of assertions that can be both proved and
refuted in the framework of the theory. Soon, however, the theory was ‘corrected’ in
several ways (the diGerences between these ways being essentially details, technical in
nature), and the proposed versions have been presented as axiomatic theories. For a
long time, mathematicians have been convinced that these axiomatic theories are not
going to bring new ‘surprises’ similar to the one mentioned above.

But this conviction is not capable of resolving ‘hard’ questions of a very diGerent
kind – questions about the acceptability of the basic intuitions that a person actually
appeals to when set theory is applied to problems having to do with experimental data
of some kind. Such processes sometimes remain unnoticed, because they are usually
indirect and occur, for instance, as part of the construction of a mathematical model of
some real-world situation in modern theory of diGerential equations, or representations
of groups, or random processes, and so forth.

Attention to questions of this kind varied with time. In the twentieth century, set
theory enjoyed great success, in the sense that practically every area of mathematics
that had come into existence by the middle of the century ‘lent’ itself to presenta-
tion in the language of that theory combined with the modern apparatus of classical
logic. (That was only true, actually, as long as one refrained from discussing problems
typical for the emerging constructive direction in mathematics.) Moreover, the system
of concepts oGered by CST helped in the creation and development of some new ar-
eas of mathematics (for instance, the theory of function spaces and operators). The
codi#cation of the system of concepts of mathematical analysis based on CST has re-
solved uncertainties related to its repertory of formal procedures (related, for instance,
to operations with in#nite series and improper integrals), and many mathematicians
came to the conclusion that the ‘meaning’ of all components of this repertory has been
made suFciently clear. (Indeed, every mathematical procedure is interpreted as a set
of ordered pairs whose members are sets also.) The demonstration of the “superhuman
power of formal procedures” (see Section 1:2) was perceived by many mathematicians
as an a posteriori justi#cation of the acceptability of CST as a whole, including all
abstractions used in CST. From this perspective, the very problem of characterizing
and evaluating ‘how fantastic’ are the abstractions involved in the intuitive base of
CST appears irrelevant.

At the same time, David Hilbert [18] discussed the realizability of the basic concepts
of CST on macro-, micro- and mega-levels of detalization and ‘extent’ in the space-
time, and he summarized his analysis as follows:
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“We saw earlier that the in#nite is not to be found anywhere in reality, no matter
what experiences and observations or what kind of science we may adduce. Could
it be, then, that thinking about objects is so unlike the events involving objects
and that it proceeds so diGerently, so apart from all reality?”

Appendix C

In applications of mathematics, when problems of this kind are being considered,
one often uses theoretical models formed from the ‘building materials’ provided by
traditional MA. The latter systematically uses the abstract concepts of set theory –
concepts that are often very remote from ‘speci#c informations’. Constructive direction
in mathematics creates preconditions for search for ‘purely informational’ models of
the fragments of the ‘world of experimental data’ that are being studied. We are talk-
ing here about the theoretical models in which the objects under consideration (real or
imaginary) and connections between them are individually represented with a satisfac-
tory degree of detail and precision by ‘speci#c informations’ (against the ‘background’
of some equality relation expressing the interchangeability of these ‘informations’ from
a certain point of view). We prefer the models that treat ‘speci#c informations’ as
symbolic constructions, take into account this feature to a su:cient degree, do not
use the idealizations that can be avoided, and do not ‘surround’ them by any kind of
‘ideal objects’ that have no individual representations by symbolic constructions.

Appendix D

Key ideas related to de#ning mathematical concepts in the framework of the ‘#nitary
stand’ are presented in [19] as follows:

“: : :in the areas of elementary arithmetic and algebra, orientation towards direct
informal reasoning without assumptions of axiomatic nature is practiced in a par-
ticularly pure form. Speci#c for this attitude is the view of reasoning as a mental
experiment with objects that are assumed to be explicitly speci0ed. 〈: : :〉 In arith-
metic, we have an initially given object and also a generating operation. Both will
need to be #xed by some visual means. 〈: : :〉 Let’s take the digit 1 to be the initial
object, and appending 1 to be the generating operation. The objects that we will
get if we begin with 1 and apply the generating operation 〈: : :〉 are the results of
speci#c completed constructions.”

It turned out that the idea of this constructive de#nition of the concept of a positive
integer can be extended (in a generalized form) to many concepts from various areas
of mathematics. As a result, a general theory was created (primarily in [29]) – a theory
of generating systems or grammars. On the basis of this theory, the intuitive idea of a
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constructively de#ned object was standardized (and consequently made precise), with
a convincing motivation.

Appendix E

In [19], Leopold Kronecker is mentioned as the founder of the ‘#nitary stand’ in
mathematics. He proposed to accept the concept of a natural number as ‘intuitively
clear’ and then to view a mathematical concept as ‘acceptable’ only if it is ‘express-
ible’ in some way in terms of the concept of a natural number. (The ‘expressibility’
that Kronecker had in mind can be probably described in modern mathematical lan-
guage as the existence of “an eGective encoding of the objects in questions by natural
numbers”.) Appropriate in this respect, are, for instance, the concepts of an “integer”,
a “rational number”, a “polynomial with integer coeFcients”, a “square matrix with
rational elements”.

Kronecker has arrived at a fundamental result that could serve as ‘motivation’ for a
program of this kind: he ‘eGectively generated’ the decomposition #eld for polynomials
with integer coeFcients into linear factors without appealing to the general concept
of a real number in any form. In this way he established that the concept of an
algebraic number in its traditional form can be replaced by a concept from constructive
mathematics that can ‘play the same role’. The elements of that #eld are constructively
de#ned objects that can be encoded by natural numbers in a relatively simple way (their
arithmetical codes are algorithmically recognizable among arbitrary natural numbers)
against the ‘background’ of a certain algorithmically decidable equality relation. This
result plays a crucial role in modern work on the development of #nitary versions of
various theories of classical mathematics, but, taken by itself, it is absolutely insuFcient
for solving the problems arising on this path. It did not allow Kronecker to make
signi#cant progress towards his goal.

A constructive de#nition of the notion of an algebraic number that is ‘more tangible’
than Kronecker’s was proposed in [6]. According to that de#nition, a real algebraic
number is any triple

r; s; P

(with constructively de#ned terms r; s; and P) where r and s are rational numbers
such that r 6 s, and P is a polynomial with integer coeFcients that satis#es the
algorithmical test for the existence and uniqueness of a root in the closed interval [r; s]
that is stated in classical mathematics as a consequence of Sturm’s theorem on the
number of roots of a polynomial in a given interval. Any ordered pair of real algebraic
numbers is called an algebraic number. For algebraic numbers de#ned as described
above, an algorithmically decidable equality relation is de#ned in an obvious way, and
all considerations related to algebraic numbers are conducted against the ‘background’
of this equality relation.
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Appendix F

The term “abstraction of potential realizability” was introduced into mathematical
literature by A.A. Markov. In fact, he uses this term as a name for a certain special case
of what was called “potential in#nity” in ancient mathematics – the case of processes
of constructing combinations of symbols, discrete in time and space, by humans or
mechanisms that follow some clearly speci#ed construction rules for forming new
combinations of symbols from combinations produced earlier (such as words in a given
alphabet). The idealization that he associated with this term “: : :consists in abstracting
from the practical limits of our capabilities in space, time and material in the process
of realizing words” [23]. In [24], he observes:

“ : : :our capabilities are truly limited, and there is no reason to believe that it will
be always possible to overcome the obstacles caused by these limitations. Just
the opposite, modern physics and cosmology seem to provide evidence that such
obstacles are unavoidable in principle. 〈: : :〉 Abstraction of potential realizability,
like any other abstraction, brings with it an element of imagination wherever it is
applied. 〈: : :〉 The diGerence between ‘classicists’ and ‘constructivists’ is that they
use diGerent abstractions, that is, imagine in diGerent ways”.

There is a good reason why Markov mentions physics and cosmology here. As a
matter of fact, when a mathematician begins with his experience of operating with
practically realizable processes of generating combinations of symbols and then goes
on to theoretical ideas about ‘very remote steps’ of processes of a certain kind and
about their expected results, he mentally abstracts from his practical limitations and,
moreover, uses (without ‘announcing’ this) a whole ‘gamut’ of (generally) fantastic
extrapolations. These extrapolations involve ideas about ‘very large’ extents of space
and time, about the simultaneous existence of letters in an ‘already constructed’ word
that are ‘very far removed’ from each other, about topological properties of ‘very long’
chains of elementary objects (for instance, we ‘convince ourselves’ that the process of
generating words will not lead to self-intersections), and so on, and so forth.

Apparently, the mentality of a mathematician, who includes in the set of notions in
use the abstraction of potential realizability, is formed usually in such a way, that the
aforementioned ‘gamut’ of extrapolations comes from some parts of Euclidean geometry
and classical mechanics. These disciplines allow the intuition to be ‘based’ on suitable
theorems about ‘arbitrary large rectangles’ and combinations of such #gures. At the
same time one keeps in mind Newton’s ideas on simultaneous events, on translations
of #gures as hard bodies and so on.

The understanding of the ‘vagueness’ of such extrapolations in theoretical consid-
erations related to expected results of ‘very long’ constructive processes has led to
the development of techniques directed (when the construction has an ‘arbitrarily se-
lected’ number n as a part of its input) towards establishing an upper or lower bound
of complexity of constructions (in a given sense) by means of ‘estimating’ functions
from a certain collection that usually includes linear functions, polynomials, exponen-
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tial and hyper-exponential functions, and so forth. Such estimates allow us to get some
idea of the ‘limits of applicability’ of the theoretical models using the constructions in
question.

Constructive mathematics – and this is special about it – #nds its ‘support’ in the
idea that ‘many’ CDOs (those generated by the processes whose duration is ‘not too
large’) “: : :are given to us, and it is not in our power to assign arbitrary properties
to them, just as the physicist does not have the power to change a law of nature”
(see Appendix A). (It is necessary to keep in mind, of course, that the ‘elementary’
symbols that CDOs consist of are perceived as objects with an amount of detail that
is not greater than what is needed to recognize their equality). This is diGerent, for
instance, in geometry. Intuitive ideas that have to do with even the simplest geometric
objects (points, segments and straight lines) give reasons to discuss the ‘degree of
imagination’ involved in these ideas and even to seek alternatives to them. In the case
of CDOs, such reason are given only by ‘very long’ generating processes and their
expected results. In this sense, we can talk about CDOs as ‘almost physical’ objects.

Appendix G

Constructive existential quanti#er and constructive disjunction became part of mathe-
matical practice when L.E.J. Brouwer declared his point of view on mathematics as the
mental activity that creates mental constructions and analyzes them. The word “con-
struction” is understood by Brouwer in a very broad sense – so broad that, besides the
combinations of symbols characterized as potentially possible results of constructive
processes consisting of steps of some #xed types, it includes also potentially in#nite
processes of sequential free choices of objects of these types. But, when speaking about
constructively de#ned objects in the ‘narrow’ sense, such as natural numbers, Brouwer
insisted (in particular) on constructive understanding of judgments about the existence
of a natural number satisfying a given condition (Kronecker insisted on this too) and
on the constructive understanding of disjunction. On the other hand, Brouwer and his
followers used the language that allows arbitrary combinations of conjunction, impli-
cation, negation and universal quanti#er. The use of such a language was viewed as
intuitively acceptable (although without stating a clear semantics). But in this language
one can express both ‘classical’ disjunction ∨ and ‘classical’ existential quanti#er ∃.
This fact makes it necessary to introduce new symbols for constructive disjunction and
constructive existential quanti#er, for instance, ∨+ and ∃+.

Constructive disjunction ∨+ can be viewed as the de#ned logical connective char-
acterized by the de#nition

(P ∨+ Q) def= ∃+n((1 6 n6 2) & (n = 1 → P) & (n = 2 → Q));

where n is a variable for natural numbers that has no free occurrences in P;Q.



N.A. Shanin / Annals of Pure and Applied Logic 113 (2002) 261–295 293

Appendix H

Finitary versions of mathematical theories (and, in some respects, versions construc-
tive in the broad sense as well) continue the critical analysis of Cantor’s set theory in a
‘positive’ way: they are proposed as alternatives to the versions using set theory. Such
alternatives provide certain answers to the question: Is it possible to build mathemat-
ical theories without using the set-theoretic ‘mentality’, and what are the advantages
of such an approach? There is a historical paradox in the fact that Cantor was the
author of an idea that (in combination with other ideas) provided a tool for creating
alternatives to the ‘mathematical world view’ that originated in his own work.

Appendix I

Vitali’s theorem starting that the set of objects of this type is everywhere dense
in the space of measurable sets of #nite measure allows us, even in the framework
of classical mathematics, to simplify the theory of measurable sets in a radical way,
‘without any losses’. Indeed, in this theory the equality of objects is de#ned in such a
way that it makes no sense to talk about a set ‘consisting’ of separate points, and the
usual de#nition of the concept of a measurable set by ‘inscribing’ arbitrary closed sets
and ‘circumscribing’ arbitrary open sets makes essentially no sense.

Appendix J

If the #nitary space of uniformly continuously diGerentiable functions on [a; b] is
de#ned using polynomials with rational coeFcients then, instead of the interval function
$1, one can use ‘cruder’ but ‘more easily computable’ interval functions, such as, for
instance, the function $∼

1 de#ned by

$∼
1 (f; [r; s]; n) def=

[
f
(
r + s

2

)
− cn · s− r

2
; f

(
r + s

2

)
+ cn · s− r

2

]
;

where

cn =
〈

max
[a;b]

|D(f)|
〉n+

:
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