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Motivation

• For a computational problem that is not known to be solved
in a reasonable (say, polynomial) amount of time, we are still
interested to solve it as fast as possible.

• Levin’s optimal algorithm for NP search problems is known
for decades [Lev’73].

• The existence of optimal algorithms is not known for any
decision problem in NP \ P.

• For TAUT, the existence of an optimal acceptor is equivalent
to the existence of a p-optimal proof system.

• Monroe recently gave a conjecture implying that optimal
acceptors for TAUT do not exist [Mon’11].

• Recognizing the image of an injective pseudorandom
generator.
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Definitions
Acceptors and algorithms

• For a probability distribution D, we denote Dn the restriction
of D to {0, 1}n. U denotes the uniform distributions.

• A distributional problem is a pair (L,D) consisting of a
language L ⊆ {0, 1}∗ and a distribution D.

• A(x, d) is a randomized heuristic algorithm for a distributional
problem (L,D) if

• A(x, d) ∈ {0, 1},
• ∀n, Prx←Dn;A[A(x, d) 6= L(x)] < 1

d , where Dn is over {0, 1}
n.

• A distributional proving problem is a pair (L,D) consisting of a
language L ⊆ {0, 1}∗ and a distribution D, concentrated on L.

• A(x, d) is a randomized heuristic acceptor for a distributional
proving problem (L,D),

• A(x, d) ∈ {1,⊥},
• A(x, d) = 1 for all x ∈ L,
• ∀n, Prx←Dn;A[A(x, d) = 1] < 1

d , where Dn is over L ∩ {0, 1}
n.
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Definitions
Simulation

• The time spent by a randomized algorithm A on input (x, d)

tA(x, d) = min
{
t ∈ N | Pr

A
[A(x, d) stops in time at most t] ≥ 1

2
}
.

• For heuristic algorithms (acceptors) A and A′ for the same
problem (L,D), we say that A simulates A′ if there are
polynomials p and q such that ∀x ∈ suppD, ∀d ∈ N,

tA(x, d) ≤ max
d′≤q(|x|d)

{p(tA′(x, d′)d|x|)}.

• An optimal randomized heuristic algorithm (acceptor) for
(L,D) simulates every randomized heuristic algorithm
(acceptor) for (L,D).
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Problem statement

Consider the problem of recognizing the image of an
polynomial-time computable injective function
f : {0, 1}∗ → {0, 1}∗, such that |f (x)| = |x|+ 1.

Main question
Is there exists an optimal (randomized) heuristic algorithm for
distributional problem (Im f ,U).

Remark
If f is an injective pseudorandom generator then there is no
polynomial-time heuristic randomized algorithm for (Im f ,U)
[HIMS10].
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Optimal heuristic acceptor for (Im f ,U)

Algorithm OptAcc(x, d)

1 Run Abf (x, d′),A1(x, d′), . . . ,An(x, d′) in parallel.
2 Certify every algorithm that stops and outputs 1.
3 If one of the algorithms passes certification test, stop all
algorithms and output 1.

Algorithm CertifyAcc(A, d)

1 Test algorithm on many inputs generated from U .
2 If A accepts only a small fraction of inputs, then return

“PASSED”, otherwise “FAILED”.

Theorem
OptAcc is an optimal randomized heuristic acceptor for (Im f ,U).
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General case

Remark
We used only the fact that Im f is polynomial-time samplable. We
neither used the uniformity of U nor the properties of f .

Theorem (HIMS’10)
For every recursively enumerable language L and every
polynomial-time samplable D concentrated on L, there is an optimal
heuristic acceptor for distributional proving problem (L,D).
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Deterministic case

• A deterministic heuristic algorithm (acceptor) is a randomized
heuristic algorithm (acceptor) that does not use its
randomness.

• The running time tA is now simply made by the algorithm A.

• For heuristic algorithms A and A′ for a distributional
problem (L,D), we say that A simulates A′, if there are
polynomials p and q such that q(n, d) ≥ 2d and ∀n, d ∈ N,

Pr
x←Dn

[tA(x, d) ≤ p(n · d · tA′(x, q(n, d)))] ≥ 1− 1
2d
.

• A deterministic heuristic algorithm (acceptor) for a
distributional (proving) problem (L,D) is optimal on the
average if it simulates every other deterministic heuristic
algorithm (acceptor) for (L,D).
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Optimal deterministic heuristic acceptor
Theorem (GW’97)
Let n be an integer and δ ≥ 2−γn, where γ is some positive constant.
Then there exists a family of functions Fδ , each mapping {0, 1}n to
itself with good mixing property [GW’97]:∣∣∣∣ Pr

x←Un,φ←U(Fδ)
[x ∈ A ∧ φ(x) ∈ B]− ρ(A)ρ(B)

∣∣∣∣ ≤ 2δ.
Family Fδ constains a polynomial in 1

δ number of functions,
functions in Fδ can be efficiently evaluated.

Algorithm CertifyDetAcc(A, x, δ)

1 If δ < 2−γn, then execute A(y) for every y ∈ {0, 1}n.
2 If δ ≥ 2−γn, then for every φ ∈ Fδ execute A(f (φ(x))).
3 If A accepts only a small fraction of inputs, then return

“PASSED”, otherwise “FAILED”.
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Optimal heuristic algorithm

Observation
An optimal heuristic algorithm for (Im f ,U) is equivalent to two
optimal heuristic acceptors: for (Im f ,U) and for (Im f ,U).

Obstacle
We don’t have a polynomial-time samplable distribution on Im f ,
that is needed for certification procedure.

Key idea
Estimate the probability of wrong answer on Im f using
distributions U(Im f ) and Un+1:

Pr
x∈Im f

[A(x, d) = 1] = 2 Pr
x←Un+1

[A(x, d) = 1]− Pr
x∈Im f

[A(x, d) = 1].
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Summary

Let f be an polynomial-time computable injective function
f : {0, 1}∗ → {0, 1}∗, such that |f (x)| = |x|+ 1.
• There is an optimal randomized heuristic algorithm for
recognizing the image of f under the uniform distribution.

• There is an optimal on the average deterministic heuristic
algorithm for recognizing the image of f w.r.t the uniform
distribution.
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Thanks for your attention!
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