3auCKu HayIHBIX
cemuHapos [IOMU
Tom 399, 2012 r.

D. M. Itsykson, D. O. Sokolov

THE COMPLEXITY OF INVERSION OF EXPLICIT
GOLDREICH’S FUNCTION BY DPLL ALGORITHMS

ABSTRACT. The Goldreich’s function has n binary inputs and n bi-
nary outputs. Every output depends on d inputs and is computed
from them by the fixed predicate of arity d. Every Goldreich’s func-
tion is defined by it’s dependency graph G and predicate P. In 2000
O. Goldreich formulated a conjecture that if G is an expander and
P is a random predicate of arity d then the corresponding function
is one way. In this paper we give a simple proof of the exponen-
tial lower bound of the Goldreich’s function inversion by myopic
DPLL algorithms. A dependency graph G in our construction may
be based on an arbitrary expander, particulary it is possible to use
an explicit expander; while all all previously known results are based
on random dependency graphs. The predicate P may be linear or
slightly nonlinear. Our construction may be used in the proof of
lower bounds for drunken DPLL algorithms as well.

§1. INTRODUCTION

This work continues [1,2,17,18] and is devoted to lower bounds of DPLL
(for Davis, Putnam, Logemann, and Loveland) algorithms on satisfiable
formulas. DPLL algorithm is a recursive algorithm. On each recursive call
it simplifies an input formula F' (without affecting its satisfiability), chooses
a variable v and makes two recursive calls on the formulas F[v := 1] and
F[v := 0] in some order. It returns the result “Satisfiable” if at least one of
recursive calls returns “Satisfiable” (note that it is not necessary to make
the second call if the first one was successful). Recursion stops if the input
formula becomes trivial. That is, the algorithm is only allowed to backtrack
when unsatisfiability in the current branch is proved. A DPLL algorithm is
defined by simplification rules and two heuristics: the heuristic A chooses

Key words and phrases: DPLL algorithm, expander, one-way function, lower
bounds.

Supported by Federal Target Programme “Scientific and scientific-pedagogical per-
sonnel of the innovative Russia” 2009-2013 and RFBR grant 11-01-00760-a) and the
president grant NSh-5282.2010.1 The second author was also supported by Yandex
Fellowship and CS-club scholarship.

88

THE COMPLEXITY OF INVERSION 89

a variable for splitting and the heuristic B chooses a value that will be
investigated first.

The behaivior of DPLL algorithms on unsatisfiable formulas is equiva-
lent to tree-like resolution proofs. Therefore lower bounds on DPLL algo-
rithms on unsatisfiable formulas follow from lower bound for resolutions [9].
However the most interesting inputs are satisfiable formulas. Consider for
example formulas that code the problem of inversion of one-way function.
The most important case for practice is the case there one-way function
indeed has preimage. There is no hope of proving a superpolynomial lower
bound for all DPLL algorithms on satisfiable formulas since if P = NP,
then the heuristic that chooses the value of a variable that would be in-
vestigated first may always choose the correct value.

Exponential lower bounds on running time of myopic and drunken
DPLL algorithms on satisfiable formulas were proved in the paper [2];
these two classes of DPLL algorithms cover a lot of known DPLL algo-
rithms. In myopic algorithms heuristics that choose a variable for splitting
and that choose a value that will be investigated first have the following
restrictions: they can see the formula with erased signs of negations and
they also know the number of positive and negative occurrences of every
variable and they also can request K = n!~¢ clauses of the formula to read
them precisely. In drunken algorithms the heuristic that chooses variable
for splitting may be arbitrary, while the first substituted value is chosen
at random with equal probabilities. Lower bounds for myopic algorithms
were proved on the formulas that code the system of linear equations over
F, based on expander matrices; lower bounds for drunken algorithms were
proved on artificial formulas that are based on hard examples for resolu-
tion.

The paper [1] gives a cryptographic view on [2]. Namely it was noted
in [1] that the lower bound for myopic algorithms [2] was proved on the for-
mulas that code the problem of inversion of Goldreich’s function based on
linear predicate. Goldreich’s function [4] has n binary inputs and n binary
outputs. Every output depends on d inputs and is computed from them
by a fixed predicate of arity d. Goldreich conjectured that if the depen-
dency graph is an expander and the predicate is random, then the resulting
function is one-way. However, linear functions are not interesting from the
cryptographic point of view since they can be easily inverted by Gaussian
elimination. The main goal of [1] was the proof of lower bound for a func-
tion that is potentially hard to invert. J. Cook et al. consider Goldreich’s

90 D. M. ITSYKSON, D. O. SOKOLOV

function based on the predicate x; +x2+- - -+ x4_2+x4—124 and a random
graph (a random graph is an expander with high probability). They have
proved the exponential lower bound for the weakened! variant of myopic al-
gorithms. Recently Itsykson [17] and Miller [18] independently proved the
lower bound on the complexity of inversion of Goldreich’s function based on
random graph and predicate of type x1 +xo+- - -+ xg—k+Q(Tg—k+1,- .- Ta),
where) is an arbitrary predicate of arity k and k < d/4 by drunken al-
gorithms. We should note that the proof from [1] works for this type of
predicates as well.

The construction of Goldreich’s function in all papers listed above was
randomized. In this paper we suggest an explicit construction of Gol-
dreich’s function based on expanders (for example the explicit expander
from [16] fits our purposes). It is possible to use those formulas in the proof
of exponential lower bound for drunken algorithms from [17]. In this paper
we demonstrate the lower bound for myopic algorithms. Our proof is tech-
nically much simpler than proofs from [2] and [1]. We prove lower bound
for the general notion of myopic algorithms (according to the definition
from [2]) instead of the weakened variant that was used in [1].

Our Goldreich’s function has the following structure: it is the sum of
two Goldreich’s functions: linear and nonlinear. The linear part is necessary
for proving the lower bound for DPLL algorithms while the nonlinear part
makes our function hard to invert in practice. The linear part is based on
an expander, while nonlinear part may be almost arbitrary but it should
depend only on n°/? variables. Of course an adversary may guess the value
of variables from nonlinear part and solve the resulting linear system by
Gaussian elimination but the running time of such algorithm is on*/? (still
exponential), therefore we believe that there are hard invertible functions
among our functions. We actually do not use in the proof the fact that the
nonlinear part of predicate is the same for every bit of the output.

The plan of the proof is the following: first of all we slightly modify
the expander from the linear part so that its adjacency matrix would have
high rank. Since the nonlinear part of our function depends on very few
variables we conclude that our Goldreich’s function is almost a bijection.
In order to prove the lower bound we first of all prove the lower bound for
unsatisfiable formulas using lower bound techniques for resolutions from

n contrast to [1,2] did not allow the DPLL algorithm to use pure literal simplifi-
cation rules and also myopic algorithms from [1] may read only constant (opposite to
n!~%) number of clauses per step.

THE COMPLEXITY OF INVERSION 91

[5]. Using almost linearity and almost bijectivity we prove that with high
probability the myopic algorithm makes the formula unsatisfiable during
first several steps and we apply the lower bound for unsatisfiable formulas.

Our proof has one disadvantage compared to the proof from [2]; namely
our proof works for expanders with degrees, that are large enough, while
the technique from [2] works for degrees, that are at least 3. However the
proof from [2] of the fact that a myopic algorithm with high probability
makes the formula unsatisfiable during first several steps is complicated,
while our proof is intuitive and based on the simple fact from elementary
linear algebra: a dimension of a solution space of a satisfiable linear system
Axz = b does not depend on the right hand side b.

§2. PRELIMINARIES

Let X = {x1,x2,...,2,} be the set of propositional variables.

A partial substitution is a function p : X — {0,1,x*}, that maps a
variable to its value or leaves it free. The set Vars(p) = p~1({0,1}) is the
support of the substitution; we denote |p| = | Vars(p)|.

If p1 and py are two partial substitutions with disjoint support then the
substitution p; U p2 can be defined by the natural way.

We say that a string y € {0, 1}" is consistent with the partial substitu-
tion p (we denote it y ~ p) if for all z; from the support of p the following
is satisfied y; = p(x;).

2.1. DPLL algorithms. We consider a wide class of SAT algorithms:
DPLL (or backtracking) algorithms. A DPLL algorithm is defined by two
heuristics (procedures): 1) Procedure A maps a CNF formula to one of its
variables. (This is the variable for splitting). 2) Procedure B maps a CNF
formula and its variable to {0, 1}. (This value will be investigated at first).

An algorithm may also use some syntactic simplification rules. Simplifi-
cation rules may modify the formula without affecting its satisfiability and
may also make substitutions to its variables if their values can be inferred
from the satisfiability of the initial formula.

A DPLL algorithm is a recursive algorithm. Its input is a formula ¢
and a partial substitution p.

Algorithm 2.1. Input: formula ¢ and substitution p
e Simplify ¢ by means of simplification rules (assume that simplifi-
cation rules change ¢ and p; all variables that are substituted by
p should be deleted from ¢).

92 D. M. ITSYKSON, D. O. SOKOLOV

e If current formula is empty (that is, all its clauses are satisfied by
p), then return p. If formula contains an empty clause (unsatisfi-
able), then return “formula is unsatisfiable”.

o z;:= A(p); c:= B(p, 7))

e Make a recursive call with the input (¢[z; := ¢],pU{z; :=¢}) if
the result is “formula is unsatisfiable”, then make a recursive call
with the input (¢[z; := 1 —¢],pU {z; := 1 — ¢}) and return its
result, otherwise return the result of the first recursive call.

Definition 2.1. Myopic algorithms [2] are DPLL algorithms, where heu-
ristics A and B have the following restrictions:

o They can see the whole formula with erased signs of negations.
e For every variable they know the number of its positive and the
number of its negative occurrences.
o They may request to read K = o(n) clauses to read precisely (with
negation signs).
Simplification rules: 1) Unit clause elimination: if formula contains a clause
with only one literal, then make a substitution that satisfies that clause. 2)
Pure literals rule: if formula contains a variable that has only positive or
only negative occurrences, then substitute it with the corresponding value.

The running time of a DPLL algorithm for a given sequence of random
bits (heuristics A and B may be randomized) is the number of recursive
calls.

2.2. Expanders. All graphs that we consider in this paper are bipartite
multigraphs with each part containing n vertices. The first part we denote
by X = {z1,2,...,2,} and the second we denote by Y = {y1,92,...,yn}
Every vertex from the set Y has an ordered list of its neighbours from the
set X (repetitions are allowed). All considered graphs are d-regular: the
degree of every vertex from Y is equal to d, where d is a constant.

Every graph has its adjacency matrix over Fs. Rows of this matrix
correspond to the set Y and columns correspond to the set X, the element
with coordinates (y,x) contains the parity of the number of edges between
y and x. We stress that such adjacency matrix does not uniquely determine
a graph since it does not contain information about the number of parallel
edges and about the order of edges; it only contains the information about
the parity of the number of edges between two vertices.

Consider the example: let X = {x1, 29,23, 24} and Y = {y1,y2,y3,va},
the lists of neighbours in graph Gy are following: ¢, = {z1, %2, 22}, 4y, =

THE COMPLEXITY OF INVERSION 93

{2, 31,23}, by, = {@2, 22,22}, ¢y, = {®4,x1,24}. The graph Gy has the
following adjacency matrix over Fy:

1[2]3[4
g1 |1]0[0]0
ys 1] 1[1]0
y310]1]0]0
ya |1]0[0]0

For set A C Y we denote I'(4) (the set of neighbours of A) the set of
vertices from X that are connected with at least one vertex from A; we
denote 6(A) (the boundary of A) the set of vertices from X that have
exactly one incoming edge from the set A.

Definition 2.2. The graph G is a (r,d,c)-expander if 1) the degree of
any vertex in 'Y is equal to d; 2) for any set A C Y,|A| < r we have
[T(A)| = c|A|. The graph G is called a (r,d, c)-boundary expander if the
second condition is replaced by: 2) for any set A C Y,|A| < r we have
16(4)] > clA].

Lemma 2.1 (cf. [2], Lemma 1). Every (r,d, c)-expander is also a (r,d,2c—
d)-boundary expander.

Proof. Let A C Y, |A| < r, then |T'(A4)| > ¢|A|. The number of edges
between A and I'(A) may be estimated:

d|A[> 16(A)] +2[T(A) \ 6(A)| = 2[C(A)] - [6(A)] = 2¢[A] — [5(A)]-
Finally we get [0(A4)] > (2¢ — d)|A]. O

We need boundary expanders; for this it is enough to have an expander
with constant ¢ > d/2. For example, a random graph is an appropriate
expander.

Lemma 2.2 ([6], Lemma 1.9). Ford > 32, for all big enough n a random
bipartite d-regular graph, where parts X and Y contain n vertices is a
(152> 4, %d)—empander with probability 0.9, if for every vertex in Y d edges
are chosen independently at random (with repetitions).

Corollary 2.1. In terms of Lemma 2.2 this graph is a (7, d, 1d)-bounda-
ry expander.

Proof. Follows from Lemma 2.1. O

There are also explicit constructions of such expanders:

94 D. M. ITSYKSON, D. O. SOKOLOV

Lemma 2.3 ([16]). For every constant € > 0 there is a constant d such
that it is possible to construct a (r,d, c)-ezpander in polynomial of n time,
where ¢ = (1 — e)d, r = Q(n/d).

Corollary 2.2. This graph is a (2(n/d),d, (1 — 2¢)d)-boundary expander.

2.3. Goldreich’s function. O. Goldreich in the paper [4] introduces a
function f : {0,1}" — {0,1}" defined by a graph G and a predicate
P :{0,1}¢ — {0,1}. Every string from {0,1}" assignes some value to
the variables from the set X = {x1,22,...,2,}. The value of (f(z)); (jth
symbol of the string f(z)) is computed in the following way: if y; has
neighbours z;,,xj,,...,z;,, then (f(z)); = P(zj,,xj,,...,%;,).

2.4. Formulas from Goldreich’s function. Now we describe the way
we code the problem of inversion of Goldreich’s function as instance of
CNF satisfiability problem.

Let g : {0,1} — {0,1}, the canonical CNF representation of g is the
following: for every ¢ € {0,1}* that satisfies g(c) = 0 we write the clause
e Vgt V- Vgt where 2? = z; and x} = —w;. The whole formula is
the conjunction of all written clauses.

Let f be the Goldreich’s function based on the graph G and the pre-

dicate P. We represent the equation f(z) = b in the following way: for

every vertex y; € Y that has neighbours z;i,xj2,...,2;4 we put down
the canonical CNF representation of the equality b; = P(zj1,Zj2,---,%jd)
using variables x;1, zj2, ..., z;jq. The conjunctions of all those formulas we

denote ®y(,)—p- The part of this formula that corresponds to the vertices

A
from the set A CY we denote <I>f(w):b.

Lemma 2.4. If a function g : {0,1}* — {0,1} is linear on at least two
variables, then the canonical CNF representation of g has exactly 27!
clauses and every variable has an equal number of positive and negative
occurrences.

Proof. Let g have the following Fs representation g(z1, 2, ..., Tn) = €1+
oy + h(zs,...,z¢). Let us denote Ty = h=1(0), Ty = h™1(1). Then

g 10)={00y |y e ToyUu{lly |y € To}u{0lz |y € T} U{10y |y € T} }.

The latter shows that |[¢g~'(0)] = 2!~! and every variable has an equal
number of positive and negative occurrences. (]

Lemma 2.4 implies that if a myopic algorithm does not see negation
signs, then it can’t differ g(x) = 0 from g(x) = 1 when g is linear on

THE COMPLEXITY OF INVERSION 95

at least 2 variables. Also we note that a canonical CNF formula is still
canonical after substitution of the value of a variable.

§3. ALMOST BIJECTIVE GOLDREICH’S FUNCTION

3.1. Linear function. Let GG; be a dj-regular graph and G5 be a ds-
regular graph with the same sets X and Y. Gy + G2 is (dy + dz2)-regular
graph such that for every vertex from Y the list of neighbours is a con-
catenation of lists of neighbours in graph G; and graph G». The adjacency
matrix of G; + @G> is the sum of adjacency matrices of G; and G5 modula 2.

Proposition 3.1. If graph G is a (r,d, ¢)-expander and G’ is a d'-regular
graph, then G + G’ is a (r,d + d', ¢)-expander.

Theorem 3.1. Given a graph G it is possible to construct in polynomial
of n time a 1-reqular graph T such that the rank of adjacency matriz of
G+ T is at least n — 1.

Proof. First of all we prove the auxiliary lemmas:

Lemma 3.1. Let a = (o, ...,ay) € FY. Then there are at least n — 1 li-
nearly independent vectors among b; = (aa,...,a;—1,0;+ 1, ait1,...,Q,),
where 1 <7 < n.

Proof. Let us consider the matrix A of size n x n; all columns of A are
equal to vector a. Vectors b; are columns of the matrix A+ FE, where E is the
identity matrix. Since the rank of the sum of matrices is less then or equal
to the the sum of ranks we may conclude that n = rk E < rk(A+ E) +rk A.
All columns of A are the same, hence tk A < 1 and rk(A+E) >n—-1. O

Now we describe the construction of graph 7. We start from an empty
set of edges and we will add one edge per step. On the ith step for
1 <i<n—1we add a neighbour to the vertex y; € Y in such a way
that the first ¢ rows of G + T are linearly independent. It can be done by
the Lemma 3.1 (we apply the Lemma to the ith row of the matrix of graph
G). We add an arbitrary neighbour to vertex y,,. (I

Corollary 3.1. If G is a (r,d,c)-expander, then the graph G + T from
the theorem is a (r,d+ 1, ¢)-expander and the Goldreich’s function f based
on G+ T and a linear predicate of arity d + 1 has the following property:
for every b € {0,1}" the size of the set f=1(b) is at most 2.

96 D. M. ITSYKSON, D. O. SOKOLOV

3.2. Slightly nonlinear Goldreich’s function. Let R C X be some
subset of X. R-graph is a regular graph such that all vertices from X \ R
have degree 0.

Lemma 3.2. Let G be a (d— k)-regular graph with an adjacency matriz of
rank at least n—1 and H be a k-reqular R-graph. Let f be Goldreich’s func-
tion based on G+ H and predicate ©1 +xo+- -+ Zg— +Q(Ta—k+1,- .-, Td),
where Q is an arbitrary predicate of arity k. Then for every b € {0,1}"
the size of the set f~1(b) is at most 21FI+1,

Proof. We consider the system of equalities f(z) = b and fix values of all
variables from the set R. We get the linear system whose matrix equals
to the matrix of graph G after removing the columns from the set R.
The matrix of G has rank n — 1, therefore the resulting system has at
most two solutions. Hence the initial system f(z) = b has at most 2%+
solutions. (]

§4. LOWER BOUND ON UNSATISFIABLE FORMULAS

We say that a variable is sensitive if by changing its value we change
the value of the formula (for every assignment of values of other variables).
(The boolean function that corresponds to the formula is linear on all its
sensitive variables).

Theorem 4.1 ([17]). Let f be a Goldreich’s function based on G and P,
where graph G is a (r,d,c)-boundary expander and predicate P contains
at most k insensitive variables; p is a partial assignment to variables of X
such that the formula ®)|, is unsatisfiable and for any set of vertices
ACY, |Al < %, the formula @?(w):bh, is satisfiable. Then the running
time of any DPLL algorithm (that does not use simplification rules) on

the formula ® ()=, is at least oLt —p|—d

Proof. See Appendix A. O

§5. LOWER BOUND ON SATISFIABLE FORMULAS

In this section G is a (r,d, ¢)-boundary expander where d is a constant,
r=Q(n) and ¢ > 5. Let 2 < k < ¢ — 2; we assume that graph G has the
type Gp + H, where Gy, is a (d — k)-regular, H is a k-regular R-graph
and the rank of adjacency matrix of G, is at least n — 1. We also assume

that R = o (%), where K is the number of clauses that myopic algorithm

THE COMPLEXITY OF INVERSION 97

may read with negation signs per step of recursion. Let P(xz1,...,zq) =
xy + -+ T4 + Q@a—k+t1,...,%4), where @ is arbitrary predicate of
arity k. The Goldreich’s function f is based on G and P and f is linear
on variables X \ R.

Now we describe the construction of graph that suits properties above.
We choose € = g5 and for given € we construct an (r,d, (1 — €)d)-
expander H by Lemma 2.3. The constant d satisfies the inequality d >
4k 4+ 10. By Theorem 3.1 we add to the constructed graph such 1-regular
graph T that the resulting graph H +7T has the adjacency matrix with rank
at least n — 1. The resulting graph is a (r,d + 1, (1 — ﬁ)d)—expander.
We choose the subset R C X of size o(n/K) and k-regular R-graph F'. We
define G=H+T+ F;graph Gisa (r,d+1+k, (1 — ﬁ)d)—expander
and hence a (r,d + 1 + k,d(1 — ﬁ) — k — 1)-boundary expander. For
k > 2 the inequality d(1 — ﬁ) —k—1>k+2 holds.

5.1. Closure. The next technical definition formalizes the following sim-
ple idea: suppose that the set .J is removed from the part X of G and
we want to remove a set I from Y (and also I'(I) from X)) such that the
resulting graph becomes a (r/2,d, k+1)-boundary expander. We construct
such I step by step removing sets with small boundary from Y.

Definition 5.1. Let J C X. The set of vertices I CY is called k-closure
of the set J if there is a finite sequence of sets I, Is, ..., I, (we denote
Co= U L, Co=9), such that the following properties are satisfied:
1<i<e
Ir CY and 0 < |I| < § for all 1 <€ <m;
LNnlj=2 foralll <i,j <m;
[0(Le) \ (T(Ce—1) U)| < (L4 k)|Lg|; for all 1 < €< m;
forall I' CY \ Gy if 0<|I'| < 5, then
0(I") \ (D(C) W) > (L + KT
o [=C)p.
The set of all k-closures of the set J we denote as C1*(.J).

Lemma 5.1. (1) For every set J C X there exists a k-closure. (2) Let
Ji C Jy, then for every I, € CI¥(Jy) there exists I, € CI*(Jy) such that
I C I,

Proof. See Appendix B. O

Lemma 5.2 ([2]). Let|J| < w, then for every set I € CI¥(J) the
inequality |I| < (¢ — k — 1)71|J| is satisfied.

98 D. M. ITSYKSON, D. O. SOKOLOV

Proof. See Appendix B. O

Definition 5.2. Let f : {0,1}" — {0,1}"™ be the Goldreich’s function
based on graph G and predicate P, b € {0,1}"™. Partial substitution p is
called locally consistent for the equation f(x) = b if there exists a string
z € {0,117 that is consistent to p and a set I € C1*(Vars(p)) such that the
equality f(z)|r = b|r holds.

Lemma 5.3 (cf. [2]). If the partial substitution p is locally consistent for
f(x) = b, then for all Z C X, |Z| < § there exists a string z € {0,1}"
such that z is consistent with p and the equality f(z)|z = blz holds.

Proof. Proof by contradiction. Consider the minimal Z C Y such that
|Z| < % and for all z that are consistent to p the nonequality f(z)|z # b|z
holds. Let I € C1*(Vars(p)) be from Definition 5.2. Partial substitution p
is locally consistent therefore Z \ I # @.

By the definition of closure [6(Z \ I)\ (I'(I) U Vars(p))| > (k+1)|Z\ 1|,
therefore there exists y € Z\ I such that at least £+ 1 boundary vertices of
set Z (not from the support of p and not connected with I') are connected
with y. The minimality of Z implies that there exists z € {0, 1}", such that
z~pand f(2)|2\(y} = blz\(y}- It is possible also to satisfy the equation
corresponding to vertex y by flipping the z-value of one of the boundary
neighbours of vertex y. Therefore there exists 2z’ € {0, 1}™ that is consistent
with p and f(2')|z = b|z. Contradiction. O

5.2. Clever myopic algorithm. We assume that the myopic algorithm
runs on the formula @ ;(,)—, where f~!(b) # @. We describe the clever my-
opic algorithm. A clever myopic algorithm is allowed to read more clauses
precisely (equivalently it may open more bits of b). Besides, the clever
algorithm doesn’t make substitutions that obviously lead to unsatisfiable
formulas. It is not hard to see that it is enough to proof the lower bound
for clever myopic algorithms; the lower bound for all myopic algorithms
will follow.

Now we describe the behavior of clever myopic algorithms more for-
mally. A clever algorithm has a current partial substitution p and a set
I € C1*(Vars(p)). At the beginning p = @, I = @. On each step the clever
algorithm simplifies the formula (probably increases p and extends the set
I to the element of C1*(Vars(p)).

If the clever algorithm requests a clause that corresponds to the vertex
y; € Y we say that the algorithm opens j-th bit of output. We assume

THE COMPLEXITY OF INVERSION 99

that all clauses corresponding to y; € Y may be read by a clever algorithm
for free.

Consider the heuristic A that choose variable z for splitting. Let Z be
the set of all open bits of output (in particular Z includes K bits that
were open before x was choosen). The clever algorithm extends the set I
to the element of C1*(Vars(p) U {x}). The set of open bits is increased:
Z = Z UI. The clever algorithm chooses the value of variable x in order
to make the part of formula that corresponds to Z satisfiable.

Lemma 5.4. For every clever myopic algorithm A there exists another
clever myopic algorithm B such that B does not use pure literal and unit
clause elimination rules and the running time of algorithm B on the for-
mula @ ¢ () is bounded by polynomial on the running time of algorithm A.

Proof. If the current predicate in the vertex y € Y (taking into account p)
is linear on at least two variables then Lemma 2.4 implies that there are
no pure literals in the formula that corresponds to y. So predicates in ver-
tices that contain pure literals have at most one linear variable. All such
vertices are contained in I € C1¥(Vars(p)), hence all corresponding bits
of output are open and the clever algorithm can see all pure literals. The
clever algorithm B delays all pure literal substitutions until all other vari-
ables have been assigned: the clever algorithm should B should remember
all pure literal substitutions it wants to make, but not assign them yet.
There are two possible cases: the algorithm B backtracks before it starts
to perform pure literal substitutions or the algorithm B gets a satisfiable
formula that can be satisfied by several applications of pure literal rules.
Similarly, if formula contains a unit clause, then the corresponding vertex
isin I and a clever algorithm may choose the correct substitution by itself.
Note that the susbstitution of the incorrect value to the variable form a
unit clause leads to the immediate backtrack. (]

In the following we assume that clever myopic algorithms do not use
simplification rules.

Let us denote N = L(C;’;i;{l)rj, where K is the number of clauses that
myopic algorithm may read with negation signs per step of recursion. Note
that K is also the upper bound to the number of open bits of b per step.

Lemma 5.5 (cf. [2]). After N steps of any clever myopic algorithm the
number of open bits is at most 3.

100 D. M. ITSYKSON, D. O. SOKOLOV

. —k—
Proof. The number of open bits is at most K% + | C1*(Vars(p))],

where p is the current substitution. By Lemma 5.2,

| Cl¥ (Vars(p))] < V2Pl

Se—k-1
Since | Vars(p)| < W we may conclude
(c—k—1)r % (c—k—=1r r _r
g Dok e,
4dK +1C(2)] 4d +4 2

O

Corollary 5.1. During the first N steps a clever myopic algorithm does
not backtrack (backtracking corresponds to a leaf of the splitting tree) and
p 1s locally consistent.

Proof. During IV steps the number of open bits is at most 5. We prove
by induction that the current substitution is locally consistent. It is trivial
for the beginning. Induction step follows from the fact that the value of
the variable is chosen in such a way that Qf(x):bh is satisfiable. This is
possible by Lemma 5.3 and by induction hypothesis. O

Our goal is to show that after N steps of a clever myopic algorithm the
current formula will be unsatisfiable with high probability.

Lemma 5.6. Let b€ {0,1}" and J C X. Let y € {0,1}" and Z C Y, we
define set X, = {x € {0,1}" | Vj € (X \J) x; =y;} of all strings that are
agree withy on X \ J and set Sy, = {x € X | f(x)|z = b|z}. Then either
1S,] > 29112110l op |5, = 0

We will apply Lemma 5.6 in the case Z € CI*(J). In this case |S,| is
the lower bound on the number of locally consistent substitutions with
support J.

Proof. We have to estimate the number of x € X, that satisfies the system
of equalities f(z)|z = b|z. If we fix the values for variables z; for j € JNR
then the system becomes linear over variables z; for j € (J\ R). The rank
of the system does not exceed |Z| and the number of variables is at least
[J| — |J N R| (it is not necessary for all those variables to have explicit
occurrences in the system). Thus if a solution exists then the dimension of
the solution space is at least |J| — |J N R| — | Z|. Since our system is over
field Fy the number of solutions is at least 21/1=1Z1=1JNEl gyen for fixed
values of z;, j € J N R. O

THE COMPLEXITY OF INVERSION 101

Let Z be the set of open bits b in the equation f(x) = b, p be some partial
substitution; we denote C, z; the set of z € {0,1}" that are consistent
with p and satisfy f(z)|z = b|z. Formally

Cozp ={x | f(2)|z = blz,2 ~ p}.

Lemma 5.7. Let Z C Y, |Z| < §, J C X. Then for every two locally
consistent substitutions p1, p2 with Vars(p1) = Vars(p2) = J and for every

be {0,1}" the following is satisfied: % < 217
p2.2,

In order to understand this lemma assume that |R| is very small. This
lemma says that for two locally consistent substitutions p; and ps the
number of solutions of the system f(x)|z = b|z that extends p; is approx-
imately equal to the number of solutions of the system f(x)|z = b|z that
extends ps.

Proof.
2 1Cp1 00,28

Corz0| _ o
|0027Z7b| Z |002UG7Z70|7
o

where the sum in both cases is over partial substitutions ¢ with support
Vars(o) = R\ J.

We show that the size of the set C); s,z is either 0 or some fixed value
and not dependant on o and ¢ € {1,2}.

The size of the set C), s, 2,5 equals the number of solutions of the system
of equations f(z)|z = b|z if some bits of z are fixed by substitution p; Uo.
This fixation makes the system linear. Note that the rank of this system
does not depend on substitutions p; and o (since p; and o influence only
the column of constants in the system). Therefore, if such system has a
solution then the number of solutions does not depend on 4 and o.

Since the substitution p; is locally consistent and |Z| < §, Lemma 5.3
implies that there exists such substitution o; with support Vars(o;) = R\ J
that Cpani,Z,b 75 .

Corzal _ 2"Cpr0a1.2] _ IRl
< = 2lAl,
|sz,va| |szU¢727Z,b|

d

Theorem 5.1. Let p be the current substitution after N steps of a clever
myopic algorithm running on the fomula ®¢,)—, for some b € f({0,1}")

102 D. M. ITSYKSON, D. O. SOKOLOV

and Z is the set of open bits. Then PryHU({OJ}n)[EI:c cx~p, f@)=f(y)]
FW)]z =blz] <27%),

Before giving a formal prove we informally describe the main idea. For
simplicity we assume that R = & therefore the predicate P is linear . We
consider a clever myopic algorithm after N steps (i.e. |p| = N). In this
moment the size of I € C1¥(Vars(p)) does not exceed (1 —)N for some
positive ¢ by Lemma 5.2. We apply Lemma 5.6 for J = Vars(p) and Z = I,
Lemma 5.6 states that the number of locally consistent substitutions is at
least 2! Vars(p)|—|I| — 9Q(N)

Lemma 5.3 and Lemma 5.5 imply that every local consistent partial
substitution may be extended to the full substitution that is consistent
with open bits of the right hand side. Lemma 5.7 states that the number
of such extensions is the same for every locally consistent substitution if
R = @. A myopic algorithm has no chance to find one substitution among
all locally consistent substitutions since they all have equal chances to be
correct. Since our linear system has at most two solutions (if R = @), there
are at most two locally consistent substitutions that can be extended to
the solution of the system. Therefore the probability of correct substitution
is at most 2-(WV) = 2=%),

Proof of Theorem 5.1. Corollary 5.1 implies that during N steps the
algorithm does not backtrack and |p| = N.

We apply Lemma 5.6 for J=Vars(p) and Z =1, where I € Cl*(Vars(p))
is from definition of a clever myopic algorithm after step V. Since b €
f({0,1}™) there exists y € {0,1}" such that S, # @ (S, is defined in the
Lemma 5.6) and the inequality |S,| > 2! Vars(?)I=HI=IEl holds. Therefore
at least 2!Vars(e)l=lI=IEl gubstitutions with support Vars(p) are locally
consistent.

Be:x~p, flx)=Ffy) | fly)lz =Dlz]

Pr
y<U({0,1}™)

= P T fW)NChzp # 2| f(y)|z = bl2]

= r
y<=U({0,1}")

< - : =
max £ (£ ()] y(_U(fzgvl}n)[y €Cpzp | f(Y)lz = blz]

By Lemma 3.2, the first term may be estimated as

max |/~ (F(y)] < 2lfI+

THE COMPLEXITY OF INVERSION 103

Let us estimate the second term:

max, |Cy
€ Cozn | F0)lz = blz] < e Cozal

Yo lCozs|

where o goes through all locally correct substitutions with the support
Vars(p). By Lemma 5.7,

Pr
y=U({0,1})

max, |Co, 7, < olRl ming [Co 7| — 92| RI+|1]~| Vars(p)|
Za |CUyZ7b| = 9| Vars(p)|—|I|—|R| min, |C(7,Z7b|)
Altogether:

P Jz:x ~ = = bl 4] < 23IBIFHI=[Vars(p)[+1
b Brias @) =10 [z = 2]
Since I € C1¥(Vars(p)) the Lemma 5.2 implies |I| < (c—k—1)~!| Vars(p)|.
The statement of the theorem follows from Vars(p) = Q(%), R = o(n/K)
and ¢ > k + 2. O

Theorem 5.2. For every myopic algorithm A the following inequality
holds:

Pr{ta(®s@)=r) 2 2] > 1 — 27K,

where ta(x) denotes the running time of A on input x and s is a string of
random bits used by A.

Proof. Lemma 5.4 implies that it is enough to prove the Theorem for
clever myopic algorithms that do not use simplification rules.

We fix the string of random bits s and prove that for algorithms that
use s instead of random bits the following holds:

Prlta(@p)=s(y) > 2] > 1 - 279,

and the theorem follows.

We consider a clever myopic algorithm after IV steps on the formula
@ (0)=f(y)- Let Zy be the set of open bits of output by this moment. Note
that for a fixed string s the behavior of algorithm during the first N steps
is the same for all 3" € {0,1}" such that f(y')|z, = f(y)|z, (in this case
Zy = Zy). Thus the set of all y € {0,1}"™ may be split on the finite
number of classes of equivalence Sy, 52, ...,Sy, such that for all y and for
all y' € S, the values of Z, are the same and the values of f(y)|z, are the
same, and this is not true for different classes

Prlta(@)=s() > 2°)]

104 D. M. ITSYKSON, D. O. SOKOLOV

=D _Pr[ta(®s0)=pp) > 2% |y € Si] Prly € 5]
i=1

By Theorem 5.1, after IV steps of a clever myopic algorithm
Pr[®f(4)—r(y) |, is unsatisfiable |y € S;] > 1 — 2~ SUE)
y

where p is the current substitution that is locally consistent. Finally The-
orem 4.1 implies that

Prlta(®p)=f(y) =290 [y e §] > 1 - 27%%).
y
The theorem follows from the last inequality. O

It may be easily verified that we do not use the fact that the predicate
Q is the same for all vertices of the set Y.

APPENDIX §A. BEHAVIOR OF DPLL ALGORITHMS ON
UNSATISFIABLE FORMULAS

Behavior of DPLL algorithms on unsatisfiable formulas is closely con-
nected with the resolution proof system. The resolution proof system is
used for proving the unsatisfiability of CNF formulas. The proof of un-
satisfiability of formula ¢ in the resolution proof system is a sequence of
clauses, every clause in this sequence is either a clause of ¢ or a result
of application of the resolution rule to two previous clauses; and the last
clause in the sequence is an empty clause (a contradiction). The resolution
of two clauses (I3 VIV ---VI,) and (If VI,V --- V1) where I/, = -, is
the clause (I; V -+ Vi,—1 VI{ V--- VI _;). The proof is called treelike if
every inferred clause is used as the premise of the resolution rule at most
once.

The running of every DPLL algorithm (that does not use symplifica-
tion rules) on the unsatisfiable formula corresponds to the splitting tree.
Vertices of the tree are marked with variables that are chosen for splitting.
There are two outgoing edges from every vertex except leaves; one of the
edges is marked with 0, the other edge is marked with 1. In every leaf
at least one of clauses of initial formula is refuted. The running time of
a DPLL algorithm is the size of the splitting tree (note that if formula is
unsatisfiable then the algorithm should investigate the whole tree and it’s
number of steps is the same for all heuritics B).

The following statement is well known.

THE COMPLEXITY OF INVERSION 105

Proposition A.1. The running time of DPLL algorithm (that does not
use symplification rules) on unsatisfiable formula is at least the size (num-
ber of clauses) of the shortest treelike resolution proof.

Proof. By induction of the size of the tree it is easy to show that if
unsatisfiable formula ¢ has splitting tree of size k then ¢ has resolution
refutation of size k. The base of induction is the spitting tree with only
one vertex, such formula should contain an empty clause therefore the size
of resolution refutation is 1. Induction step. Note that the tree necessarily
contains two leaves v and v with the same parent w. Let z; be the splitting
variable in the vertex w, the leaf u corresponds to the assignment x; = 1
and the leaf v corresponds to the assignment z; = 0. Two clauses that are
refuted in the vertices v and u contain the variable z; with different signs.
The resolvent (the result of an application of the resolution rule) of this two
clauses C' must be refuted in the vertex w. We construct new splitting tree:
cut leaves v and w and add clause C' to vertex w. Now we get a correct
splitting tree for a formula that is obtained from the initial formula by
adding a resolvent of two clauses. And we apply induction hypothesis to
the resulting tree (the number of vertices is decreased by 1). (]

Ben-Sasson and Wigderson in [5] introduced the notion of width of the
proof. The width of a clause is the number of literals in it. The width of a
CNF formula is the width of its widest clause. The width of a resolution
proof is the width of its widest clause.

Theorem A.1 ([5], corollary 3.4). The size of a treelike resolution refu-
tation of the formula ¢ is at least 2V~ %+, where w is the minimum width
of the resolution refutation of ¢ and w, is the width of .

Let G be a boundary (r, d, ¢)-expander. We associate a proposition vari-
able with every vertex in set X. Let every vertex y; in set Y have a CNF
formula that depends on variables adjacent to y;. We denote the formula
in the vertex y; as ;. Obviously the width of ¢; is at most d. The con-
junction of all formulas that correspond to the vertices Y we denote ®.
For any subset A C Y the conjunction of all formulas that correspond to
the vertices in A we denote as ®4.

Theorem A.2. Let every formula p; contain at most k insensible vari-
ables; p is a partial assignment to variables of X such that formula ®|,
is unsatisfiable and for any set of vertices A CY, |A| < &, the formula

106 D. M. ITSYKSON, D. O. SOKOLOV

<I>A|p is satisfiable. Then any resolution refutation of ®|, has width at least
(c—k)r |
eBr 1)

Proof. We consider Ben-Sason—Wigderson measure p that is defined on
the clauses of resolution proof of ®|,. u(D) is the size of the minimal
set of vertices A such that clause D is a semantic implication of ®4|,
(it means that every satisfying assignment of ®4|, also satisfies D). The
measure p is semiadditive: if clause D is a resolvent of clauses C; and
Cy, then p(D) < p(Ci) + u(Cs). Since for every set A C Y such that
|A| < §, formula ‘I>A|p is satisfiable, then the measure of an empty clause
is at least §. Semiadditivity implies that there exists a clause C' such that
5 > u(C) = f for r large enough. Let A be the minimal set of vertices such
that 4|, semantically implies C, i.e. [4| = p(C) > %. Since G is a (r, d, ¢)-
boundary expander we have 6(A) > ¢|A|. §(A) is a set of variables that
have exactly one occurrence in the formulas corresponding to the set A.
There are at least (¢ — k)| A| variables among them that are sensible for at
least one vertex of A. There are at least (c—k)|A| — |p| sensible variables in
the formula ®4|,. Now we will show that the clause C contains all sensible
variables. Suppose for contradiction that there is a variable z; that is
sensible for a vertex v € A and the clause C' does not contain z;. Consider
the set A\ {v}. It doesn’t semantically imply C, therefore there exists such
an assignment that satisfies all formulas for A\ {v} and doesn’t satisty C.
We may change the value of z; in this assignment in such way that the
resulting assignment satisfies all formulas in A and doesn’t satisfy C'. The
later contradicts the fact that C' is a semantic implication of A. (]

Corollary A.1. The size of the splitting tree of ®|, is at least 2 ol
Proof. Follows from the Theorem A.2, Theorem A.1 and Proposition A.1.
O

APPENDIX §B. CLOSURE

Lemma B.1.

1. For every set J C X there exists a k-closure.

2. Let J; C Jo, then for every I, € CI¥(Jy) there exists I € Cl*(J)
such that I C I>.

Proof. 1. A k-closure may be obtained as a result of the following algo-
rithm C on the input (J, @).

THE COMPLEXITY OF INVERSION 107

Algorithm B.1. Algorithm C(J, Iy)

(1) I := Iy (the variable I means some subset of Y)
(2) While there exists I’ C Y \ I such that

0<II'< 5 BUN\ECDUD <A+

o [:=TUTI
(3) Return I.

2. Let I; € CI¥(Jy), then we can get I, € Cl*(Jy) as a result of the
algorithm C on the input (J2, ;). The condition I; C I, is satisfied. O

Lemma B.2 ([2]). Let|J| < w, then for every set I € Cl*(J) the
inequality |I| < (c — k — 1)7'|J| is satisfied.
Proof. Proof by contradiction. Let Iy, Is,..., I, be the sequence corre-
sponding to the k-closure I, C¢ = |, ¢;<, l¢- Let t be the minimal num-
ber such that the inequality |Cy| > (¢ — k — 1)7!|J| is satisfied, then
|C¢| < (¢ —k—1)""J|+ 5 <r. Then
6(C)| = | Ce| > [T] + (k + 1)|Cy].
By induction on ¢ we will show that |6(Cy) \ J| < (k + 1)(]C¢|), and it
contradicts the above inequality for [= ¢. If [= 1 the inequality follows
from |01 \ J| < (k + 1)|11].
[0(CONII < [6(LL U -+ ULp1) \ | +[0(Le) \ (J UL (Cp-1))]
< (B + D((1Ce-1])) + (B + 1) [Lel.

REFERENCES

1. J. Cook, O. Etesami, R. Miller, L. Trevisan, Goldreich’s One-Way Function Candi-
date and Myopic Backtracking Algorithms. In: Proceedings of TCC, Springer- Verlag
(2009), pp. 521-538,

2. M. Alekhnovich, E. A. Hirsch, A. Edward, D. Itsykson, Ezponential lower bounds

for the running time of DPLL algorithms on satisfiable formulas. — J. Autom.
Reason. 35, No. 1-3, (2005), 51-72.
3. L. Levin, One-way functions and pseudorandom generators. — Combinatorica 7,

No. 4 (1987), 357-363.

4. O. Goldreich, Candidate One-Way Functions Based on Expander Graphs. — Elec-
tronic Colloquium on Computational Complexity, No. 00-090 (2000).

5. E. Ben-Sasson, A. Wigderson, Short proofs are narrow — resolution made simple.
— J. ACM 48, No. 2 (2001), 149-169.

108

D. M. ITSYKSON, D. O. SOKOLOV

6.

7.

10.

11.

12.

13.
14.

15.

16.

17.

18.

St.Petersburg Department

S. Hoory, N. Linial, A. Wigderson, Ezpander graphs and their applications. — Bull.
Amer. Math. Soc. 43 (2006), 439-561,

N. Nisan, A. Wigderson, Hardness vs. randomness. — J. Computer System Sciences
49 (1994), 149-167.

. L. Mironov, L. Zhang, Applications of SAT Solvers to Cryptanalysis of Hash Func-

tions. — In: A. Biere, C. P. Gomes (eds.) Theory and Applications of Satisfiability
Testing—SAT 4121, Lect. Notes Comput. Sci., Springer (2006), pp. 102-115.

. G. S. Tseitin, On the complexity of derivation in the propositional calculus. — Zap.

Nauchn. Semin. LOMI 8 (1968), 234-259.

N. Eén, A. Biere, Effective Preprocessing in SAT Through Variable and Clause
Elimination. — Theory and Applications of Satisfiability Testing (2005), 61-75.
N. Een, N. Sorensson, An Exztensible SAT-solver. — Lect. Notes Computer Science,
Springer (2003), 502-518.

M. Alekhnovich, E. Ben-Sasson, A. A. Razborov, A. Wigderson, Pseudorandom
generators in propositional proof complexity. — In: Proceedings of the 41st An-
nual Symposium on Foundations of Computer Science, IEEE Computer Society,
Washington, DC, USA (2000), p. 43.

A. Urquhart, Hard Ezamples for Resolution. — JACM 34, No. 1 (1987), 209-219.
M. Davis, G. Logemann, D. Loveland, A machine program for theorem-proving. —
Communications ACM 5 (1962), 394-397.

M. Davis, H. Putnam, A computing procedure for quantification theory. — JACM
7 (1960), 201-215.

M. Capalbo, O. Reingold, S. Vadhan, A. Wigderson, Randomness conductors and
constant-degree lossless erpanders. — In: Proceedings of the 34th Annual ACM
Symposium on Theory of Computing (2002), pp. 659-668.

D. Itsykson, Lower bound on average-case complezity of inversion of Goldre-
ich function by drunken backtracking algorithms. — In: Proceedings of Interna-
tional Computer Science Symposium in Russia Lecture Notes in Computer Science,
Springer (2010) pp. 204-215.

R. Miller, Goldreich’s one-way function candidate and drunken backtracking algo-
rithms. — University of Virginia (2009).

Ilocrynuno 31 wmroms 2011 r.

of the Steklov Mathematical Institute,
Fontanka 27,

St.Petersburg 191023,

Russia

FE-mail: dmitrits@pdmi.ras.ru
sokolov.dmt@gmail.com

